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Abstract: The search for new and effective treatment targets for cancer immunotherapy is an ongoing
challenge. Alongside the more established inhibitory immune checkpoints, a novel potential target is
CD73. As one of the key enzymes in the purinergic signalling pathway CD73 is responsible for the
generation of immune suppressive adenosine. The expression of CD73 is higher in tumours than in the
corresponding healthy tissues and associated with a poor prognosis. CD73, mainly by the production
of adenosine, is critical in the suppression of an adequate anti-tumour immune response, but also in
promoting cancer cell proliferation, tumour growth, angiogenesis, and metastasis. The upregulation
of CD73 and generation of adenosine by tumour or tumour-associated immune cells is a common
resistance mechanism to many cancer treatments such as chemotherapy, radiotherapy, targeted
therapy, and immunotherapy. Therefore, the inhibition of CD73 represents a new and promising
approach to increase therapy efficacy. Several CD73 inhibitors have already been developed and
successfully demonstrated anti-cancer activity in preclinical studies. Currently, clinical studies
evaluate CD73 inhibitors in different therapy combinations and tumour entities. The initial results
suggest that inhibiting CD73 could be an effective option to augment anti-cancer immunotherapeutic
strategies. This review provides an overview of the rationale behind the CD73 inhibition in different
treatment combinations and the role of CD73 as a prognostic marker.

Keywords: CD73; immunotherapeutic strategies; immune suppression; cancer

1. Introduction

Immunotherapy marks a breakthrough in cancer therapy and has achieved impressive
therapeutic effects [1]. Still, only 20–40% of patients respond, and the therapeutic effects
are often short-lived due to the tumour’s high capacity to adapt and to develop resistance
mechanisms [2]. While combinations of different treatments and further checkpoint targets
are under investigation, a deeper understanding of the tumour microenvironment (TME) is
crucial for the development of new therapies.

One component of the TME is the immunosuppressive metabolite adenosine. Tumours
themselves and cancer therapies trigger the release of high amounts of ATP into extracellu-
lar compartments [3], which is then dephosphorylated by the ectonucleotidases CD39 and
CD73 to produce adenosine [4]. The extracellular concentration of adenosine underlies a
tight spatiotemporal control since adenosine is rapidly removed from the extracellular space
by further degradation to inosine (catalysed by adenosine deaminase, ADA), by uptake into
cells via concentrative or equilibrative nucleoside transporters [5]. The massive ATP release
in the TME and its continuous degradation by the ectoenzymes CD39 and CD73 results
in sustained high concentrations of adenosine [6], which engage A2A or A2B adenosine
receptors on T cells, leading to an increase in cAMP that results in global suppression of T
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cell functions [7–12]. Dendritic cells stimulated with adenosine develop a pro-tumourigenic
phenotype by expressing immune suppressor receptors and secreting angiogenic and tolero-
genic factors [13]. Moreover, adenosine inhibits natural killer cell maturation and cytotoxic
function [14,15], and modulates the function of other immune cells such as regulatory T cells
(Tregs), macrophages, and neutrophils [16] (Figure 1). Besides suppressing the anti-tumour
immune response, adenosine plays a role in multiple cancer-associated effects. High extra-
cellular adenosine concentrations promote cancer cell proliferation/tumour growth, cell
migration, angiogenesis, epithelial-mesenchymal transition, and metastasis [16–18]. Due to
the major impact of purinergic mediators in the TME, the CD39/CD73/adenosine/A2AR
pathway is emerging as a promising therapeutic target [18–20].
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Figure 1. ATP and adenosine signalling in the tumour microenvironment (TME). ATP, released by
damaged or dying cells, is a danger signal to immune cells and mainly promotes an anti-tumour
immune response by signalling through P2X and P2Y receptors, which are differentially expressed
across cell types. ATP is degraded to adenosine by the concerted action of CD39 and CD73. Adeno-
sine promotes tumour growth by suppressing immune cells by way of A2A and A2B receptor
signalling, or by directly enhancing tumour cell proliferation, angiogenesis, epithelial-mesenchymal
transition (EMT), and metastasis. ADO: Adenosine. ↑: increased. ↓: decreased. Solid arrow: gets de-
graded/dephosphorylated. Dashed arrow: binds receptor and signals. Created with BioRender.com.

Here, we discuss the importance of CD73 as target in human cancers and elaborate
current strategies for CD73 inhibition to reverse the immunosuppressive effects mediated
by CD73-dependent adenosine generation.

2. Results
2.1. Biology and Regulation of CD73

The 5′-ectonucleotidase CD73 is a GPI-anchored glycoprotein located on the extra-
cellular side of the plasma membrane [4,21]. The functionally active CD73 is a dimer of
two identical subunits linked by non-covalent bonds. The N-terminal domain of CD73
contains two metal ion binding sites and is responsible for the phosphohydrolase activity.
The C-terminal domain is responsible for the binding of the substrate AMP. The connection
between these domains allows movement and thereby the switch between an open and
closed conformation [22].



Int. J. Mol. Sci. 2023, 24, 11759 3 of 21

CD73 catalyses the hydrolysis of ribo- and deoxyribonucleosides 5′-monophosphates,
most effectively the hydrolysis of AMP to adenosine with Km values of 1 to 50 µM [4]. ATP
and ADP are competitive inhibitors of CD73 which bind to the catalytic site but cannot be
hydrolysed [4]. Hence, the structures of ATP and ADP are often used as lead structures for
the development of CD73 inhibitors. Besides its catalytic function, CD73 may play a role in
cell adhesion and as a receptor for extracellular matrix proteins [4,23]. CD73 is shed from
the cell membrane by cleavage of the GPI-anchor through hydrolysis or by phospholipases,
generating soluble CD73. CD73 is also released on extracellular vesicles, for example from
T cells upon activation [24,25] or from cancer cells [26–28].

A complex network of transcription factors regulates the expression of NT5E, the
gene encoding CD73. The NT5E promotor contains binding sites for the transcription
factors HIF-1α, AP2, SP1, Gfi1, different STAT and SMAD proteins, and cAMP responsive
elements [29]. Relevant for the TME, hypoxia is a principal driver of CD73 upregulation by
triggering the activation of the transcription factor HIF-1α [30,31]. Under inflammatory
conditions, hypoxia-induced CD73 expression serves as a safety mechanism to protect the
tissue against damage by adenosine-mediated suppression of the immune response [32].
In the hypoxic TME, tumour cells hijack this mechanism with beneficial effects on their
survival and growth [33,34].

In addition, a number of soluble mediators are involved in the regulation of CD73
in the TME: Type I interferons, abundantly produced by tumour cells, enhance CD73
expression in endothelial cells [35,36]. TGF-β, important for the regulation of stemness
and immune tolerance, upregulates CD73 in murine CD4+ and CD8+ T cells, DCs, and
macrophages [37]. On MDSC, TGF-β induces CD73 expression by phosphorylating mTOR
and HIF-1α activation [38]. This regulation by TGF-β creates a feedback loop with adeno-
sine signalling because adenosine signalling induces the production and secretion of TGF-β,
which in turn maintains CD73 expression [39]. In prostate cancer, tumour cell-derived
exosomes containing PGE2 increase CD73 expression on dendritic cells, leading to an
inhibition of the anti-cancer response [40]. In addition, in breast cancer, oestrogen and
oestradiol signalling has a negative effect on the expression of CD73 [41].

Beyond transcriptional regulation, the expression of NT5E is epigenetically regulated.
In malignant melanoma, higher CpG methylation is associated with lower CD73 expression
and correlates with a better prognosis [42]. Moreover, an alternatively spliced and inactive
shorter variant of CD73 is upregulated in hepatocellular carcinoma. This short CD73
variant forms an intracellular complex with the long version of CD73, leading to the
proteasome-dependent degradation of the active CD73 [43].

In summary, the correlation of CD73 expression with HIF-1α, TGFβ, and PGE2 high-
lights the importance of the ectoenzyme as a biomarker of tumour development and
progression. HIF-1α [44], TGFβ [45], and PGE2 [46] have themselves been described as
regulators of progression in a variety of tumours.

2.2. Expression of CD73 in Human Cancer

Gene expression data from a large cancer patient cohort show that CD73 mRNA is
upregulated in the majority of human solid cancers in comparison to matched normal
tissues [47]. However, the expression of CD73 is heterogeneous across different human
cancer types. The expression of CD73 is high in glioblastoma, thyroid carcinoma, sar-
coma, pancreatic carcinoma, stomach adenocarcinoma, colorectal carcinoma, renal cell
carcinoma, oesophageal carcinoma, thymoma, rectum adenocarcinoma, lung adenocar-
cinoma, non-small cell lung cancer, and acute myeloid leukaemia. Lower expression of
CD73 is observed in cancers of the genitourinary system, such as endometrial, cervical,
ovarian, uterine, prostate, and urothelial carcinoma, and in melanoma, breast cancer, and
cholangiocarcinoma [42,48–53].

The expression of CD73 in non-tumour cells of the TME can also contribute to a
tumour-promoting environment through enhanced activity of the purinergic pathway.
Among the cell types expressing CD73 and other enzymes of the purinergic pathway in the
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TME are tumour-associated macrophages, B cells, myeloid-derived suppressor cells, and
cancer-associated fibroblasts [54]. The expression of CD73 on cancer-associated fibroblasts
is enhanced by adenosine receptor A2B signalling, in a feedforward circuit triggered by
adenosine production concomitant to tumour cell death [55]. Not only cell-bound CD73
contributes to the adenosine generation in the TME, but also exosomes from different cancer
types express CD73 and CD39 and show a high capacity of adenosine generation [27].

2.3. Relevance of CD73 as Target in Cancer Therapy

CD73 is involved in immune suppression, tumour growth, metastasis, angiogenesis,
and drug resistance [56], therefore constituting a promising therapy target [57]. Tumour
and host CD73 promote tumour growth by limiting T cell infiltration and activation [54],
especially impairing the cytotoxic function of tumour-infiltrating CD8+ T cells [58]. CD73
can also affect the function of other immune cells, i.e., by promoting the differentiation
of myeloid cells to tumour growth-promoting M2 macrophages [59]. The involvement of
CD73 in the inhibition of an anti-tumour immune response has been confirmed in vivo
in animal models: adoptive T cell immunotherapy cured all CD73 deficient mice, while
it had no effect in mice with normal CD73 expression [60]. Further, fibrosarcoma and
prostate tumours did not grow in CD73 deficient mice due to a strong anti-tumour response
mediated by NK and CD8+ T cells [61].

CD73 directly regulates the tumour development. In vitro, CD73-mediated produc-
tion of adenosine has shown to stimulate the proliferation of glioma cells [62] and inhibits
apoptosis of ovarian tumour cells by upregulating the anti-apoptotic protein Bcl-2 [63]. In
addition, CD73 is involved in cancer progression and metastasis by regulating the cell cycle
via PI3K/AKT signalling [64,65]. Moreover, CD73 regulates cancer cell metabolism by
promoting the Warburg effect. Genetic silencing and pharmacological inhibition of CD73
reduced glycolysis and cell proliferation in cancer cells, while overexpression promoted
them [66]. An important step in metastasis is the epithelial–mesenchymal transition, and
CD73 promotes the expression of stemness and EMT-associated genes [67–69]. Metastasis-
conditioning features such as invasion, migration, and adhesion to the extracellular matrix
were increased in CD73 overexpressing cell lines of human breast cancer, and these prop-
erties could be inhibited by blocking CD73 catalytic function [70]. Angiogenesis, another
cancer-associated process, is also promoted by high CD73 expression. CD73-expressing
endothelial cells formed more capillary-like structures than CD73-negative endothelial
cells when cultured in cancer-conditioned medium [71]. Finally, the total ablation of CD73
in mice or its blockade in vivo using selective inhibitors reduced tumour growth and
metastasis in multiple solid cancers models [72,73].

Furthermore, CD73 expression and purinergic signalling induce resistance mecha-
nisms to anti-cancer therapy [74]. Mechanisms and implications for treatment will be
discussed later in this review.

The increased expression of CD73 in tumour tissue and its role in the regulation of
tumour cell proliferation, metastasis, metabolism, and angiogenesis, as well as inhibition of
apoptosis, provide the rationale that blockade of CD73 may be of therapeutic benefit in the
fight against cancer.

2.4. Prognostic Value of CD73

Considering the involvement of CD73 in the regulation of cancer-associated processes
including proliferation, adhesion, migration, metastasis, and inhibition of the anti-tumour
response [57], several studies investigated the correlation of CD73 expression with the
clinical outcome of cancer patients. Overall, high CD73 expressions in tumour and host
tissues predominantly showed negative prognostic value by promoting disease progression
and metastasis [75]. However, studies also revealed that the prognostic value of CD73
differs in different tumour types and depending on the CD73-expressing cells.

To reveal the prognostic effect of CD73, gene expression data and immunohisto-
chemistry were correlated with clinicopathological data. In breast cancer, especially triple
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negative breast cancer, a high CD73 expression is associated with a reduced overall and
disease-free survival [76–78]. In contrast, a study conducted in a smaller patient cohort
with breast cancer described a correlation of CD73 with longer disease-free survival [79].
Similar conflicting results were reported for ovarian cancer [63,80]. This may be due to
small study cohorts and confounding expressions of other markers. Other studies found
CD73 to be a marker of poor prognosis in gastric carcinoma [81], gallbladder carcinoma [68],
cholangiocarcinoma [82], colorectal cancer [83], hepatocellular carcinoma [64], non-small
cell lung cancer [84], papillary thyroid cancer [52], prostate cancer [85], and melanoma [86].
In these studies, CD73 expression correlates with worse grading, bigger tumour size,
higher invasiveness, positive lymph node status, and increased metastasis. The opposite
effects were observed in a cohort of patients with non-muscle invasive urothelial bladder
cancer. Here, CD73 was associated with a lower stage, lower grade, and reduced prolif-
eration [87]. In other cancers, for example acute lymphoid leukaemia, no association of
CD73 with disease progression could be shown [88]. A review including the meta-analysis
of 14 publications confirmed these heterogenic findings. CD73 expression was associated
with a reduced overall survival in breast and ovarian cancer while positive effects were
reported for lung and gastric cancer [47]. Further analysis of large datasets confirmed that
high CD73 expression correlates with poorer clinical prognosis in most cancers. However,
in some exceptions, such as endometrial carcinoma or clear cell renal carcinoma, CD73
appeared to be a protective factor [49,50]. Interestingly, the CD73 expression correlated
with the expression of other immune checkpoints such as PD-L1 and could be used as a
predictive marker for the efficacy of immunotherapy [49,50].

CD73 is investigated as a potential biomarker indicating the magnitude of treatment
response in various cancer types. In a prospective cohort study it was shown that AMP
hydrolysis in the blood plasma of elderly breast cancer patients was higher than in healthy
elderly women and significantly decreased after every mode of therapy [89]. The measure-
ment of CD73 and adenosine signalling could be useful to select patients for therapies that
modulate the purinergic pathway. As it is not possible to measure extracellular adeno-
sine levels in the clinical routine, other markers and specific gene signatures of adenosine
signalling are investigated as biomarkers [90].

In addition to membrane-bound CD73, active CD73 also exists as a homodimer in a
soluble form [24]. The expression and activity of soluble CD73 in serum was retrospec-
tively analysed in a multicentre study as biomarker in patients with metastatic melanoma.
Melanoma patients showed higher CD73 activity and expression than healthy donors. In
addition, elevated CD73 activity levels before and during treatment were associated with
nonresponse to therapy with nivolumab or pembrolizumab. Multivariate Cox regression
analyses showed that serum CD73 was an independent prognostic factor for both overall
survival and progression-free survival [91]. Messaoudi et al. [92] analysed the prognostic
relevance of soluble CD73 and intratumoural CD73 in patients with resected liver metas-
tases from colorectal cancer. High intratumoural CD73 concentration was associated with
shorter disease-specific survival and time to recurrence, multiple and larger metastases,
and resistance to preoperative chemotherapy. Interestingly, soluble CD73 did not correlate
with intratumoural CD73. A correlation with reduced disease-specific survival was only
observed for a subset of patients with highest soluble CD73 levels (7.2%) [92].

Cancer cells as well as activated CD8+ T cells secrete small vesicles, so-called extra-
cellular vesicles (EVs)s, which contain active CD73. Extracellular adenosine production
also takes place by CD73 present on the EVs, and this can indirectly modulate the TME.
EVs are increasingly investigated and used as a new reservoir for cancer biomarker discov-
ery [24,25,27]. In a retrospective pilot study, exosomal CD73 was assessed before and at
the start of treatment with anti-PD-1 agents in patients with melanoma. At baseline, CD73
and PD-L1 expression levels on EVs derived from patients receiving pembrolizumab or
nivolumab monotherapy were significantly increased. In addition, CD73+ EVs increased
significantly during treatment in patients who did not respond to therapy [93].
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Taken together, the multiple correlations of CD73 with disease prognosis, with therapy
response, or with cancer-associated regulators such as HIF-1α, TGFβ, or PGE2 underscore
its role as a biomarker. Because the analysis of membrane-bound CD73 from TME is
invasive, it seems promising to analyse soluble CD73 or CD73+ exosomes as biomarkers.
Further studies are needed to evaluate these new diagnostic tools for the clinic.

2.5. CD73 Inhibition in Cancer

CD73 represents an ideal target in cancer therapy. Overexpression of CD73 on tumour
and immune cells leads to increased adenosine concentration in the TME, which inhibits
antitumour immune responses via different mechanisms and promotes proliferation, an-
giogenesis, and metastasis. CD73 inhibition or deficiency shows impressive anti-tumour
effects in preclinical experiments with mice, while it is associated with only mild adverse
events [57]. In humans, loss-of-function mutations in NT5E cause calcification of peripheral
arteries and a higher risk of cardiovascular disease [93,94].

Clinical phase 1 and 2 trials with different CD73 inhibitors are ongoing for advanced
and metastatic cancers [95]. Few of them have been completed, but published results
give reasons to be optimistic. CD73-targeting therapies have shown to be well-tolerable
and clinically active [57]. In particular the combination of CD73 inhibitors with other
cancer treatments seems to be promising [19,96], as CD73 is involved in the development
of various treatment resistances against chemotherapy, radiotherapy, target therapy, and
immunotherapy [48] (Figure 2). The different treatment combinations and underlying
rationale will be discussed in the following sections.
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Figure 2. The synergistic anti-tumour effect of combined anti-cancer treatments. The efficacy of
many treatments, such as chemotherapy, radiotherapy, target therapy, and immunotherapy relies
on the activation of an anti-tumour immune response. The upregulation of CD73 is a resistance
mechanism to anti-cancer therapies. While ATP, released from stressed and dying cells, supports
the immune activation, adenosine, generated by CD73 catalytic activity, dampens the activity of
immune cells, and triggers several drug resistance pathways in tumour cells. Combining blockers of
the purinergic pathway (CD39 or CD73 inhibitors, A2AR or A2BR antagonists) or the combination of
CD73 inhibition with other treatments (immune checkpoint inhibition, chemotherapy, radiotherapy,
target therapy) causes synergistic anti-tumour effects, for example by promoting immune effector
functions. ↑: increased. Solid arrow: gets degraded/dephosphorylated. Dashed arrow: inhibits.
Created with BioRender.com.
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2.5.1. Drugs for CD73 Inhibition

In the past years, a plethora of CD73 inhibiting agents has been developed. Many of
them are currently being evaluated in clinical trials (Table 1). The two main groups of CD73
inhibitors are small molecule compounds and monoclonal antibodies. Both have several
advantages and disadvantages. Advantages of small-molecule inhibitors are the easier and
possible oral application and the enhanced distribution with a deeper tumour penetration,
including the crossing of tissue barriers [97]. Disadvantages are the lower specificity and
possible off-target effects caused by their binding to more conserved sites across various
enzymes. In contrast, a higher specificity and lower toxicity are the biggest advantages of
monoclonal antibodies, while high development costs and worse tissue penetration are
disadvantageous [98]. Another important feature is the capacity of inhibitors to reach the
intracellular and thereby to block also intracellular CD73 [99].

Table 1. CD73 inhibitors that are currently evaluated in clinical trials. Trial information obtained
from https://clinicaltrials.gov (accessed on 10 May 2023).

Type Inhibitor Developer Trials

Small molecule
inhibitor

AB680
(Quemliclustat) Arcus Biosciences (Hayward, CA, USA) NCT04104672,

NCT04660812
ATG037 Atengene (Shanghai, China) NCT05205109

LY3475070 Lilly Pharma (Indianapolis, IN, USA) NCT04148937
ORIC533 Oric Oharmaceuticals (San Francisco, CA, USA) NCT05227144

Monoclonal antibody MEDI9447
(Oleclumab)

Medimmune/
AstraZeneca

(Gaithersburg, MD, USA)

NCT02503774
NCT03267589
NCT03381274
NCT03616886
NCT03875573
NCT04262375
NCT04262388
NCT04668300
NCT04940286

BMS986179 Bristol-Myers Squibb (New York, NY, USA) NCT02754141

AKK119 Akeso (Guangzhou, China)
NCT04572152
NCT05173792
NCT05559541
NCT05689853

CPI006
(Mupadolimab) Corvus Pharmaceuticals (Burlingame, CA, USA) NCT03454451

HLX23 Henlius (Shanghai, China) NCT04797468

IB325 Innovent Biologics (Suzhou, China) NCT05119998
NCT05246995

INCA00186 Incyte Corporation (Wilmington, DE, USA) NCT04989387
IPH5301 Innate Pharma (Marseille, France) NCT05143970

JAB-BX102 Jacobio Pharma (Beijing, China) NCT05174585
NZV930 Novartis (Basel, Switzerland) NCT03549000

PT199 Phanes Therapeutics (San Diego, CA, USA) NCT05431270
Sym024 Symphogen (Lyngby, Denmark) NCT04672434

TJ004309
(Uliledlimab) I-Mab Biopharma (Rockville, MD, USA) NCT04322006

NCT05001347
Bifunctional antibody

construct
AGEN1423

(Dalutrafusp)
(GS-1423)

Agenus Gilead (Lexington, MA, USA) NCT03954704
NCT05632328

The first small-molecule CD73 inhibitor and starting point for further developments
was adenosine 5′-(α,β-methylene)diphosphate (APCP), a non-hydrolysable ADP analogue.
Since then, much work has been done in designing more stable derivatives of APCP [97].
Great advances have been made since the X-ray co-crystal structure of CD73 in complex
with APCP was reported. This allowed targeted modifications of the nucleobase, sugar, and
zinc-binding groups and led to the development of many highly effective and promising
inhibitors [100]. All of the originating compounds are so-called nucleotide-based small-
molecule and competitive inhibitors, since they directly bind to the catalytic site [101]. One
promising candidate is AB680, a highly potent and selective CD73 inhibitor with improved
metabolic stability [97]. In preclinical experiments it restores the adenosine-mediated inhi-
bition of anti-tumour immune responses [102,103]. It is also the first small-molecule CD73
inhibitor tested in ongoing clinical trials. Initial clinical data supports a good toleration
with few and mild adverse events and a good pharmacokinetic profile [104]. Meanwhile,
two more small-molecule inhibitors, ORIC-533 and LY3475070, are investigated in clinical
phase 1 studies [97]. Besides the nucleotide-based inhibitors, a growing number of non-
nucleotide small molecule inhibitors has been developed. The most promising chemical

https://clinicaltrials.gov
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structural families for the development of this kind of inhibitors are sulphonamides, an-
thraquinones, and other flavonoids [105]. In order to improve the specificity, allosteric
binding small-molecule inhibitors are of interest [101]. In this context, the dimerization
interface of CD73 has been reported to be a promising target site [106].Many monoclonal
antibodies targeting CD73 have been developed and proven to cause anti-cancer effects
in preclinical experiments [107–109]. Oleclumab (MEDI9447, AstraZeneca, Gaithersburg,
MD, USA) was the first monoclonal antibody to enter clinical trials [110], followed by
various others (Table 1). Meanwhile, initial clinical data has been collected, supporting a
good safety and tolerability of the investigated antibodies [111,112]. Differences between
the antibodies, for example a varying strength of the “hook effect” or incomplete enzy-
matic inhibition, are mainly due to different binding epitopes [113]. Oleclumab has a dual
mechanism of action. It causes the crosslinking of CD73 dimers and blocks CD73 from
adopting its catalytically active form [114]. Other antibodies directly bind to the catalytic
site [113]. However, the inhibition of CD73’s enzymatic activity is only one of the mecha-
nisms contributing to the effects of CD73 blockade. Other studies reported that binding
of antibodies can trigger clustering and internalisation of membrane-bound CD73. This
inhibits extravasation and colonisation of tumour cells and therefore reduces the formation
of metastasis [115]. Another mechanism of action is the crosslinking of Fc receptors that
triggers host mechanisms such as the antibody-dependent cellular toxicity or complement
activation [116]. The development of monoclonal antibodies allows the design of highly
individual binding regions and constructs. One approach is to design bispecific antibodies,
which can recognise more than one epitope with two different Fab arms. This was reported
to cause a greater inhibition of CD73 due to additional effects [117]. Another anti-CD73
antibody is fused to the extracellular domain of the TGF-β receptor II. This allows the
additional trapping of immunosuppressive TGF-β [118].

The development of nanobodies has brought some interesting possibilities as these
biologics combine the high specificity and low toxicity of antibodies to the better tissue
penetration of small-molecule inhibitors [98]. Especially constructs that bispecifically target
CD73 and PD-L1 cause anti-tumour effects in mouse melanoma models [119].

Drug repurposing is a cost-effective alternative to find inhibitors of CD73. In the
screening of hundreds of compounds, several promising candidates were found. Dasatinib,
a tyrosine kinase inhibitor targeting BCR-ABL in CML, inhibits CD73 and modulates the
TME. It also blocks TGF-β-induced expression of EMT-promoting transcription factors.
Another promising compound is Pentoxifylline (Sanofi, Paris, France), originally approved
for the treatment of peripheral vascular diseases. The combination of Dasatinib (Bristol
Myers Squibb, New York City, NY, USA) and Pentoxifylline is described as a possible
treatment option in cancer [48].

2.5.2. Monotherapy

CD73 blockade causes huge anti-tumour effects in preclinical experiments [20]. This
is based on a better immune response, including enhanced NK cell activity and CD4+

and CD8+ T cell function and increased levels of proinflammatory cytokines, mainly
IFN-γ [120,121]. Besides the enhanced immune response, also other effects have been
observed. The inhibition or downregulation of CD73 causes a decrease in tumour VEGF
levels impairing tumour angiogenesis [122,123]. In addition, CD73 inhibition decreased
the capability for autophagy of tumour cells [124] and induced apoptosis and cell cycle
arrest [125]. Another described mechanism was the reduction in tumour metastasis upon
antibody binding induced clustering and internalisation of CD73 [115].

Based on the preclinical data, several phase I trials are currently ongoing, testing
monoclonal antibodies as well as small molecule inhibitors directed against CD73 for
advanced solid tumours including non-small cell lung cancer, triple negative breast cancer,
pancreatic ductal adenocarcinoma, colorectal cancer, renal cell carcinoma, and prostate can-
cer, as well as refractory multiple myeloma (NCT04148937, NCT05246995, NCT05173792,
NCT04672434, NCT05143970, NCT05431270, NCT05227144) [108,126–128]. The majority of
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the studies are currently recruiting, and no results have been announced yet. The antibody
Oleclumab is furthest in clinical testing. Monotherapy showed a manageable safety profile
for advanced solid malignancies with no dose-limiting toxicities and an exposure profile
consistent with those of other monoclonal antibodies. Evidence of anti-tumour activity
was observed, particularly in tumour types that are generally resistant to immunother-
apy [96]. Overall, the monotherapy with Oleclumab had only small clinical efficacy so
far [96,112,129] with only marginally improved overall response rate (ORR) [130]. Given the
mechanistic rationale and the successful preclinical data, further studies are investigating
the combination of Oleclumab plus Durvalumab or with standard of care chemotherapies.

2.5.3. Combination with Other Inhibitors of the Purinergic Pathway

Sole enzymatic blockade of CD73 may not be sufficient to fully prevent adenosine
generation, as alternative pathways for adenosine generation exist. It seems rational to
additionally block other purinergic enzymes or receptors. The most studied combination
partners of CD73 inhibition in cancer models are CD39 and the A2AR. For both exist
multiple inhibitors that are currently being tested in clinical trials [19]. An advantage
of targeting adenosine receptors themselves is, that all adenosine-mediated effects are
inhibited, independently of the origin of adenosine [99].

CD39 and CD73 are both part of the main degradation pathway of ATP to adenosine. It
was shown that the expression of both is associated with worse survival in cancer and that
targeting both together causes better anti-tumour activity than just CD39 or CD73 alone [59].
As CD39 degrades ATP to ADP and AMP, its inhibition has a double effect by also increasing
the level of ATP which stimulates the immune system, especially in combination with
therapies leading to a high ATP release such as chemotherapy or radiotherapy [131].
The first phase I combination study with an CD39 inhibitor (IPH5201), which is used as
monotherapy or in combination with Durvalumab ± Oleclumab in patients with advanced
solid tumours, has just been completed. The results remain to be seen (NCT04261075).

Regarding the combinatorial targeting of CD73 and A2AR, it has been shown that
in mice lacking CD73 and A2AR, a synergistic effect on tumour control and metastasis
was observed in association with higher tumour infiltration by CD8+ T cells [132]. It was
also described that the loss of A2AR signalling increases CD73 expression. This feedback
loop is interrupted by the dual inhibition of CD73 and A2AR [133]. Several clinical trials
currently assess the safety and efficacy of treatment combinations targeting the purinergic
pathway in advanced cancers (NCT03454451, NCT03549000). In first results the targeting of
CD73 by the monoclonal antibody NZV930 in combination with PD-1 and A2AR inhibition
showed a tolerable safety with frequent but mild adverse events and no dose limiting
toxicities. Although a decrease in adenosine in plasma and tumours has been measured,
no objective responses to the treatment was observed and only 11% of the patients had a
stable disease [127].

In addition, the effects of other adenosine receptors have been studied. A2BR signalling
promotes the upregulation of CD73 on cancer-associated fibroblasts. This is blocked by
A2BR inhibition, leading to an enhanced anti-tumour activity [55]. In vitro, agonistic
targeting of the A3R was found to increase T cell activation in combination with CD73 and
PD-1 inhibition [134]. This again underlines the complex and non-redundant effects of the
purinergic pathway.

In summary, the adenosine pathway is a well-characterized mediator of immuno-
suppression in the TME, but the sequentially combined blockade of this pathway has
shown limited clinical success so far. Based on the preclinical data, it is plausible that a
strong reduction in extracellular adenosine in tumour patients by a blockade as complete
as possible will lead to a significantly reduced immune suppression. However, the results
of the current studies remain to be seen.
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2.5.4. Combination with Immunotherapy

Many cancer patients develop resistance to immune checkpoint inhibitors during
treatment, even if the therapy has initially been effective [99]. This resistance is often
associated with an upregulation of CD73 in the TME. For example, in human melanoma,
a subset of patients with progressive disease and dedifferentiated tumours during im-
munotherapy, was marked by high CD73 expression [48]. A gene expression signature
of adenosine signalling was associated with reduced efficacy of anti-PD-1 treatment in
published cancer cohorts [90]. Interestingly, a high basal level of soluble CD73 could predict
a worse response to immune checkpoint therapy with the PD-1 blocker nivolumab [86].
In melanoma patients, the expression of CD73 on exosomes was higher in patients that
did not respond to anti-PD-1 therapy [135]. A population of persisting CD73hi myeloid
cells after anti-PD-1 treatment was associated with a reduced overall survival in a cohort of
patient with glioblastoma multiforme. In following preclinical experiments using CD73-/-

mice treated with anti-CTLA-4 or anti-PD-1 the survival was improved, identifying CD73
as a combinatorial treatment target [136].

The synergistic effect of CD73 inhibition in combination with immune checkpoint
inhibitors (ICI) was confirmed by other preclinical studies [75]. The combination of CD73
inhibition and anti-CTLA-4 or anti-PD-1 treatment enhances the anti-tumour immune
response and inhibits tumour growth [134,137]. This was mediated by a restored immune
functionality [102], including enhanced CD8+ T cell function and increased production of
IFN-γ and granzyme-B by tumour-infiltrating lymphocytes [131,138,139]. The upregula-
tion of CD73 during immune checkpoint inhibition is an acquired resistance mechanism.
This was confirmed in a breast cancer tumour model in mice. Anti-PD-1 treatment in-
creased adenosine concentrations in the tumour tissue and this was suppressed by CD73
inhibition [140]. Mechanistically, the upregulation of CD73 in melanoma patients under
immune checkpoint inhibition has been driven by mutations in the MAPK signalling
pathways and TNF-α signalling [141]. In hepatocellular carcinoma, upon anti-PD-1 treat-
ment, tumour-derived exosomes containing circular RNA upregulate also CD39 expression
on macrophages [142]. Vice versa, CD73 and adenosine signalling are involved in the
regulation of various immunosuppressors. Activation of A2AR enhances especially the
expression of PD-1 on tumour-specific CD8+ T cells [143]. Adenosine l, via cAMP and
PKA activation, leads to the inhibition of T cell receptor signalling and the activation of
the transcription factor CREB, which promotes the expression of immunosuppressors such
as PD-1 and CTLA-4 but also TGF-β and IL-10 [33]. Furthermore, adenosine signalling
reduces the expression of cyclin-D1, promoting the expression of PD-L1. This effect was
reversed by CD73 inhibition [144].

Due to the promising results of preclinical studies, the combination of CD73 inhibitors
with immune checkpoint inhibitors is currently tested in clinical trials in patients with
different advanced solid tumours. Most of these studies reported tolerable safety and
preliminary clinical activity [127,145–147]. One trial (NCT03822351) evaluated the combina-
tion of CD73 inhibitor Oleclumab and Duvarlumab (anti-PD-L1) and was conducted with
189 patients with stage 3 NSCLC. Response rates were higher in the combination group
than with anti-PD-L1 therapy alone (ORR 30% vs. 17.9%). Additionally, the progression-
free survival (PFS) had almost doubled in the combination cohort (PFS after 12 months:
62.6% vs. 33.9%). No significant different in therapy safety were observed [126]. Based
on these positive results, the first phase 3 trial with CD73 inhibition in combination with
immune checkpoint inhibition was initiated (NCT05221840). Another clinical trial reported
less-promising results. In a solid cancer study cohort, CD73 levels on tumour and T cells
were decreased upon treatment with Oleclumab, accompanied by low anti-tumour activity
and very low response rates [96].

Besides the combination of CD73 with immune checkpoint inhibitors, the combina-
tion with agonists of costimulatory molecules such as 4-1BB (CD137) or OX-40 was also
preclinically tested and found to enhance anti-tumour T cell immunity [95,148]. Likewise,
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the efficacy of other cellular immune therapies such as adoptive T cell transfer and CAR
NK cells were enhanced by additional CD73 blockade in mouse models [95].

The current clinical data are not yet sufficient to confirm the additional benefit of in-
hibiting CD73 in combination with classical checkpoint inhibition in patients with advanced
cancer. A number of studies are ongoing where the results remain to be seen.

2.5.5. Combination with Chemotherapy

CD73 upregulation and adenosine production is described as an acquired resistance
mechanism of tumour cells to chemotherapy. In line with this hypothesis, increased
expression of CD73 on tumour cells have been observed after chemotherapy [149,150].
Regarding haematological malignancies, the most upregulated gene in chemotherapy-
resistant leukemic cells was found to be CD73, which is part of a multi-resistance program
and protects against TRAIL-induced apoptosis. This resistance can be acquired by normal
cells via transfection with CD73 or removed by CD73 downregulation [151]. GWAS studies
identified CD73 as a major determinant involved in resistance to platin-based chemothera-
pies [152]. In a mouse model of triple-negative breast cancer, other immunosuppressors,
CD47 and PD-L1, were also upregulated by a HIF-1α-dependent transcriptional mecha-
nism upon chemotherapy [149]. Chemotherapeutic drugs trigger extensive cell damage
and death and thereby lead to the release of ATP, which is degraded to immunosuppres-
sive adenosine within the TME. CD73 inhibition can reverse this immunosuppressive
effect [134]. In a mouse model of ovarian cancer, CD73 inhibition caused decreased tumour
growth and metastasis in combination with the chemotherapeutic drug Doxetaxel [150].
A retrospective analysis of samples from rectal cancer patients revealed that purinergic
signalling is enhanced after chemo- and radiotherapy. Besides promoting the adenosine-
mediated immunosuppressive effects, CD73 can also directly regulate drug resistance in
cancer. The multi-resistance protein 1 (MRP1) is upregulated in chemotherapy treated
cervical cancer and glioblastoma cells, causing the resistance to various chemotherapeutic
drugs. This mechanism was regulated by adenosine via the A3 receptor. CD73 inhibition
decreases MRP1 expression and makes the cancer cells more sensitive to chemotherapy, as-
sociated with better treatment responses [153,154]. CD73 can also increase chemoresistance
by regulating intracellular NAD+ levels. These play a role in DNA repair mechanism and
thereby enhance resistance to chemotherapy induced DNA damage [48].

To our knowledge, there are currently no clinical trials investigating a combination
with chemotherapies. However, preclinical data suggest that blockade of CD73 has the
potential to reverse chemotherapeutic resistance mechanisms.

2.5.6. Combination with Radiotherapy

Besides causing direct damage to cancer cells, radiotherapy triggers a systemic anti-
tumour response mediating immunogenic cell death in tumours. An important driver of
this immune activation is the radiotherapy-induced release of DAMPs such as ATP from the
intracellular space. An enhanced ATP degradation and adenosine generation constitutes
an adaptive resistance mechanism to radiotherapy [155]. Considering this, the inhibition of
CD73 in combination with radiotherapy is rational [156].

In preclinical mouse models it was shown that the anti-tumour effect of radiotherapy
depends on the host’s immune function. CD73 and adenosine levels are significantly
increased after radiation therapy and the inhibition of CD73 has synergistic effects on de-
creasing tumour growth and metastasis in combination with radiotherapy. This is due to an
increased immune function [157,158]. Similar effects were observed with the combination
of radiotherapy and A2AR antagonists [159]. The proteomic analysis of irradiation-selected
pancreatic cancer cells revealed that NT5E is one of the most upregulated genes in a net-
work of growth factors and cytokines that mediates radio-resistance by enhancing DNA
repair, inactivating the proapoptotic protein BAD and promoting epithelial mesenchymal
transition. In pancreatic cancer cells, CD73 overexpression results in radio-resistance while
the knockdown of CD73 resensitises cancer cells to radiotherapy [160]. Moreover, higher
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CD73 activity and adenosine levels after irradiation of the thorax in mice were found to
promote lung fibrosis, a major adverse side effect. In CD73 deficient mice this radiation
induced lung fibrosis is milder [161].

A currently ongoing phase 2 clinical trial (NCT03875573) tests the effect of stereotactic
body irradiation in combination with CD73 inhibition, anti-PD-L1 treatment, and neoadju-
vant chemotherapy in luminal B breast cancer. The authors propose that this combination
supports the activation of innate immune cells and induces T cell priming. This may turn
the primary tumour into an individual tumour vaccine and thereby help to gain tumour
control and to prevent metastasis [162].

2.5.7. Combination with Targeted Therapies

The expression of CD73 is intertwined with the regulation and mutation of other
targetable proteins that promote tumour growth. For example, activating mutations in the
MAPK promote the expression of CD73 [95]. CD73 overexpression regulates cancer growth
via the EGFR/AKT1 pathway. The inhibition of EGFR and AKT1 inhibits the proliferation
of CD73+ tumour cells [163]. In addition, in breast cancer, CD73 was described to promote
EGFR expression, most likely via the transcription factor PPAR-γ. CD73 inhibition can
reverse while the addition of adenosine is promoting this effect [164]. Additionally, a corre-
lation with BRAF/MEK activity was described. In BRAF mutant melanoma, the inhibition
of BRAF and MEK causes a downregulation of CD73 tumour cells. The combination with
an A2AR antagonist improves the protection against tumour initiation and metastasis in
a mouse model [165]. A phase 1 clinical trial (NCT03381274) was conducted in a patient
cohort with advanced and EGFR mutated NSCLC and assessed the combination therapy
with Oleclumab and Osimertinib, an inhibitor of the EGFR tyrosine kinase. Acceptable
tolerability and moderate clinical activity have been found. The overall response rate
was low (ORR 11.8%), but patients who responded had a doubled response duration in
comparison to monotherapy with Osimertinib (16.6 month vs. 7.4 month) [166].

In a clinical trial evaluating the efficacy of the anti-HER-2 monoclonal antibody
Trastuzumab, high CD73 expression was associated with a poorer clinical outcome. In
a mouse model, CD73 expression significantly suppressed the response to anti-HER-2
therapy. The additional blockade of CD73 increased the treatment efficacy [77]. A fur-
ther phase 1 study is ongoing evaluating the enzymatic blockade of CD73 alone versus
a combination with chemotherapy and Trastuzumab in patients with advanced solid
tumours (NCT05143970).

Another interesting approach is the dual blockade of CD73 and TGF-β with a bifunc-
tional antibody construct (Dalutrafusp). Both factors are known to correlate with EMT,
fibrotic stroma, immune tolerance, and poor prognosis in triple-negative breast cancer.
Preclinical experiments in mice reported a superior activity of the bifunctional antibody
construct compared to CD73 blockade alone. Cell migration, EMT, and metastasis were
reduced, and tumour cell death was induced, and proinflammatory conditions were es-
tablished in the TME [167]. A first in-human clinical trial (NCT03954704) was performed
in patient cohort with advanced solid tumours. The treatment was well tolerated and
plasma TGF-β levels became undetectable during therapy, whereas levels of soluble CD73
were increased in comparison to the baseline [118]. The overall response rate was 38.1%,
providing the rationale for further clinical evaluation. Based on the early clinical and
preclinical data the combination of CD73 inhibition with targeted therapy represents a
promising approach to overcome therapeutic resistance in the TME.

3. Conclusions

CD73 contributes to the development of numerous cancer-specific hallmarks. Its
presence on tumour cells and other cell types in the TME, but also in soluble form or
EV-bound, is suppressing the hosts anti-tumour immune response and enhances tumour
growth, angiogenesis, EMT, cancer cell invasion, and metastasis. The primary mechanism
behind this suppression is through adenosine signalling, making the catalytic activity of
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CD73 crucial in this context. In addition, direct non-enzymatic effects of CD73 are involved,
for instance in the regulation of cell adhesion. CD73 is upregulated in most tumour types
and often associated with resistance to standard of care cancer therapies and a poor survival.
Furthermore, CD73 is considered as a novel biomarker for some cancers.

Based on its overexpression on many tumours, CD73 might be considered as a pan-
cancer biomarker. In most studies, a high CD73 expression was associated with a worse
prognosis [49,50]. Recent studies suggest that CD73 may also serve as a biomarker for the
prediction of immunotherapy responses [49,50]. Moreover, CD73 has been shown to be
further upregulated during the development of immunotherapy resistance, especially in
(platinum)-containing chemo- and radiotherapies [153,154,160]. Due to the invasiveness
of determination of membrane-bound CD73 in tumour tissue, the analysis of soluble
CD73 and CD73+ EVs from biological fluids represents a promising new approach for
clinical practice.

The blockade of CD73 results in minimal adverse effects in patients. Mostly mild and
unspecific treatment-related adverse events have been observed, including fatigue, nausea,
vomiting, diarrhoea, headache, fever, elevated liver enzymes, or cough [96,118,127,145].
When combined with the PD-L1 blocker Durvalumab, no additional adverse events have
been observed in comparison to the treatment with Durvalumab alone [126]. In rare cases
the adverse event pneumonitis led to discontinuation of single-study participants [126,166].

Until now, only phase 1 and 2 clinical trials with few patients with advanced and highly
heterogeneous tumours have been conducted, while preclinical studies in mice used models
of non-advanced and homogeneous cancers. In addition, Phase I and II studies have the
focus on safety. Therefore, no definitive statement on the efficacy can be made. Furthermore,
the correlation between CD73 expression and efficacy remains to be investigated in larger
patient cohorts. In addition, the role of CD73 expressing T cells, NK cells or tumour-
associated macrophages has not yet been investigated in these studies. Future trials
involving bigger patient cohorts should provide a more comprehensive understanding.

Preclinical studies have shown that CD73 and adenosine signalling are intertwined
with the regulation and mutation of other targeted proteins, and with the promotion of
resistance mechanisms of tumour cells to classical checkpoint blockade and to radio- and
chemotherapeutic agents. Therefore, especially combinational treatment approaches are
efficient in reducing tumour growth and metastasis. Any factor that contributes to the
regulation of cancer-promoting properties within TME can be a suited combination partner
for CD73 blockade. Undoubtedly, as our understanding of the TME improves, the number
of potential treatment combinations will continue to expand. Especially the combination
with immune checkpoint inhibitors is currently studied in ongoing clinical trials. Addition-
ally, other players of the purinergic pathway represent promising targets in cancer therapy.
To date, clinical trials have primarily focused on investigating inhibitors of CD39 and the
A2AR, in addition to CD73. Selecting the most effective treatment combinations tailored to
each individual patient is crucial for optimal outcomes. Therefore, meaningful biomarkers
are needed.

It will be interesting to see the results of the many ongoing clinical trials using CD73
inhibition in combination with other treatments for cancer therapy. Hopefully, they will
provide the basis for further phase 3 clinical trials, leading to the approval of CD73 inhibitors
for clinical use—and therefore to the addition of a new and efficient treatment in cancer.
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