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Abstract: Diabetes mellitus is a burdensome disease that affects various cellular functions through
altered glucose metabolism. Several reports have linked diabetes to cancer development; however,
the exact molecular mechanism of how diabetes-related traits contribute to cancer progression is
not fully understood. The current study aimed to explore the molecular mechanism underlying
the potential effect of hyperglycemia combined with hyperinsulinemia on the progression of breast
cancer cells. To this end, gene dysregulation induced by the exposure of MCF7 breast cancer cells to
hyperglycemia (HG), or a combination of hyperglycemia and hyperinsulinemia (HGI), was analyzed
using a microarray gene expression assay. Hyperglycemia combined with hyperinsulinemia induced
differential expression of 45 genes (greater than or equal to two-fold), which were not shared by
other treatments. On the other hand, in silico analysis performed using a publicly available dataset
(GEO: GSE150586) revealed differential upregulation of 15 genes in the breast tumor tissues of diabetic
patients with breast cancer when compared with breast cancer patients with no diabetes. SLC26A11,
ALDH1A3, MED20, PABPC4 and SCP2 were among the top upregulated genes in both microarray
data and the in silico analysis. In conclusion, hyperglycemia combined with hyperinsulinemia
caused a likely unique signature that contributes to acquiring more carcinogenic traits. Indeed, these
findings might potentially add emphasis on how monitoring diabetes-related metabolic alteration
as an adjunct to diabetes therapy is important in improving breast cancer outcomes. However,
further detailed studies are required to decipher the role of the highlighted genes, in this study, in the
pathogenesis of breast cancer in patients with a different glycemic index.
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1. Introduction

Aberrant glucose metabolism has been linked to poor breast cancer outcomes [1,2]. It
is well established that diabetic/hyperglycemic metastatic cancer patients have a decreased
overall survival compared to a nondiabetic/normoglycemic control group [3]. Previous
reports have proposed that glycemic control medications can be used as an adjunct to
chemotherapy, claiming that the glycemic index is related to metabolic alterations in cancer
patients [4–6]. However, overall, diabetic women with breast cancer demonstrated poorer
outcomes than non-diabetic women with breast cancer. The cause of this disparity has not
yet been identified and needs to be determined.

Glucose, for cancer cells, is used not only to satisfy energy needs but also to provide
precursor molecules that are vital for other biological needs such as cell proliferation.
Glucose uptake by cells is determined by a group of glucose transporters that vary in their
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expression among different body cells. Breast cancer cell lines such as MCF7 and MDA-MB-
231 depend on glucose transporter 4 (GLUT4) in their basal glucose uptake [7]. GLUT4 is the
key factor in glucose transport and homeostasis in response to insulin [8] (Figure 1). Upon
the uptake of glucose, glucose is phosphorylated to give glucose 6-phosphate/P, which is
the forerunner for glycolysis and pentose phosphate pathway (PPP) [9] (Figure 1). Glucose
6-P is metabolized to two pyruvate molecules via the glycolytic pathway [10]. Pyruvate is
then decarboxylated to acetyl-CoA, which is the driver molecule for the tricarboxylic cycle
(TCA) [10]. NADH and FADH2 generated by the TCA cycle join oxidative phosphorylation
to help in ATP production. Glucose 6-P is also utilized by PPP to produce ribose 5-P and
NADPH [11]. The former is crucial for nucleic acids synthesis, which is important to fulfill
the high demand of cancer cells for proliferation and gene expression. The latter is valuable
in the glutathione antioxidant system that is adopted by cancer cells to resist radio- and
chemotherapy [12] (Figure 1). With the presence of oxygen, some cancer cells rewire their
metabolism and rely on glycolysis as a main energy provider through the ‘Warburg effect’;
in this way, they upregulate their glucose uptake system to ensure the availability of glucose
to support their oncogenic behavior [13].
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molecules. Acetyl-CoA is the main driver for tricarboxylic cycle (TCA) that produces NADH and 
FADH2. NADH and FADH2 join oxidative phosphorylation (OXPHOS) to produce paramount en-
ergy. Glycolysis produces less energy production and lactic acid. PPP is the pathway that produces 
ribose 5-phospahate, which is key in nucleotide biosynthesis. Nucleotides are the building blocks 
for nucleic acids, which are the vital element in cell proliferation and gene expression. PPP also 
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regulation is one of the resistant mechanisms adopted by cancer cells to resist radio- and chemo-
therapy. The diagram is adapted from [14] and created with BioRender.com. 
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Figure 1. Glucose metabolism. In response to insulin, Phosphoinositide 3-kinase (PI3K)/Akt pathway
is stimulated; this leads to glucose transporter 4 (GLUT4) translocating to the membrane. GLUT4
allows the influx of glucose. Glucose is first phosphorylated at carbon 6 to give glucose 6-phosphate,
which is going to act as a precursor to glycolysis and pentose phosphate pathway (PPP). Glycolysis
gives 2 pyruvate molecules that are going to be decarboxylated to result in 2 acetyl-CoA molecules.
Acetyl-CoA is the main driver for tricarboxylic cycle (TCA) that produces NADH and FADH2. NADH
and FADH2 join oxidative phosphorylation (OXPHOS) to produce paramount energy. Glycolysis pro-
duces less energy production and lactic acid. PPP is the pathway that produces ribose 5-phospahate,
which is key in nucleotide biosynthesis. Nucleotides are the building blocks for nucleic acids, which
are the vital element in cell proliferation and gene expression. PPP also produces NADPH, which is
important in glutathione antioxidant system. Glutathione system upregulation is one of the resistant
mechanisms adopted by cancer cells to resist radio- and chemotherapy. The diagram is adapted
from [14] and created with BioRender.com.

In vitro studies have demonstrated that treating breast cancer and pancreatic cancer
cells with high glucose results in molecular changes such as phosphorylation of the epider-
mal growth factor receptor (EGFR), which promotes cancer cell proliferation [15,16]. Further
to that, a study by Lopez et al. showed that hyperglycemia activated the AKT/mTOR
pathway and impacted cell proliferation [17].

A study by Flores et al. also revealed that high concentrations of glucose promoted
cell proliferation in MDA-MB-231 breast cancer cells when compared with cells treated
with a low concentration of glucose [18]. An additional report showed that under hyper-
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glycemic conditions, neutrophil mobilization was inhibited; therefore, tumor cells were
able to evade the immune system, resulting in tumor growth enhancement and metastatic
abilities [19]. Moreover, long-term hyperglycemia led to an enhancement in the expression
of some pro-inflammatory factors such as IL6, COX2 and TNFα, which were proven to be
linked to tumorigenic behaviour such as triggering an anti-apoptotic signal and promoting
epithelial mesenchymal transition [20]. An interesting study by Li et al. revealed the role
of hyperglycemia in activating ERK via H2O2 production associated hyperglycemia [21].
Hyperglycemia-induced ERK was linked to increased tumour migration and invasion.
Further, high glucose levels during chemotherapy contributed to the development of
chemoresistance by tumour cells [22].

In most of the previous studies, hyperglycemia was considered as the main metabolic
factor affecting tumor cell proliferation and migration, neglecting the fact that diabetes is a
multi-organ disease associated with an array of metabolic changes involving hyperglycemia
and hyperinsulinemia. Hyperinsulinemia has been shown to predispose to various diseases
such as cardiovascular disease, hypertension, stroke and cancer [23]. It is worth mentioning,
in comparison to the few in vitro studies in which hyperglycemia was combined with
hyperinsulinemia [24,25], that the current study provides a novel global-gene approach,
using a DNA microarray, to identify the dysregulated genes and metabolic alterations.

Since diabetes and breast cancer are global health concerns among females [26–28], we
believe that the study improves our understanding of how metabolic changes associated
with diabetes affect tumor function and tumor progression. Moreover, the outcome of this
study suggests a greater emphasis on personalized medicine.

2. Results
2.1. Differentially Expressed Genes in MCF7 with Different Treatment

The differentially expressed genes under normoglycemia (NG), normoglycemia with
hyperinsulinemia (NGI), hyperglycemia (HG) or hyperglycemia with hyperinsulinemia
(HGI) are available in the Supplementary Materials. Comparative analysis was conducted
between NG vs. HG, NG vs. NGI and NG vs. HGI. The NG vs. HGI comparison revealed
245 upregulated genes (p < 0.05) and 491 downregulated genes (p < 0.05). Only the genes
with a p value <0.05 and two-fold increase were considered in this report (Table 1). After
applying the inclusion criteria, HG treatment resulted in upregulation of 16 genes, and
examples of these genes are: TGFA, CDCA5, MUC3A and C3AR1 (Supplementary Table S2).
HGI caused upregulation of 57 genes including TGFA, CDCA5 and C3AR1, which were
also noted with HG treatment only (Table 1). Forty-five genes out of the fifty-seven genes
were found to be exclusively upregulated with the combination of hyperglycemia and
hyperinsulinemia. Example of these genes are: FGFR3, PAK1, LEPR, SCP2, E2F7, AGER,
ALDH1A3 and DOCK7. On the other hand, 25 nM insulin treatment per se had also
positively influenced gene expression such as TGFA, CDCA5, PCM1, DDIT3, ZC3H12D,
MUC3A, AKR1B1 and LIMD1 (Supplementary Table S3). The shared overexpressed genes
between different treatments are listed in Supplementary Table S4.

To validate the microarray findings, five genes, which are related to cancer traits,
were tested by qRTPCR; these genes are TGFA, CDC5A, PAK1, FGFR3 and ALDH1A3.
All these genes demonstrated upregulation with hyperglycemia and hyperglycemia with
hyperinsulinemia. Consistent with the microarray data, CDCA5 was overexpressed with the
HG and HGI treatments, while no change was noted with NGI (Figure 2). In the microarray
data, TGFA exhibited elevation in both NGI and HG but surprisingly not with HGI. TGFA
mRNA levels, obtained from qRTPCR, demonstrated slight increments; however, they were
not significant, with NGI and a greater increase with HG and HGI, which partially validates
the data obtained from the microarray results. A significant increase in the expression
of FGFR3 (p < 0.01) was noted with HGI treatment consistent with the microarray data
(Figure 2). Overall, microarray data showed differential upregulation of different genes
with different treatments, although some genes were shared by either the two or three
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treatment conditions. Employing RT-PCR has relatively validated the data obtained from
the microarray data.

Table 1. Differentially upregulated genes induced by the combination of hyperglycemia and hyperin-
sulinemia treatment.

Gene Name Average of Fold
Change

p Value
< 0.05 Adj-p-Value Description

SNRPC 5.613 <0.001 0.006 Small nuclear ribonucleoprotein polypeptide C

FGFR3 3.071 <0.001 0.006 Fibroblast growth factor receptor 3

FAM219A 3.469 <0.001 0.005 Family with sequence similarity 219, member A

SLC26A11 4.311 <0.001 0.005 Solute carrier family 26 (anion exchanger), member 11

ATMIN 2.055 <0.001 0.004 ATM interactor

ARHGEF10 3.419 <0.001 0.004 Rho guanine nucleotide exchange factor (GEF) 10

PAK1 2.131 <0.001 0.004 p21 protein (Cdc42/Rac)-activated kinase 1

JPH3 5.196 <0.001 0.005 Junctophilin 3

BRD7 4.668 <0.001 0.005 Bromodomain containing 7

GNB5 2.382 <0.001 0.006 Guanine nucleotide binding protein (G protein), beta 5

LEPR 5.740 <0.001 0.005 Leptin receptor

TMEM180 3.148 <0.001 0.005 Transmembrane protein 180

SCP2 3.759 <0.001 0.005 Sterol carrier protein 2

CDCA5 4.805 <0.001 0.005 Cell division cycle associated 5

DYNLT1 5.364 0.001 0.005 Dynein, light chain, Tctex-type 1

RBM14 2.333 0.001 0.005 RNA binding motif protein 14

GNAZ 3.279 0.001 0.006 Guanine nucleotide binding protein (G protein), alpha
z polypeptide

STAC3 2.354 0.001 0.007 SH3 and cysteine rich domain 3

VKORC1 4.188 0.001 0.008 Vitamin K epoxide reductase complex, subunit 1

RNF32 4.171 0.001 0.008 Ring finger protein 32

FAM69A 3.157 0.001 0.008 Family with sequence similarity 69, member A

MFN2 4.574 0.001 0.008 Mitofusin 2

TNFRSF25 3.608 0.002 0.008 Tumor necrosis factor receptor superfamily, member 25

DCLRE1C 2.249 0.002 0.008 DNA cross-link repair 1C

G3BP1 5.532 0.002 0.008 GTPase activating protein (SH3 domain) binding
protein 1

TSTD2 2.449 0.002 0.008 Thiosulfate sulfurtransferase (rhodanese)-like domain
containing 2

PPARD 2.386 0.002 0.009 Peroxisome proliferator-activated receptor delta

E2F7 3.209 0.003 0.010 E2F transcription factor 7

LRRC1 3.610 0.003 0.010 Leucine-rich repeat-containing 1

PABPC4 4.588 0.003 0.011 Poly(A) binding protein, cytoplasmic 4
(inducible form)
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Table 1. Cont.

Gene Name Average of Fold
Change

p Value
< 0.05 Adj-p-Value Description

PAN3 2.918 0.003 0.011 PAN3 poly(A) specific ribonuclease subunit

SLITRK6 2.372 0.003 0.011 SLIT and NTRK-like family, member 6
LRRC28 2.118 0.004 0.012 Leucine-rich repeat-containing 28

NFIA 2.799 0.004 0.012 Nuclear factor I/A

LIMD1 3.078 0.005 0.013 LIM domains containing 1

AHSA2 3.386 0.005 0.013 AHA1, activator of heat shock 90kDa protein ATPase
homolog 2 (yeast)

STK3 3.704 0.005 0.013 Serine/threonine kinase 3

AGER 2.129 0.005 0.013 Advanced glycosylation end-product-specific receptor

TMEM170B 2.057 0.006 0.013 Transmembrane protein 170B

PCM1 3.421 0.006 0.013 Pericentriolar material 1

KDELC2 2.870 0.006 0.013 KDEL (Lys-Asp-Glu-Leu) containing 2

ALDH1A3 2.978 0.006 0.013 Aldehyde dehydrogenase 1 family, member A3

MED20 2.466 0.008 0.015 Mediator complex subunit 20

SEPN1 2.196 0.008 0.016 selenoprotein N, 1

ARAP2 2.436 0.008 0.016 ArfGAP with RhoGAP domain, ankyrin repeat and PH
domain 2

ZNF550 2.510 0.009 0.016 Zinc finger protein 550

HIST2H2BF 2.396 0.009 0.016 Histone cluster 2, H2bf

SH3RF3 2.007 0.013 0.020 SH3 domain-containing ring finger 3

C3AR1 2.025 0.014 0.021 Complement component 3a receptor 1

ZNF808 2.568 0.014 0.021 Zinc finger protein 808

DOCK7 2.394 0.014 0.021 Dedicator of cytokinesis 7

PLCH1 2.144 0.014 0.021 Phospholipase C, eta 1

CLDN12 2.150 0.017 0.023 Claudin 12

POU5F1 2.168 0.018 0.025 POU class 5 homeobox 1

CEP170 2.189 0.032 0.036 Centrosomal protein 170 kDa

RAPGEF6 2.540 0.043 0.045 Rap guanine nucleotide exchange factor (GEF) 6

CLIP3 2.340 0.048 0.048 CAP-GLY domain-containing linker protein 3

The results are presented as fold change and normalized to folds of gene expression in cultured cells with normal
glucose levels, n = 2. Benjamini–Hochberg method was used to calculate the adjusted p-value. MCF7 cells were
cultured in 30 mM glucose and 25 nM insulin for 72 h.

2.2. The Overlapping Differentially Expressed Genes from In Vitro Experiments and In Silico Data

It was of interest to find out whether diabetic patients with breast cancer show any
overlapping results with the in vitro experiments. Differentially expressed genes obtained
from a cohort of diabetic women with breast cancer (n = 7) and women with breast cancer
(n = 6) with a normal glycemic index are plotted in Figure 3. Different genes were found
to be upregulated in diabetic women with breast cancer. These genes are VAV2, SPINK8,
SCP2, SLC26A11, LIMD1, S100P, FXYD3, CIRBP, CCDC40, ALDH1A3, MED20, MTER3,
PAPBPC4, PALM3 and R3HDM4 (Figure 3).
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Figure 3. Differentially upregulated genes in breast cancer patients with diabetes vs. breast cancer
patients with no diabetes. Control group (n = 6): breast tumor tissues obtained from patients with
breast cancer with no diabetes; the test group (n = 7): breast cancer tissues obtained from breast
cancer patients with diabetes. The data were processed by NovaSeq 6000. Data were analyzed by
R software and Prism. p < 0.05 was considered significant. Results are presented as mean (±SEM)
mRNA expression. BrC: breast cancer; BRC + D: breast cancer with diabetes.
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The overlapping upregulated genes, which are shared between the genes obtained
from the microarray data (HGI-treated cells), and the genes obtained from the patient data
are SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 (Figure 4).
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cancer patients with diabetes (10 + 5 genes) (in the yellow circle) and the 5 overlapping genes
in the intersected region. The Venn diagram was generated by Bioinformatics & Evolutionary
Genomics tool [29]. (B) The coinciding genes between the HGI-related microarray data and publicly
available data.

3. Discussion

Breast cancer is one of the most common cancers among women worldwide [30]. The
majority of breast cancer cases are sporadic, while a small percentage is due to hereditary
factors [31]. The outcome of breast cancer is determined by different factors including: the
stage and the grade of the disease, the expression of hormone receptors, the HER2 receptor
genes and age, among others [32]. The association of comorbidities, such as hyperten-
sion, pulmonary chronic obstructive disease, rheumatologic disease and diabetes mellitus
with breast cancer has been shown previously [33,34]. Furthermore, the correlation of
diabetes with a progressive form of breast cancer has also been described [35,36]. The main
metabolic alterations that occur in diabetes are hyperglycemia and hyperinsulinemia. In
this study, it was intended to investigate the effect of these metabolic alterations on the gene
expression machinery employing the MCF7 breast cancer cell line. The exposure of these
cells to hyperglycemia and hyperinsulinemia caused alterations in the gene transcription
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machinery. Publicly available data assisted in deciphering the differentially deregulated
genes in diabetic breast cancer patients. The alignment between microarray data and
the in silico analysis revealed SLC26A11, ALDH1A3, MED20, PABPC4 and SCP2 genes as
upregulated on both datasets.

It is currently known that breast cancer has different molecular subtypes with dif-
ferent molecular signatures, which reflects the heterogeneity of breast cancer subtypes.
Knowing the subtypes of breast cancer helps in determining which treatment the patient
requires [37–39]. However, we believe determining certain chemotherapeutic regimen can
be impacted by other factors, other than breast cancer molecular subtypes, such as high
glucose levels and high insulin levels. The outcome of this current study hints towards
glucose levels being an important factor not only in breast cancer progression but in other
malignant cancers as well and therefore needs to be considered—when treating diabetic
cancer patients.

Epidemiological studies revealed that hyperglycemia influences tumor progression in
different types of cancer [35,36]. Hyperglycemia is commonly seen in diabetic patients as
well as in diabetes-unrelated and related conditions such as metabolic syndrome, obesity,
Cushing’s syndrome, hyperthyroidism, chronic stress, long-term prednisolone treatment
and polycystic ovarian disease [40–47]. Furthermore, resistance to insulin results in an
elevation in blood glucose as well as an increase in insulin levels. The combination of
hyperglycemia and hyperinsulinemia is predominantly present in diabetes type 2 as well
in metabolic syndrome [48]. Interestingly, hyperinsulinemia per se was reported to increase
mortality in obese cancer patients [49]. It is worth noting that breast cancer is one of the
most common occurring cancers among patients diagnosed with diabetes and metabolic
syndrome [50–52]. Not only this, patients with these metabolic disorders, who develop
cancer during the course of the chronic disease, exhibit a worse prognosis than those who
have a normal glycemic index [1,35,49–52].

It is worth mentioning how tumor cells rewire their metabolism to fulfill their needs.
Previously, it was shown that tumor cells have a high demand for glucose since they
rely on anaerobic glycolysis (i.e., the Warburg effect) [53]; nevertheless, recently, it was
revealed that tumor cells might also require oxidative phosphorylation to come on board
to satisfy their energy demands in limited glucose conditions [54–56]. Moreover, shifting
to oxidative phosphorylation has appeared to be a way to evade the killing effect of some
anti-cancer agents [54,55]. Here, we are not limiting glucose conditions; we are instead
offering tumor cells an excess of glucose to mimic the hyperglycemia that occurs in different
metabolic diseases and looking at upregulated genes in the hyperglycemic state. Earlier
reports focused on the effect of hyperglycemia, or hyperglycemia with hyperinsulinemia on
certain signaling pathways [15,16,23,24]. Unlike previous studies, this study took a holistic
approach to explore the effect of the combination of hyperglycemia and hyperinsulinemia
in gene expression.

It is well studied that tumor cells feed on glucose and utilize it as a fuel to generate
intermediates that are useful for cancer cell activities [57]. Therefore, the availability of
glucose in the vicinity of the tumor cells, as well as the presence of insulin, leads to increased
tumor progression. Previous studies showed that injecting mice with insulin triggered
mammary tumor formation, while in rats, tumor-like pathologies were observed in the
colon [58–60]. In an MKR transgenic mouse model, in which endogenous inulin receptors
are inactivated in the skeletal muscles which results in hyperinsulinemia, IGFR, AKT and
MAPK/ERK were found to be activated in the mammary tumor tissue in comparison to
their control [58]. Hyperinsulinemia was also demonstrated to act as an inflammatory
mediator. NF-κB and TNF α were found to be associated with insulin resistance [61,62].

Our microarray data revealed different upregulated genes with HGI treatment. Some
of these genes contribute to cancer progression and development. According to our data,
hyperglycemia alone caused upregulation of a number of genes such as TGFA, CDCA5,
MUC3A and C3AR1. The TGFA levels were shown to be higher in breast cancer patients
when compared with non-cancerous individuals [63], which indicates the role of TGFA
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in breast cancer carcinogenesis. TGFA was also linked to estrogen-receptor-expressing
breast cancer, and its role in breast cancer progression was proposed [63]. Moreover, TGFA
facilitates breast cancer metastasis to the bones [64]. On the other hand, treatment of
vascular smooth muscle tissue with 30 mM of glucose resulted in a 1.7-fold increase in
the expression of TGFA [65], which is in accordance with our data. Moreover, CDCA5,
MUC3A and C3AR1 gene overexpression has previously been linked to carcinogenesis;
however, no association with the expression of these genes has been reported in relation
to hyperglycemia and breast cancer [66–70]. The cell cycle division associated (CDCA)
proteins family is known for its role in controlling the cell cycle [70]. The CDCA5 member
is a regulator of sister chromatid separation during cell division. Its distinct expression was
correlated with short relapse-free survival [70]. MUC3A encodes for a glycoprotein that is
involved in mucin structure in the intestinal tract, while interestingly, its overexpression
is linked to poor outcomes in renal cell carcinoma [66]. Furthermore, C3AR1 is a crucial
regulator in complement signaling, and it is abundantly expressed in immune cells. The
C3AR1 and C3a signaling axis is well documented in enhancing tumor metastasis via
manipulating the tumor-associated fibroblasts [67]. The role of C3AR1 in tumor cells is not
yet verified; although, its expression is associated with low survival rate in some cancers,
as depicted by the Human Protein Atlas [71].

Among all the upregulated differentially expressed genes with HGI treatment, SCP2,
PABPC4, MED20, SLC26A11 and ALDHA13 were found to coincide with data obtained from
publicly available data. SCP2 was reported to be upregulated in gliomas, and the levels of
its expression were found to be correlated with glioma grades [72]. Although in this study
we have not focused on SCP2, future work is planned to study the role of SCP2 in breast
cancer in relation to hyperglycemia and hyperinsulinemia. MED20 belongs to a family of
transcription factors that mediate transcription of different genes, including, importantly,
the estrogen receptor gene among other intracellular receptors, which emphasize the role
of this family in breast cancer pathogenesis [73,74]. Other MED genes such as MED8 were
found to associate with renal cell carcinoma, while MED12 associates with lung cancer [73].
Furthermore, MED1 was found to be linked to prostate cancer [75]. Intriguingly, multiomics
analysis revealed MED20 as one of the signatures related to tumor cells [76]. Hence, it could
be that MED20 is connected to breast cancer tumorigenesis in relation to the combination
of hyperglycemia and hyperinsulinemia, which indeed requires further exploration. On
the other hand, Liu et al. described PABPC4 expression as favorable to patient survival that
presented with colorectal cancer [77], whereas the data derived from the Human Protein
Atlas indicated that unfavorable outcomes are associated with PABPC4 expression in both
renal cancer and liver cancer [78].

ALDH1A3 belongs to the family of aldehyde dehydrogenases, which is involved in
oxidizing different aldehydes from both exogenous and endogenous sources. The overex-
pression of these enzymes was noted in hematopoietic and neural stem cells as well as in
cancer stem cells [79]. ALDH1A3 in particular is known for its role in catalyzing the reaction
responsible for retinoic acid synthesis, crucial for embryonic and cancer development [80].
Its role in cancer is debatable, since its downregulation was noted in some cancers such
as esophageal cancer [81], while its overexpression was linked to tumor resistance and
metastasis in pancreatic cancer, gastric and breast cancer [80,82–84]. ALDH1A3 has been
shown to initiate breast cancer cell metastasis in the brain; therefore, targeting ALDH1A3
therapeutically was suggested to improve breast cancer patient survival [85]. ALDH1A3
overexpression promotes the PI3K/Akt/mTOR pathway; thereby, it elicits its tumorigenic
effect [84]. Targeting the ALDH1A family of genes by different inhibitors including CM10
showed a reduction in the stemness of ovarian cancer cells [86]. Selective inhibition of
ALDH1A3 caused a decline in glioblastoma and colorectal cancer proliferation and inva-
sion [87]. Our data showed that the main metabolic defects, which occur in diabetes, impact
the cell machinery by altering ALDH1A3 gene expression, among others.

SLC26A11, the fifth gene that is shared between the in silico and in vitro analyses,
is reported as a chloride transporter in the brain and kidney, while being a sulphate
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transporter in the endothelial venules [88–90]. In a genome-wide scale association-based
study, the SLC26A11 gene was found to be differentially expressed in individuals with
impaired plasma glucose when compared with the healthy control; this hints to the link
between DM-associated metabolic alterations and the SLC26A11 gene [91]. A different
study performed an in silico analysis on data derived from TCGA to study the association
of SLC genes with lung adenocarcinoma. Low SLC26A11 expression was linked to worse
overall survival [92]. However, according to the Human Protein Atlas, SLC26A11 gene
expression is unfavorable in both liver and endometrial cancers [93]. The contribution of
SLC26A11 to cancer development is exhibited when a chimeric protein forms by the fusion
of RNF213 and SLC26A11 in CML [94]. Nonetheless, it is apparent that SLC26A11 has an
established link with cancer as well as altered glucose levels. This certainly encourages
further research to delineate the role of SLC26A11 in the interplay between breast cancer
and diabetes.

Hyperglycemia has been linked to promoter acetylation, which explains the
hyperglycemia-mediated gene upregulation noted in this study [95]. Additionally, hy-
perinsulinemia caused aberrant histone acetylation in triple negative breast cancer [96].
Conceivably, the combination of hyperglycemia and hyperinsulinemia in the current work
has positively affected the promoter activity of different genes, which indeed requires
further investigation.

In parallel to the above genes’ expression deregulation, other genes also exhibited
changes in their pattern of expression, such as AGER. A report by Yao et al. portrayed
that hyperglycemia induces AGER expression, which concurs with the DNA microarray
data in this study [57]. AGER expression is linked with advanced-stage breast cancer [97].
Additional genes with a fold increase of less than two were also overexpressed with HGI
treatment, such as S100P and SPINK8. S100P is an intracellular and extracellular calcium-
binding protein. Intriguingly, the extracellular S100P has the ability to bind RAGE; thereby,
it can enhance tumor progression, resistance and migration [98,99]. Therefore, S100P is
considered a potential therapeutic target and a marker for cancer patients. It is certainly
worth determining its levels in diabetic breast cancer patients and correlating its levels
with the stage of the disease. Additionally, in this report, RAGE showed upregulation,
which might exacerbate the oncogenic features of S100P. To a lesser extent, SPINK8 was
also slightly increased, and its levels were shown to be elevated in diabetic breast cancer
patients as well. Notably, its association with breast cancer as a bad prognostic indicator
has been illustrated by the Human Protein Atlas [100].

In the present study, diabetes was taken as the main example of a disease that involves
hyperglycemia and hyperinsulinemia as major metabolic alterations; however, individuals
with metabolic syndrome, chronic stress and obesity share the same metabolic defects.
Therefore, the findings of this study can explain the increased cancer risk that is associated
with these metabolic diseases.

Diabetes is a cause of multiorgan dysfunction [101]. It predisposes to retinopathy,
nephropathy, neuropathy, endothelial dysfunction, immune incompetence and cancer [102].
Pathological events resulting in most of the stated disorders have been studied compre-
hensively except for cancer, and little evidence has been revealed. Therefore, providing
evidence of how the main metabolic alterations in diabetes, particularly hyperglycemia and
hyperinsulinemia, emphasizes the importance of tight glycemic control in diabetic patients
with cancer, as uncontrolled blood sugar contributes to worsening patients’ outcomes and
overall survival. Moreover, since hyperglycemia and hyperinsulinemia impact the gene
expression of tumors, it is worth studying whether they generate a signature that can be
considered when diagnosing and treating this group of cancer patients. Finally, hyper-
glycemia and hyperinsulinemia can be contemplated as a factor in the tumor ecosystem
determining temporal tumor heterogeneity.
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4. Materials and Methods
4.1. Study Design

MCF7 cell line was selected in this study since the insulin pathway components have
been identified in this cell line. MCF7 cells, despite being obtained from a metastatic site,
are well differentiated adenocarcinoma cells, have a moderate replicative ability and do
not invade or migrate; consequently, they have been used for many tumor progression
studies [103]. Moreover, their response to insulin is well established [104].

Accordingly, it was decided to study the effect of high glucose and/or insulin levels
on the cancerous behavior of MCF7 cells. MCF7 cell line is a luminal A breast cancer
molecular subtype, and it expresses estrogen receptor (ER) and progesterone receptor
but not Her2 [105]. It is worth noting that MCF7 cell line expresses insulin receptors
as reported by Milazzo G. et al. [106]. First, DNA microarray is employed to identify
the differentially expressed genes in hyperglycemia and hyperinsulinemia conditions in
comparison to normal glycemia conditions. Subsequently, publicly available breast cancer
databases were utilized to delineate the differentially expressed genes in diabetic females
with breast cancer versus breast cancer females with normal glycemic index. Accordingly,
the genes overlapping between the in vivo observation and in vitro studies were identified
by Bioinformatics & Evolutionary Genomics tool [28]. Study design is illustrated in Figure 5.
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4.2. Deciding Glucose and Insulin Levels

Medium supplemented with 5.6 mM of glucose was used to mimic normoglycemic con-
ditions, while 30 mM was used following previous studies to mimic hyperglycemia [107,108].
Based on the WHO definition of hyperglycemia, 5.6 mM of glucose <11.1 mM is considered
a normal glucose level, and levels above that are considered as hyperglycemia [109]. In
addition, 30 mM of glucose was proved to have no effect on cell survival after 72 h of
exposure in our laboratory [SBM Ahmed and S. Amer, University of Sharjah, Sharjah, UAE
(2020), unpublished work].

Insulin concentration that mimics hyperinsulinemia was decided based on a previous
study by Mwe-Lin Wei and co-workers, in which they used 25 nM to mimic hyperin-
sulinemia [25]. According to the reference values of insulin, levels of >174 pmol/L in
fasting state as well as >125–1917 pmol/L after 1 h of glucose administration are consid-
ered as hyperinsulinemia [110–112]. The cells in normoglycemia or hyperglycemia were
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either left in 20 pmol/L (supplemented in the original medium), which is <174 pmol/L,
or 25 nmol/L, which represents hyperinsulinemia. Insulin was purchased from Sigma
Aldrich, Gillingham, UK (I 0516).

4.3. Cell Culture

The MCF7 cell line was maintained in EMEM (Sigma Aldrich; M2279) supplemented
with 10% fetal bovine serum and penicillin (100 U/mL)/streptomycin (100 µg/mL) an-
tibiotic mixture. The cells were kept in a humidified incubator with 5% CO2. When
maintaining and seeding cells, 1× Trypsin/EDTA was used. Possible aseptic conditions
were maintained for all mammalian cell culturing. MCF7 was kindly gifted by Dr. Salem
Chouaib of the Institut de Cancérologie Gustave Roussy-Villejuif, France to Sharjah Institute
for Medical Research, University of Sharjah, United Arab Emirates.

4.4. RNA Extraction

MCF7 cell lines were cultured in different glucose concentrations (5 or 30 mM) for
72 h. The cells were pelleted, and RNA extraction was performed by RNeasy kit (74104)
from Qiagen, Hilden, Germany.

RNA quality, labelling and microarray hybridization and microarray data analysis
were previously described by Govindaraj et al., 2016 [113]. Below is a brief description of
the conducted methods.

4.5. RNA Quality Control

A Nanodrop Spectrophotometer was used to evaluate the purity and concentration of
the extracted RNA. A bioanalyzer (Agilent; Santa Clara, CA, USA, 2100) was then used to
confirm the integrity of the RNA. For this study, good quality RNA was established based
on the 260/280 values (Nanodrop, Wilmington, DE, USA), rRNA 28 S/18 S ratios and RNA
integrity number (RIN) (Bioanalyzer, Vancouver, BC, Canada).

4.6. Labelling and Microarray Hybridization

The Agilent-certified microarray facility of Genotypic Technology, located in Ben-
galuru, India, performed the microarray hybridization and scanning. The procedure
included labelling the samples using Agilent Quick-Amp labelling Kit (p/n5190-0442).
Reverse transcription was then conducted on the total RNA at 40 ◦C using oligo dT primer
tagged to a T7 polymerase promoter, yielding double-stranded cDNA. Those synthesized
double-stranded cDNAs were used as templates for cRNA generation. This generation
needed in vitro transcription along with dye Cy3 CTP(Agilent). Similar to the reverse
transcription, the cDNA synthesis and in vitro transcription steps were also carried out at
40 ◦C. Qiagen RNeasy columns (Qiagen, Cat No: 74106) were used to clean the labelled
cRNA. Nanodrop ND-1000 evaluated the quality by assessing the yields and specific activ-
ity. Finally, the labelled cRNA samples were fragmented at 60 ◦C and hybridized onto an
Agilent Human Gene Expression Microarray 8 × 60 K. The Gene Expression Hybridization
kit (Agilent Technologies, in situ Hybridization kit, Part Number 5190-0404) fragmented
the labelled cRNA. Next, hybridization was performed in Agilent’s Surehyb Chambers at
65 ◦C for 16 h, after which they were washed using Agilent Gene Expression wash buffers
(Agilent Technologies, Part Number 5188-5327) and scanned using the Agilent Microarray
Scanner (Agilent Technologies, Part Number G2600D).

4.7. Microarray Data Analysis

Agilent Feature Extraction software (v11.5.1.1) extracted raw data from the scanned
images and fed them into the Agilent GeneSpring GX (v14.5) software for analysis. Nor-
malization was performed using the 75th percentile shift method. In this normalization
technique, a multiplicative factor is applied to the entire data, so that the 75th percentile
is at the same expression of value for all experiments [40]. Fold change values were ob-
tained by comparing test samples (NGI, HG or HGI) with respect to the control samples
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(NG) The differentially expressed genes from all conditions (SO-8409_Complete _data_Set
1-4) are available in the Supplementary Materials. Upregulation was defined as having
a fold change ≥ 2 (logbase2), while downregulation involved having a fold change ≤−2
(logbase2) for test samples with respect to control sample. Out of the 8 samples, 7 passed
the QC, which were then used for the resulting analysis. Normal glycemia control for
the second set degraded; therefore, normal glycemia from the first set was utilized for
the comparative analysis for both sets. QC reports [QC-DNA Microarray data, Qual-
ity Control Report_SO_8409 and SO-8409-repl_Bioanalyzer Report] can be found in the
Supplementary Materials.

4.8. In Silico Analysis

In this study, we used a publicly deposited transcriptomic dataset of breast cancer
patients with or without diabetes (GEO: GSE150586). GSE150586 was obtained by bulk
RNA sequencing. In this study, Zhai et al., 2020 performed next generation sequencing
to study the differential expression of genes between breast cancer patients and diabetic
breast cancer patients [114]. RNA was extracted from 6 breast tumor tissues without
diabetes and 7 breast tissues with diabetes and analyzed them using Illumina NovaSeq
6000 (Homo sapiens). Linear models for microarray data (LIMMA) were used to identify
the differentially expressed genes between the diabetic group (n = 7) and non-diabetic
group (n = 6). The mRNA expression level was presented as fragments per kilobase of exon
model per million reads mapped (FPKM).

4.9. RT-PCR

Total RNA isolation was performed using RNeasy Mini Kit (Qiagen; 74104). Con-
verting the mRNA to cDNA was performed via RT2 First Strand Kit (Qiagen; 330401).
RT-PCR was achieved employing QuantiTect SYBR Green PCR Kit (Qiagen). Housekeeping
gene 18 S was used as an internal control. The primers used for RTPCR validation can
be found in Supplementary Table S1. The 2−∆∆CT method was used to calculate the fold
change in gene expression.

4.10. Statistical Analysis

Benjamini–Hochberg method was used to calculate the adjusted p-value for the mi-
croarray data. This helped outline the significant genes from the dataset, which is available
at Geo with Ref. No. GSE179768. For RTPCR data, one-way ANOVA and Turkey’s mul-
tiple comparison test were used to test for change significance between two variables
using GraphPad Prism (10.0.0). In silico statistical analysis was performed using R soft-
ware (v3.0.2) and Prism (v8; GraphPad Software). For all analyses, p value < 0.05 was
considered significant.

5. Limitations

A limitation in the current study is the slight disagreement of RT-PCR with microarray
data demonstrated by PAK1, FGFR3 and ALDH1A3, which might be attributed to the
differences in the statistical analysis used in these two different techniques [115].

Despite silico-derived data being obtained from a small number of patients, we were
able to identify ALDH1A3, MED20, PABPC4, SLC26A11 and SCP2 as deregulated genes
in diabetic breast cancer patients, which coincided with our microarray data. Increasing
the number of patients in this comparison indeed will yield more conclusive data that
reflect how hyperglycemia and hyperinsulinemia influence the gene machinery in tumor
cells. These identified genes could also be considered as potential biomarkers as well as
therapeutic targets in diabetic breast cancer patients. The publicly available data utilized in
this study lacked clinical data, which made it impossible to draw correlation between the
cancer stage and the expression levels of the deregulated genes.

Although high insulin levels were linked to cancer development, insulin concentration
at the tumor microenvironment has not yet been assessed.
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Likewise, to breast cancer molecular subtypes, breast cancer cell lines are classified
similarly. The expression of ER/PR among other factors affects the metabolism of breast
cancer cell lines [116]; therefore, the effect of glucose might vary between different breast
cancer subtypes as well as different breast cancer cell lines, as reported by Farhadi et al.,
2022 [116].

The culture conditions are not exactly representative of the in vivo environment.
Metabolism is governed by the available nutrients in the medium as well as oxygen
levels [117,118], which are not mirrored in an in vitro experiment.

6. Conclusions

Cancer is a disease of gene dysregulation. Microenvironment metabolic disruptions
such as hyperglycemia and/or hyperinsulinemia can bring about such dysregulation.
Patients with these conditions were associated with higher risk of developing breast cancer
and exhibit a worse form of the disease. This study revealed how the main metabolic
alterations associated with diabetes as well as other metabolic disorders impact the gene
expression machinery in tumor cells, which might contribute to tumor advancement and
aggressiveness. Future studies are required to delineate the possibility of how this can
endorse the personalized treatment concept in cancer patients.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241411816/s1, references [119–123] is cited in Supplementary Materials.
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