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Abstract: Amino acid metabolism has been implicated in tumorigenesis and tumor progression.
Alterations in intracellular and extracellular metabolites associated with metabolic reprogramming in
cancer have profound effects on gene expression, cell differentiation, and tumor immune microenvi-
ronment. However, the prognostic significance of amino acid metabolism in head and neck cancer
remains to be further investigated. In this study, we identified 98 differentially expressed genes
related to amino acid metabolism in head and neck cancer in The Cancer Genome Atlas. Using batch
univariate Cox regression and Lasso regression, we extracted nine amino acid metabolism-related
genes. Based on that, we developed the amino acid metabolism index. The prognostic value of this
index was validated in two Gene Expression Omnibus cohorts. The results show that this model
can help predict tumor recurrence and prognosis. The infiltration of immune cells in the tumor
microenvironment was analyzed, and it was discovered that the high index is associated with an
immunosuppressive microenvironment. In addition, this study demonstrated the impact of the
amino acid metabolism index on clinical indicators, survival of patients with head and neck cancer,
and the prediction of treatment response to immune checkpoint inhibitors. We conducted several
cell experiments and demonstrated that epigenetic drugs could affect the index and enhance tumor
immunity. In conclusion, our study demonstrates that the index not only has important prognostic
value in head and neck cancer patients but also facilitates patient stratification for immunotherapy.

Keywords: amino acid metabolism; head and neck cancer; tumor microenvironment; immune
checkpoint therapy; epigenetic drugs

1. Introduction

Head and neck cancer (HNC) is the seventh most common cancer worldwide [1]. It is
often associated with pain, disfigurement, upper aerodigestive dysfunction, and even death.
Patients with advanced HNC might still have a poor prognosis despite receiving traditional
treatments, such as surgery, chemotherapy, and radiation [2]. Emerging oncotherapy,
especially immunotherapy (e.g., pembrolizumab and nivolumab), have demonstrated
prolonged survival in patients with recurrent and/or metastatic HNC [3]. However, only a
small proportion of patients are sensitive to immunotherapy. Therefore, a novel prognostic
model is needed to evaluate the response of individual patients to immunotherapy and
predict treatment efficacy.
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Growing evidence has demonstrated that amino acids act as not only metabolites but
also metabolic regulators in supporting the growth of cancer cells [4]. For example, cancer
cells selectively consume exogenous serine, which is converted into intracellular glycine
and single-carbon units to construct nucleotides [5]. On the other hand, glutamine is
involved in the tricarboxylic acid (TCA) cycle, antioxidant activity, and production of other
important amino acids [6,7], which promote tumor cells to maintain rapid proliferation.
In addition, amino acid metabolism reprogramming is critical for immune responses in
the tumor microenvironment (TME) [8]. As one of the effectors of the immune system,
T cells and their activation, differentiation, and function also heavily rely on amino acid
metabolism [9].

Previous studies revealed that HNC is a severe immunosuppressive disease charac-
terized by abnormal secretion of pro-inflammatory cytokines and immune cell dysfunc-
tion [10]. Immune cells are an important part of tumor stroma and play a crucial role
in tumor progression [11,12]. Tumor cells can produce immunosuppressive metabolites
through amino acid catabolism and create an immunosuppressive tumor microenviron-
ment [13,14]. Crosstalk between cancer cells and nearby immune cells eventually leads to an
environment that promotes tumor growth and metastasis [15]. For example, indoleamine
2, 3-dioxygenase 1 (IDO1) and tryptophan 2, 3-dioxygenase 2 (TDO2) can catalyze the
kynurenine (KYN) metabolic pathway. KYN then leads to the generation of immunotol-
erant dendritic cells (DC) and regulatory T cells (Tregs), which foster a defective tumor
immune microenvironment [16]. Moreover, catabolic products of the amino acid enzyme,
interleukin-4-induced-1 (IL4I1), expressed in HNC stromal cells, can inhibit the immune
reactivity of T cells [17]. Furthermore, the dysfunction and apoptosis of T cells caused by
tryptophan consumption may be associated with primary anti-PD-1 resistance in HNC
patients [18]. However, studies on the association between amino acid metabolism and
TME in HNC are still limited.

Some believe that the effect of amino acid metabolism on the TME may be realized
through the epigenetic mechanism. Epigenetic modifications of DNA and histones can reg-
ulate gene expression by manipulating chromatin accessibility to transcriptional machinery.
For example, methionine could be the main substrate for methyl donor S-adenosine-L-
methionine (SAM) biosynthesis in Th17 cells [19]. In addition, previous studies implied a
close association between epigenetic agents and enhanced immune checkpoint therapy [20].

In this study, we have established a biological index, the amino acid metabolism index
(AMI), based on amino acid metabolism-related genes (AMGs). The prognostic value of
this index has been systematically evaluated in The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO). In addition, the potential relationship between AMI
and TME, and that between AMI and immunotherapy response, have been identified
and evaluated, providing a reference for personalized immunotherapy. Several in vitro
experiments validated the expression of AMGs, as well as their effect on invasion. Figure 1,
as the flow chart of this study, shows the design of the experiment in detail. Finally, we
hold that the association between amino acid metabolism and TME in HNC may be related
to the epigenetic mechanism.
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Figure 1. Flow chart of the experimental milestones of the current project. (HNC = head and neck 
cancer, AMGs = amino acid metabolism-related genes, DEGs = differentially expressed genes, TCGA 
= The Cancer Genome Atlas, AMI = amino acid metabolism index, GEO = Gene Expression Omni-
bus, TME = tumor microenvironment, HDAC = histone deacetylase). 

2. Results 
2.1. Identification and Analysis of Differential Amino Acid Metabolism-Related Genes in 
Patients with Head and Neck Cancer 

Firstly, |log2FC| > 1 and p-value < 0.05 was used as the threshold for the differential 
expression analysis of 531 sequencing data in the TCGA-HNC cohort. After comparing 
484 head and neck cancer samples and 47 normal head and neck samples, the differen-
tially expressed genes were collected and intersected (Figure 2A). According to GO anal-
ysis, we found that many metabolism pathways were significantly enriched in the DEGs 
(Figure 2B). GSEA analysis showed that protein metabolic pathways in tumor tissues were 
significantly enriched compared with normal tissues (Figure 2C). We obtained 98 differ-
entially expressed metabolism-related genes (Figure 2D), and Figure 2F shows the top 20 
of them. In order to identify AMGs with prognostic values, univariate Cox hazard regres-
sion analysis was applied for screening. Fourteen prognostic AMGs were screened out for 
further analysis (Figure 2E). We then summarized their reported mutations in HNC sam-
ples and noted that most of them have considerable mutations in patients with HNC (Fig-
ure S1).  

Figure 1. Flow chart of the experimental milestones of the current project. (HNC = head and
neck cancer, AMGs = amino acid metabolism-related genes, DEGs = differentially expressed genes,
TCGA = The Cancer Genome Atlas, AMI = amino acid metabolism index, GEO = Gene Expression
Omnibus, TME = tumor microenvironment, HDAC = histone deacetylase).

2. Results
2.1. Identification and Analysis of Differential Amino Acid Metabolism-Related Genes in Patients
with Head and Neck Cancer

Firstly, |log2FC| > 1 and p-value < 0.05 was used as the threshold for the differential
expression analysis of 531 sequencing data in the TCGA-HNC cohort. After comparing
484 head and neck cancer samples and 47 normal head and neck samples, the differentially
expressed genes were collected and intersected (Figure 2A). According to GO analysis, we
found that many metabolism pathways were significantly enriched in the DEGs (Figure 2B).
GSEA analysis showed that protein metabolic pathways in tumor tissues were significantly
enriched compared with normal tissues (Figure 2C). We obtained 98 differentially expressed
metabolism-related genes (Figure 2D), and Figure 2F shows the top 20 of them. In order
to identify AMGs with prognostic values, univariate Cox hazard regression analysis was
applied for screening. Fourteen prognostic AMGs were screened out for further analysis
(Figure 2E). We then summarized their reported mutations in HNC samples and noted that
most of them have considerable mutations in patients with HNC (Figure S1).

2.2. Establishment of Signature Related to Amino Acid Metabolism in Patients with Head and
Neck Cancer

In order to mine the vital AMGs for establishing the metabolism feature, Lasso re-
gression was performed to further analyze the above-discovered 14 AMGs screened by
univariate Cox regression (Figure 3A,B). Ultimately, nine vital AMGs were obtained, includ-
ing ALDH2, ACAT1, SMS, ASNS, GNMT, PLOD2, P4HA1, PAH, and KYNU. In addition,
the expression levels of these nine AMGs and their K–M survival curves were displayed in
Figure 3C,D. The expression levels of SMS, ASNS, PLOD2, P4HA1, PAH, and KYNU were
upregulated in tumor samples compared with normal samples, and the remaining three
genes were downregulated (Figure 3C). In Kaplan–Meier (K–M) survival analysis, the low
expression group of ALDH2 and GNMT had a worse prognosis than the high expression
group did, while the high expression group of SMS, ASNS, P4HA1, PLOD2, and PAH
signified more impaired survival (Figure 3D).



Int. J. Mol. Sci. 2023, 24, 11753 4 of 20
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 2. Identification of prognostic AMGs in patients with HNC. (A) Volcano plot of differentially 
expressed genes in the TCGA-HNC cohort. (B) GO analysis of differentially expressed genes (cellu-
lar nitrogen compound biosynthetic process, macromolecule biosynthetic process, cellular macro-
molecule biosynthetic process, regulation of biosynthetic process, and regulation of cellular biosyn-
thetic process are associated with amino acid metabolism). (C) GSEA analysis of differentially ex-
pressed genes. (D) Venn diagram exhibiting 98 DEGs among AMGs. Red means positively corre-
lated and blue means negatively correlated. (E) Fourteen prognostic AMGs. (F) Representative 20 
(BP = biological process, CC = cellular component, MF = molecular function, HR = hazard ratio, HNC 
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Figure 2. Identification of prognostic AMGs in patients with HNC. (A) Volcano plot of differen-
tially expressed genes in the TCGA-HNC cohort. (B) GO analysis of differentially expressed genes
(cellular nitrogen compound biosynthetic process, macromolecule biosynthetic process, cellular
macromolecule biosynthetic process, regulation of biosynthetic process, and regulation of cellular
biosynthetic process are associated with amino acid metabolism). (C) GSEA analysis of differentially
expressed genes. (D) Venn diagram exhibiting 98 DEGs among AMGs. Red means positively cor-
related and blue means negatively correlated. (E) Fourteen prognostic AMGs. (F) Representative
20 (BP = biological process, CC = cellular component, MF = molecular function, HR = hazard ratio,
HNC = head and neck cancer, AMGs = amino acid metabolism-related genes, DEGs = differen-
tially expressed genes, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes,
TCGA = The Cancer Genome Atlas).
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Figure 3. Construction of the amino acid metabolism index in the TCGA-HNC cohort. (A) Partial
likelihood deviance for the Lasso regression. (B) Coefficients of Lasso regression. (C) Expression
levels of the nine AMGs. (D) Kaplan–Meier (K–M) analysis based on the expression levels of the nine
AMGs. (** means p < 0.01; **** means p < 0.0001, ns means no statistical significance. AMGs = amino
acid metabolism-related genes.)
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The correlation between the expression levels of these genes and immune cell infil-
tration in tumor tissues was illustrated in Supplementary Figure S2. The expression level
of ALDH2 was positively correlated with B cells, CD8+ T cells, CD4+ T cells, neutrophils,
and DCs. The expression level of PLOD2 was positively correlated with CD4+ T cells,
macrophages, neutrophils, and DCs. The expression levels of GNMT, KYNU, P4HA1, and
ACAT1 were also associated with the infiltration of various types of immune cells.

Mutations of these nine genes in immune cells from HNC samples were also displayed
(Figure 4). KYNU, ASNS, GNMT, and P4HA1 all showed statistically significant mutations
in the six dominant immune cells. SMS was mutated in five types of immune cells, while
PAH, ALDH2, and PLOD2 were mutated in four types of immune cells. ACAT1 was
mutated only in CD8+ T cells. They may largely affect the normal function of these immune
cells, thereby contributing to the generation of immunosuppressive microenvironment.
Therefore, our subsequent studies will focus on the tumor immune microenvironment
of HNC.
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Figure 4 shows mutations of nine genes in the major immune cells: B cells, T cells,
macrophages, dendritic cells, and neutrophils. The main mutation types include arm-level
gain, arm-level deletion, deep deletion, and high amplification (* means p < 0.05, ** means
p < 0.01, *** means p < 0.001).

The multivariate Cox regression model was constructed with the nine AMGs, and
the regression coefficients were calculated. The AMI for each HNC sample was calculated
as follows: AMI = Σ Gi × βi (Gi represents the expression level of each AMG, and βi
represents the corresponding regression coefficient). We adopted the TCGA cohort as a
training set to develop a prognostic model. Subsequently, two GEO cohorts served as
verification sets to test the predictive power of this model. The patients in GEO cohorts
were divided into high and low AMI groups according to the optimal cut-off value in K–M
analysis. These results showed that patients with higher AMI were more likely to suffer
from tumor recurrence (HR = 4.33, p < 0.001, GSE27020, Figure 5A). Moreover, patients
with higher AMI also had a worse prognosis (HR = 8.3, p < 0.001, GSE41613, Figure 5B).
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Figure 5. Genome enrichment analysis between high and low AMI groups. (A) Kaplan–Meier
analysis of high and low AMI groups in GSE27020 (HR = 4.33, p < 0.001). (B) Kaplan–Meier analysis
of high and low AMI groups in GSE41613 (HR = 8.3, p < 0.001). (C) GO analysis of DEGs between
low and high AMI groups. (D) Result of GSEA between low and high AMI groups. (AMI = amino
acid metabolism index, GO = gene ontology, DEGs = differentially expressed genes, GSEA = gene set
enrichment analysis).

2.3. Gene Set Enrichment Analysis between High and Low Amino Acid Metabolism Index Groups

The GO and GSEA were performed to decipher the enriched biological processes and
signaling pathways between the high and low AMI groups. The GO analysis revealed
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that immune-related biological processes, e.g., adaptive immune response and immune
response, were enriched (Figure 5C). The GSEA demonstrated that biological functions,
e.g., development biology, immune system, innate immune system, and metabolism of
proteins, were enriched in the high AMI group (Figure 5D).

2.4. Landscape of Immune Status and Tumor Immune Microenvironment in Head and Neck Cancer

In order to uncover the tumor microenvironment in the TCGA-HNC cohort, we
performed an analysis of immune-infiltrating cells in the TME of HNC. The box plot
revealed a high proportion of certain types of immune cells, i.e., resting memory CD4+ T
cells and M0 macrophages, in the cohort (Figure S3A). Among subtypes of macrophages,
immunosuppressive M2 cells infiltrated more than M1 cells. Other types of immune cells,
e.g., memory B, naive CD4+ T cell, gamma delta T cell, and eosinophil, all showed a low
infiltration proportion (Figure S3B). When comparing HNC samples with normal samples,
we noticed that resting memory CD4+ T cell is significantly less in HNC samples, while M0
and M1 macrophages are enriched instead (Figure 6A).
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p < 0.01, *** means p < 0.001, **** means p < 0.0001, HNC = head and neck cancer).
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2.5. Analysis of Immune Microenvironment between High and Low Amino Acid Metabolism
Index Groups

In order to further investigate the relevance of the AMI and TME, immune cell infiltra-
tion has been assessed according to the high and low AMI groups (Figure 6B). The boxplot
illustrated that an increased proportion of plasma B cells and CD8+ T cells was observed
in the low AMI group. In addition, M0 macrophages were significantly decreased in the
low AMI group. Although there was no statistical difference, immunosuppressive M2
macrophages also presented a downward trend in the low AMI group. This means that the
immune response of the low AMI group is less suppressed when compared with the high
AMI group, and the immune cells in the low AMI group can still play a vital anti-tumor role.
Moreover, the expression of follicular helper T cells and Treg was decreased in the high AMI
group. We also analyzed tumor immune cell infiltration in the GEO cohorts (Figure S4).
The infiltrated immune cells in the high and low AMI groups in the GEO cohorts showed a
similar trend to the TCGA cohort. In conclusion, HNC patients with high AMI may have
stronger immunosuppressive TME, which might contribute to tumor progression.

2.6. Potential Association between AMI and Clinical Indicators and Predictive Value of AMI for
Response to Immunotherapy

In order to explore the possibility of AMI in predicting clinical parameters, we in-
vestigated the relationship between AMI and clinical features using the clinical data from
the TCGA cohort. In patients with HNC, both clinical staging and pathological staging
showed that higher AMI is associated with more advanced tumor (T), nodal (N), and
disease staging, except for metastasis (M) staging (Figure 7A).
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Figure 7. Evaluation of the association between AMI and clinical parameters and the effect of
immunotherapy in HNC patients. (A) Comparison of AMI in different clinical and pathological
grades of HNC. (B) K-M analysis between high and low AMI groups. (C) Multivariate Cox regression
analysis of AMI and clinical parameters. (D) Expression levels of immune checkpoints in different
AMI groups. (* means p < 0.05, ** means p < 0.01, *** means p < 0.001, **** means p < 0.0001, ns means
no statistical significance. HNC = head and neck cancer, AMI = amino acid metabolism index.)

In order to further elucidate whether AMI is associated with the survival of HNC
patients, K–M analysis and multivariate Cox regression were conducted according to the
high and low AMI groups. The K–M analysis showed that the high AMI group had poorer
survival (p < 0.001) with a hazard ratio (HR) of 2.25 (Figure 7B), which was greater than the
HR of any of the nine AMGs (Figure 3D). Multivariate Cox regression included AMI, age,
sex, stage, and type of treatment (Figure 7C). The results suggested that only age and AMI
grouping were independent prognostic predictors (p < 0.01).

Although the Food and Drug Administration (FDA) has approved immunotherapy
for patients with HNC, the response rate is still unsatisfactory. Depleted and dysfunctional
tumor-infiltrating lymphocytes (TILs) in HNC cases are characterized by upregulation
of several checkpoint markers, such as programmed cell death 1 (PD-1), lymphocyte-
activating gene 3 (LAG-3), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [21].
Therefore, we compared the expression levels of eight immune checkpoint markers between
the high and low AMI groups (Figure 7D). The results showed that the expression of PDCD1,
CD96, CTLA4, TIGIT, IDO1, and LAG3 were all decreased in the high AMI group. This
might render the high AMI group respond poorly to immunotherapy.

2.7. Potential Mechanisms of the Association between Amino Acid Metabolism Index and
Tumor Immunity

Previous studies have suggested that epigenetic mechanisms may be related to tumor
immunosuppression status [22]. We applied univariate Cox regression to screen out epige-
netic genes with prognostic values. Pearson analysis showed that there was a correlation
between AMGs and prognostic epigenetic-related genes (Figure 8A). In order to investigate
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the underlying mechanism of the effect of amino acid metabolism on immunity, we ana-
lyzed DEGs in HNC patients according to different AMI groups. The volcano map shows
epigenetically related changes in the DEGs (Figure 8B). The GO analysis indicated that these
differential epigenetic genes might be associated with common epigenetic modifications,
e.g., histone methylation and histone acetylation (Figure 8D). The epigenetic modification
sites of these DEGs are shown in Figure 8F. KEGG analysis presented in the network plots
indicated that these DEGs might be related to amino acid metabolism, e.g., lysine degrada-
tion, cysteine, and methionine metabolism (Figure 8E). Both GSEA and KEGG analyses
revealed that these DEGs between high and low AMI groups were associated with the
Notch signaling pathway (Figure 8C,E). Notch mutations have been proposed as predictive
biomarkers for immune checkpoint blockade therapy in many cancers. In addition, we use
Figure 8F to show the modification types and modification sites of these DEGs. Therefore,
epigenetic mechanisms are likely to be the potential mechanism by which AMI predicts the
response of immunotherapy.
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Figure 8. Exploration of the mechanism by which amino acid metabolism regulates tumor immunity.
(A) Correlation analysis between AMGs and EMGs. (B) Volcano diagram of differentially expressed
EMGs between high and low AMI groups. (C) GSEA of differentially expressed EMGs. (D) GO
analysis of differentially expressed EMGs. (E) KEGG analysis of differentially expressed EMGs.
(F) Major modification sites of differential EMGs. (EMGs = epigenetic-related genes, GO = gene
ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, GSEA = gene set enrichment analysis.)

2.8. The Expression of Nine Amino-Acid-Related Genes and the Impact on Tumor Invasion

We cultured the normal oral epithelial cell line HOEC and the human pharyngeal
cancer cell line FaDu. RT-qPCR was applied to compare the expression levels of AMGs
between normal and tumor cells. The results showed that the relative expression levels of
ALDH2, P4HA1, PAH, PLOD2, and KYNU were consistent with the results of bioinformat-
ics analysis (Figure 9A). Furthermore, we applied siRNA to downregulate the expression
level of these nine AMGs in FaDu cells. RT-qPCR was applied to confirm the reduced
expression levels of these 9 genes (Figure S5).The invasion assay showed that the downreg-
ulation of ALDH2 expression significantly increased the invasion ability of tumor cells. The
interference of the expression levels of SMS, P4HA1, PAH, PLOD2, and KYNU significantly
decreased the invasion of tumor cells. However, the downregulation of ASNS, ACAT1, and
GNMT expression had no significant impact on tumor invasion (Figure 9B,C).

1 

 

 
Figure 9. The expression of nine amino-acid-related genes and the impact on tumor invasion.
(A) Expression of AMGs between HOEC and FaDu cells. (B) Cell counts of tumor invasion assay.
(C) Impact of AMGs on tumor invasion. (* means p < 0.05, AMG = amino acid metabolism-related
genes, HNC = head and neck cancer).
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2.9. Epigenetic Drugs Affect the Expression Level of AMGs and Tumor Immunity In Vitro

In order to further validate the epigenetic mechanisms underlying amino acid metabolism
in HNC, RT-qPCR was applied to analyze the expression levels of AMGs. We treated human
HNC FaDu cells with an effective concentration of HDAC inhibitor (SAHA, 8 µM) for 24
h. The results showed that the relative expressions of ALDH2, ACAT1, ASNS, P4HA1,
and KYNU genes were significantly decreased, while the expression of SMS, GNMT, and
PLOD2 genes was increased after SAHA treatment (Figure 10A). Subsequently, we further
calculated adjusted AMI for the treated and control groups, and the results indicated that
HDAC inhibitor significantly reduced AMI (Figure 10B). Previous analyses of this study
(Figure 7B) showed that higher AMI was associated with a poorer prognosis. Therefore,
HDAC inhibitors may have important therapeutic potential in HNC.
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Figure 10. Epigenetic agents affect the relative expression levels of AMGs, immune-related genes,
and AMI. (A) Relative expression level of AMGs in control and treatment groups. (B) AMI in control
and treatment groups. (C) Relative expression level of immune-related genes in control and treatment
groups. (ns = not satistically significant, * means p < 0.05. AMG = amino acid metabolism-related
genes, AMI = amino acid metabolism index).

Furthermore, some immune-related genes expressed in the HNC cells were selected,
and their expression levels were analyzed (Figure 10C). Apart from PDL2, all selected genes
were downregulated in the HDAC inhibitor group. The downregulated PDL1 and LSECtin
may contribute to relieving the dilemma of T cell dysfunction in the TME. The expression
of FGL1, a ligand of LAG-3 on the surface of tumor cells, was downregulated in the SAHA
group. CD155 was also significantly reduced in the treatment group. Since PDL1, CD155,
FGL1, and LSECtin are all potential targets for immunotherapy, our results suggest that
epigenetic drugs might influence the effect of immunotherapy.
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3. Discussion

Metabolic reprogramming of cells is not only one of the consequences of oncogenic
mutations but is also associated with tumor progression, metastasis, and recurrence [23–25].
Proliferating tumor cells must de novo synthesize many nitrogen-containing molecules,
such as nucleotides, nonessential amino acids, and polyamines, rendering the need for
nitrogen increases during tumor progression [26]. For example, glutamine consumption
is greatly increased in many tumor microenvironments compared to normal tissues [27].
Furthermore, changes in metabolites can also drive changes in gene regulation. Previous
studies suggested that amino acid metabolism is closely related to tumor progression also
in HNC [24,28]. Therefore, we developed AMI based on the RNA expression of AMGs
in the TCGA database and validated its clinical significance and predictive value in two
GEO cohorts.

Using Lasso regression, we extracted nine AMGs, including ALDH2, ACAT1, SMS,
ASNS, GNMT, PLOD2, P4HA1, PAH, and KYNU (Figure 3C). For example, the polymor-
phisms of ALDH2 are associated with HNC [29]. Downregulation of ALDH2 increases
the infiltration of CD3+ and CD8+ T cells in the TME, suggesting that ALDH2 expression
mediates immune system dysfunction [30]. ALDH2 and ACAT1 are involved in regulating
leucine metabolism, and leucine metabolites can be utilized as substrates to enter the TCA
cycle and promote macrophage activation [31]. ASNS is involved in alanine and glutamate
metabolism and cell cycle control [32]. PLOD2 is associated with lysine metabolism. In
addition, the expression of PLOD2 is upregulated in a variety of tumors and is associated
with poor prognosis [33]. Moreover, tryptophan catabolism in macrophages suppresses
the activity of the adaptive immune system, and KYNU happens to be associated with
tryptophan metabolism [34].

The metabolic characteristics of tumors pose great obstacles to immune cell function.
TME can reprogram the metabolism of immune cells, downregulate antigen recognition
and presentation, and allow tumor cells to escape from host immune surveillance. Accumu-
lating evidence has delineated that amino acid metabolism affects the function and number
of various immune cells in the TME of HNC. In order to investigate the relevance of the
AMI and TME, the infiltration of various types of immune cells has been assessed between
the high and low AMI groups (Figure 6B). In HNC patients with high AMI, the proportion
of CD8+ T cell infiltration is reduced, while that of immunosuppressive M2 macrophage is
increased. One study found that more infiltration of CD8+ T cells in TME was associated
with better clinical parameters in HNC patients, e.g., smaller tumor size and lower proba-
bility of lymph node metastasis [35]. Another study reported that higher CD8+ TIL levels
were associated with improved overall survival (OS) and relapse-free survival (RFS) [36].
On the other hand, previous studies have indicated that metabolic reprogramming has
the potential to regulate macrophage polarization, and M2 macrophages promote tumor
growth by inducing immunosuppression [37]. Last but not least, the infiltration of other
types of immune cells, such as follicular helper T cells and Treg, was also decreased in the
high AMI group. In patients with HNC, higher levels of Treg infiltration are associated
with superior OS [38]. In addition, CD8+ T suppressor in tumor-infiltrating lymphocytes
may have great relevance in controlling immune system homeostasis and is associated
with tumor-induced immunosuppression [39,40]. Previous studies have shown that the
steroidogenic enzyme Cyp11a1 can affect the secretion function of CD8+ T lymphocyte
suppressor by regulating lipid metabolism and promoting allergic reactions [41]. Therefore,
amino acid metabolism is also likely to affect this particular type of immune cells, which
we will pay attention to in future studies.

Recent clinical trials have demonstrated a clear survival advantage for patients with
advanced HNC treated with immune checkpoint blockade [42]. Therefore, we compared
the expression levels of eight immune checkpoint markers between the high and low
AMI groups to see whether AMI carries predictive value for response to immunotherapy
(Figure 7D). Current TME-targeted therapy mainly focuses on T cells. major examples
include checkpoint blockade and chimeric antigen receptor (CAR) T-cell therapy [43].
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Despite initial enthusiasm, the clinical benefits of immune checkpoint inhibitors (ICIs)
vary in patients with relapsed or metastatic HNC. Positive results were experienced by
18% of patients receiving Pembrolizumab, a PD-1 inhibitor, whereas most patients with
HNC were initially resistant to immunotherapy [44]. Therefore, it is important to identify
those patients who are more likely to benefit from immunotherapy. Immune checkpoint
signaling can create an immunosuppressive environment, which can be reversed by ICIs.
Our experiments indicated that the expression levels of immune checkpoint genes, e.g.,
PDCD1, CD96, CTLA4, TIGIT, IDO1, and LAG3, were significantly decreased in the high
AMI group (Figure 7D), suggesting that HNC patients with higher AMI may have a poorer
response to immunotherapy.

Previous studies revealed a close relationship between epigenetic drugs and enhanced
immune checkpoint therapy. For example, epigenetic drugs, such as HDAC inhibitors,
can alter the expression of genes involved in immune checkpoints and enhance the effect
of immunotherapy in HNC [45]. In addition, epigenetic agents can also improve antigen
presentation by tumor cells and enhance CD8+ T-cell lethality [46]. Other studies implied
that HDAC inhibitors, when combined with PD-1 antibodies, reduced tumor progression
and improved mouse survival in a mouse melanoma model [47]. Interestingly, our in vitro
cellular study also verified that an epigenetic agent, i.e., SAHA, could decrease the expres-
sion levels of immune checkpoint receptor-related genes in FaDu cells (Figure 10). Chen
et al. found that FGL1 promoted LAG3-dependent T-cell suppression, and FGL1 deficiency
significantly inhibited tumor growth in mouse models [48]. CD155 expressed on the surface
of tumor cells can bind to TIGIT and negatively regulate NK cell function [49,50]. These
results imply that epigenetic drugs can affect the expression level of AMGs, influence the
effect of immunotherapy, and potentially serve as adjuvant therapeutics in HNC.

4. Materials and Methods
4.1. Transcriptome Data Preparation and Clinical Data Collection

Transcriptome expression data were obtained from the TCGA database (47 normal
head and neck samples and 484 HNC samples; the sample list can be found in the
Supplementary Materials). Among them, blood samples and metastases were excluded,
and only tissue samples were retained. The HNC cohorts, GSE27020 and GSE41613, were
downloaded from the GEO database. The clinical and pathological information of these
patients was also obtained from these two databases.

4.2. Identification of Differentially Expressed Genes in Head and Neck Cancer

In order to identify the differentially expressed genes (DEGs) between normal head
and neck samples and HNC samples, the ‘DESeq2′ R package was utilized to standardize
sequencing data and screen for differential genes with the criteria set to |log2FC| > 1 and
p adjust < 0.05. In DESeq2, p-values obtained from Wald tests were corrected for multiplicity
using the Benjamini and Hochberg method by default.

4.3. Collection and Identification of Differentially Expressed Amino Acid
Metabolism-Related Genes

In order to acquire an amino acid metabolism-related gene set, three amino acid
metabolism-related gene sets were downloaded from the Molecular Signature Database.
The final gene set was a union of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Reactome AMGs (gene set names were listed in the Supplementary Materials). Differ-
entially expressed AMGs in HNC were obtained using the intersection of AMGs and DEGs
in R.

4.4. Screening of Survival-Related Amino Acid Metabolism Genes

The batch univariate Cox regression analysis relies on the coxph function of the
‘survival’ package in R. Thirteen survival-related AMGs were screened out by univariate
Cox hazards regression analysis.
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The least absolute shrinkage and selection operator (Lasso) reduces the regression
coefficient by introducing a penalty function. Lasso regression was performed on genes
with p < 0.05 in the batch single-gene COX regression. A total of 484 patients with head
and neck cancer of TCGA were applied as a training set. In this study, the Lasso regression
model was conducted via ‘glmnet’ R package to select 9 optimal AMGs among all amino
acid metabolism-related prognostic DEGs. The validation method is cross-validation. For
each lambda value, cross-validation was performed, and the lambda value with the smallest
cross-validation error was selected. In addition, the msgps function in the glmnet package
was used to conduct lasso regression analysis. The Bayesian information criterion made
the model simpler and less likely to lead to overfitting.

4.5. Construction of Amino Acid Metabolism Index in Patients with Head and Neck Cancer and
Verification of Its Clinical Significance

These optimal candidate genes were considered as variables to establish a multivariate
Cox regression analysis. The variance inflation factor (VIF) and correlation coefficient of
each variable in the multivariate Cox regression model were calculated to judge the possible
collinearity among variables. The variables that pass the PH hypothesis and collinearity
test were added to the multivariate Cox model. The multivariate Cox model calculated the
regression coefficients for each variable. The AMI could be exported for each HNC patient
using the following formula: AMI = Σ Gi × βi (Gi represents the expression level of each
AMG, and βi represents the corresponding regression coefficient). Two HNC cohorts from
the GEO database (GSE27020 and GSE41613) were employed to validate this model.

The Kaplan–Meier (K–M) analyses were accomplished on the Kaplan–Meier Plotter
website (http://kmplot.com, accessed on 21 May 2022). On the website, the optimal cutoff
of AMI was obtained to divide patients with HNC into high and low AMI groups. Multiple
hypothesis testing was performed using SPSS (IBM, v22), including logrank (Mantel–Cox),
Breslow (Generalized Wilcoxon), and Tarone–Ware. The results of posttest p-values were
attended in the Supplementary Materials. In order to further evaluate the feasibility of
AMI in clinical settings, patients with HNC were grouped according to the optimal cutoff
of AMI level, and boxplots were used to compare clinical and pathological indicators.

4.6. Function Enrichment Analysis between High and Low Amino Acid Metabolism Index Groups

We conducted gene set enrichment analysis (GSEA) to decode the major enriched
signaling pathways and biological functions between the high and low AMI groups. The
‘ReactomePA’, ‘org.Hs.eg.db’, and ‘enrichplot’ R packages were utilized to accomplish the
GESA. The top enriched signaling pathways were shown in plots.

4.7. Immune Landscape of Head and Neck Cancer and Significance of AMI to Tumor Immune
Microenvironment and Immunotherapy

The immune landscape of HNC was displayed via the TIMER algorithm. It serves as
a comprehensive resource for the systematical analysis of immune infiltrates across diverse
cancer types. The immune microenvironment analysis was performed on the TIMER
2.0 website (http://timer.cistrome.org/, accessed on 21 July 2022). This website utilizes
machine learning and the CIBERSORT deconvolution algorithm to dig immune cells from
a gene expression matrix in samples. Boxplots were used to show the differences in the
abundance of different immune infiltrating cells in the TME of HNC samples between high
and low AMI groups. In addition, the expression levels of several immune checkpoints
between the high and low AMI groups were compared to predict the potential of AMI for
immunotherapy efficacy.

4.8. Potential Mechanisms of Amino Acid Metabolism Regulating Tumor Immune
Microenvironment

Based on the optimal cutoff of AMI, two groups were identified to analyze the
association between amino acid metabolism and tumor immunity. In order to further
explore the possible mechanisms behind this association, the limma algorithm was ap-
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plied to identify DEGs between these two groups. The volcano diagram was used to
demonstrate epigenetic genes that are differentially expressed between these two groups.
Then, the COR function revealed the correlation between survival-related AMGS and
epigenetic-related genes. We downloaded the epigenetics-related gene set on the website
(https://epifactors.autosome.org/, accessed on 13 August 2022). This gene set includes
720 genes. In addition, the database provides annotations for each gene, including their
modification targets and modification functions. DESeq2 package was applied to obtain the
epigenetic-related genes differentially expressed between high and low AMI groups. The
functions of these differentially expressed genes were then searched in the database and
summarized according to the modification types. Figure 8D,F summarize the modification
targets of these differential genes according to different histone modification modes.

4.9. Cell Culture and Agents

The FaDu cells (a hypopharyngeal squamous cell carcinoma cell line) were purchased
from the Shanghai Institute of Biochemistry and Cell Biology, National Collection of Authen-
ticated Cell Cultures, Shanghai, China. The HOEC cells (a normal human oral epithelium
cell line) were purchased from Zeye Biological Co. (Shanghai, China). They were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) and 100 U/mL penicillin/100 mg/mL streptomycin in a humidified
atmosphere of 5% CO2 in air at 37 ◦C (all from Gibco, Shanghai, China). The suberoyl
hydroxamic acid (SAHA), a broad-spectrum histone deacetylase (HDAC) inhibitor, was
purchased from Selleck (Selleck Chemical, Houston, TX, USA). The FaDu cells were treated
with 8 µM of SAHA for 24 h, while the control group was treated with 0.01% dimethyl
sulphoxide (DMSO).

4.10. siRNA Transfection

FaDu cells were cultured in DMEM supplemented with 10% FBS and 100 U/mL
penicillin/100 mg/mL streptomycin in a humidified atmosphere of 5% CO2 in air at 37 ◦C.
The cells were seeded into six-well plates overnight, and the siRNA was transfected the
next day using Lipofectamine 3000 according to the manufacturer’s instruction (Invitrogen,
Carlsbad, CA, USA).

4.11. RNA Isolation and Quantitative Real-Time PCR

The total RNA of FaDu cells was extracted using Trizol reagent. The HiScript 1st
Strand cDNA Synthesis Kit was used for reverse transcription PCR (RT-PCR). Quantitative
real-time PCR (Q-PCR) was performed using the SYBR Green RT-qPCR Kit. All the above
reagents and kits were purchased from Vazyme, Nanjing, China. The primers are listed in
Supplementary Table S1. The Ct values were calculated using the ∆∆Ct method, and the
relative changes in mRNA levels were obtained by normalization to the glyceraldehyde
phosphate dehydrogenase gene (GAPDH).

4.12. The Expression of Nine AMGs in Cell Lines

The FaDu and HOEC cell lines were used to further validate the expression of these
9 AMGs using quantitative real-time PCR.

4.13. Tumor Invasion Assay

Transwell (Millipore, Billerica, MA, USA) was used to detect the invasion ability of
tumor cells. Transwell chambers were coated with 100 µL of 10% Matrigel (BD Biosciences,
Franklin Lakes, NJ, USA). A total of 1 × 105 cells transfected with nine different siRNAs
were seeded into the upper chamber containing serum-free medium. After 24 h of incuba-
tion, the medium was discarded. Cells that had infiltrated the lower surface of the chamber
were fixed with methanol for 15 min, stained with 0.1% crystal violet for 10 min, and the
invaded cells were visualized using an Olympus microscope at ×200 magnification.

https://epifactors.autosome.org/
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4.14. Statistical Analysis

Statistical analyses were completed using the R software (version 4.1.3, http://www.
R-project.org, accessed on 4 May 2022) and GraphPad Prism (version 6). The K–M analyses
were accomplished on the Kaplan–Meier Plotter website (http://kmplot.com, accessed
on 21 May 2022). The univariate Cox regression analysis was conducted to screen out the
survival-related AMGs. The multivariate Cox regression analysis was exploited to identify
the prognostic indicators of survival. The correlation matrix was analyzed via Pearson
correlation. The statistical significance was determined as p < 0.05.

5. Conclusions

We developed a prognostic model for head and neck cancer based on the expression of
amino acid metabolism-related genes. Firstly, using the TCGA database, we identified the
amino acid metabolism index and validated its clinical significance and predictive value in
both TCGA and GEO databases. HNC patients with higher AMI scores may have worse
tumor staging both clinically and pathologically. In addition, patients with higher AMI are
more likely to have tumor recurrence and a worse prognosis. Secondly, after analyzing
the infiltration of various immune cells, we established that high AMI is associated with
the immunosuppressive microenvironment. In addition, AMI’s predictive value might
also provide a reference for personalized immunotherapy. Lastly, we identified epigenetic
modifications as a possible mechanism by which amino acid metabolism affects TME. Most
importantly, we implemented an epigenetic drug on HNC cells and confirmed its effect
on amino acid metabolism, AMI, and immune checkpoint biomarkers. Our combined
bioinformatic analysis and cellular study might provide insight into the influence of amino
acid metabolism on the TME of HNC while consolidating the role of epigenetic agents as
adjuvant therapy for HNC patients.
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https://www.mdpi.com/article/10.3390/ijms241411753/s1.

Author Contributions: X.L.: formal analysis, data curation, writing, visualization, software, method-
ology. D.L.: software, resources, visualization. J.L.: resources, supervision. Y.C.: software, resources.
Z.C.: conceptualization, project administration. F.T.: conceptualization, methodology, validation,
formal analysis, resources, data curation, writing, supervision, project administration, funding
acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundamental Research Funds for the Central Universities. It
was also supported by the National Natural Science Foundation of China (No. 82271192).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: TCGA and GEO belong to public databases. The patients involved in
the database have obtained ethical approval. Users can download relevant data for free for research
and publish relevant articles. Our study is based on open-source data, so there are no ethical issues.

Data Availability Statement: The datasets used or analyzed during the current study are available
from the TCGA and GEO databases.

Acknowledgments: We would like to acknowledge the TCGA and GEO databases for providing
data used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [CrossRef]
2. Kaidar-Person, O.; Gil, Z.; Billan, S. Precision medicine in head and neck cancer. Drug Resist. Updat. 2018, 40, 13–16. [CrossRef]

[PubMed]
3. Cramer, J.D.; Burtness, B.; Ferris, R.L. Immunotherapy for head and neck cancer: Recent advances and future directions. Oral

Oncol. 2019, 99, 104460. [CrossRef] [PubMed]
4. Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [CrossRef]

http://www.R-project.org
http://www.R-project.org
http://kmplot.com
https://www.mdpi.com/article/10.3390/ijms241411753/s1
https://doi.org/10.1056/NEJMra1715715
https://doi.org/10.1016/j.drup.2018.09.001
https://www.ncbi.nlm.nih.gov/pubmed/30466712
https://doi.org/10.1016/j.oraloncology.2019.104460
https://www.ncbi.nlm.nih.gov/pubmed/31683169
https://doi.org/10.1038/s12276-020-0375-3


Int. J. Mol. Sci. 2023, 24, 11753 19 of 20

5. Labuschagne, C.F.; van den Broek, N.J.; Mackay, G.M.; Vousden, K.H.; Maddocks, O.D. Serine, but not glycine, supports
one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014, 7, 1248–1258. [CrossRef]

6. Li, Z.; Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell. Mol. Life Sci.
2016, 73, 377–392. [CrossRef]

7. Suzuki, S.; Tanaka, T.; Poyurovsky, M.V.; Nagano, H.; Mayama, T.; Ohkubo, S.; Lokshin, M.; Hosokawa, H.; Nakayama, T.;
Suzuki, Y.; et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive
oxygen species. Proc. Natl. Acad. Sci. USA 2010, 107, 7461–7466. [CrossRef] [PubMed]

8. Wang, W.; Zou, W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol. Cell 2020, 80, 384–395.
[CrossRef]

9. Siska, P.J.; Rathmell, J.C. T cell metabolic fitness in antitumor immunity. Trends Immunol. 2015, 36, 257–264. [CrossRef]
10. Gavrielatou, N.; Doumas, S.; Economopoulou, P.; Foukas, P.G.; Psyrri, A. Biomarkers for immunotherapy response in head and

neck cancer. Cancer Treat. Rev. 2020, 84, 101977. [CrossRef]
11. Fujii, S.I.; Shimizu, K. Immune Networks and Therapeutic Targeting of iNKT Cells in Cancer. Trends Immunol. 2019, 40, 984–997.

[CrossRef]
12. Sabado, R.L.; Balan, S.; Bhardwaj, N. Dendritic cell-based immunotherapy. Cell Res. 2017, 27, 74–95. [CrossRef]
13. Tabe, Y.; Lorenzi, P.L. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood 2019,

134, 1014–1023. [CrossRef] [PubMed]
14. Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Sosman, J.A.; Zhang, B.; Wu, J.D.; Miller, S.D.; Meeks, J.J.; et al.

Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Front. Immunol. 2020,
11, 1185. [CrossRef]

15. Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019,
79, 4557–4566. [CrossRef] [PubMed]

16. Cheong, J.E.; Sun, L. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy—Challenges and Opportunities.
Trends Pharmacol. Sci. 2018, 39, 307–325. [CrossRef]

17. Mazzoni, A.; Capone, M.; Ramazzotti, M. IL4I1 Is Expressed by Head-Neck Cancer-Derived Mesenchymal Stromal Cells and
Contributes to Suppress T Cell Proliferation. J. Clin. Med. 2021, 10, 2111. [CrossRef]

18. Botticelli, A.; Mezi, S.; Pomati, G.; Cerbelli, B.; Cerbelli, E.; Roberto, M.; Giusti, R.; Cortellini, A.; Lionetto, L.; Scagnoli, S.; et al.
Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1. Front. Immunol. 2020, 11, 1243. [CrossRef]
[PubMed]

19. Roy, D.G.; Chen, J.; Mamane, V.; Ma, E.H.; Muhire, B.M.; Sheldon, R.D.; Shorstova, T.; Koning, R.; Johnson, R.M.; Esaulova, E.; et al.
Methionine Metabolism Shapes T Helper Cell Responses through Regulation of Epigenetic Reprogramming. Cell Metab. 2020, 31,
250–266. [CrossRef] [PubMed]

20. Miranda Furtado, C.L.; Dos Santos Luciano, M.C.; Silva Santos, R.D.; Furtado, G.P.; Moraes, M.O.; Pessoa, C. Epidrugs: Targeting
epigenetic marks in cancer treatment. Epigenetics 2019, 14, 1164–1176. [CrossRef]

21. Jie, H.B.; Gildener-Leapman, N.; Li, J.; Srivastava, R.M.; Gibson, S.P.; Whiteside, T.L.; Ferris, R.L. Intratumoral regulatory T cells
upregulate immunosuppressive molecules in head and neck cancer patients. Br. J. Cancer 2013, 109, 2629–2635. [CrossRef]

22. Garcia-Gomez, A.; Rodriguez-Ubreva, J.; Ballestar, E. Epigenetic interplay between immune, stromal and cancer cells in the tumor
microenvironment. Clin. Immunol. 2018, 196, 64–71. [CrossRef] [PubMed]

23. Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [CrossRef] [PubMed]
24. Bertero, T.; Oldham, W.M.; Grasset, E.M.; Bourget, I.; Boulter, E.; Pisano, S.; Hofman, P.; Bellvert, F.; Meneguzzi, G.;

Bulavin, D.V.; et al. Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy.
Cell Metab. 2019, 29, 124–140. [CrossRef] [PubMed]

25. Garcia-Bermudez, J.; Baudrier, L.; La, K.; Zhu, X.G.; Fidelin, J.; Sviderskiy, V.O.; Papagiannakopoulos, T.; Molina, H.; Snuderl, M.;
Lewis, C.A. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol. 2018,
20, 775–781. [CrossRef] [PubMed]

26. Gaglio, D.; Soldati, C.; Vanoni, M.; Alberghina, L.; Chiaradonna, F. Glutamine deprivation induces abortive s-phase rescued by
deoxyribonucleotides in k-ras transformed fibroblasts. PLoS ONE 2009, 4, e4715. [CrossRef]

27. Yuneva, M.O.; Fan, T.W.; Allen, T.D.; Higashi, R.M.; Ferraris, D.V.; Tsukamoto, T.; Matés, J.M.; Alonso, F.J.; Wang, C.; Seo, Y.; et al.
The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012, 15, 157–170.
[CrossRef]

28. Digomann, D.; Linge, A. SLC3A2/CD98hc, autophagy and tumor radioresistance: A link confirmed. Autophagy 2019,
15, 1850–1851. [CrossRef]

29. Zhang, H.; Fu, L. The role of ALDH2 in tumorigenesis and tumor progression: Targeting ALDH2 as a potential cancer treatment.
Acta. Pharm. Sin. B. 2021, 11, 1400–1411. [CrossRef]

30. Zhang, H.; Xia, Y.; Wang, F.; Luo, M.; Yang, K.; Liang, S.; An, S.; Wu, S.; Yang, C.; Chen, D.; et al. Aldehyde Dehydrogenase 2
Mediates Alcohol-Induced Colorectal Cancer Immune Escape through Stabilizing PD-L1 Expression. Adv. Sci. 2021, 8, 2003404.
[CrossRef]

31. Hutson, S.M.; Lieth, E.; LaNoue, K.F. Function of leucine in excitatory neurotransmitter metabolism in the central nervous system.
J. Nutr. 2001, 131, 846s–850s. [CrossRef]

https://doi.org/10.1016/j.celrep.2014.04.045
https://doi.org/10.1007/s00018-015-2070-4
https://doi.org/10.1073/pnas.1002459107
https://www.ncbi.nlm.nih.gov/pubmed/20351271
https://doi.org/10.1016/j.molcel.2020.09.006
https://doi.org/10.1016/j.it.2015.02.007
https://doi.org/10.1016/j.ctrv.2020.101977
https://doi.org/10.1016/j.it.2019.09.008
https://doi.org/10.1038/cr.2016.157
https://doi.org/10.1182/blood.2019001034
https://www.ncbi.nlm.nih.gov/pubmed/31416801
https://doi.org/10.3389/fimmu.2020.01185
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://www.ncbi.nlm.nih.gov/pubmed/31350295
https://doi.org/10.1016/j.tips.2017.11.007
https://doi.org/10.3390/jcm10102111
https://doi.org/10.3389/fimmu.2020.01243
https://www.ncbi.nlm.nih.gov/pubmed/32733441
https://doi.org/10.1016/j.cmet.2020.01.006
https://www.ncbi.nlm.nih.gov/pubmed/32023446
https://doi.org/10.1080/15592294.2019.1640546
https://doi.org/10.1038/bjc.2013.645
https://doi.org/10.1016/j.clim.2018.02.013
https://www.ncbi.nlm.nih.gov/pubmed/29501540
https://doi.org/10.1016/j.cmet.2015.12.006
https://www.ncbi.nlm.nih.gov/pubmed/26771115
https://doi.org/10.1016/j.cmet.2018.09.012
https://www.ncbi.nlm.nih.gov/pubmed/30293773
https://doi.org/10.1038/s41556-018-0118-z
https://www.ncbi.nlm.nih.gov/pubmed/29941933
https://doi.org/10.1371/journal.pone.0004715
https://doi.org/10.1016/j.cmet.2011.12.015
https://doi.org/10.1080/15548627.2019.1639302
https://doi.org/10.1016/j.apsb.2021.02.008
https://doi.org/10.1002/advs.202003404
https://doi.org/10.1093/jn/131.3.846S


Int. J. Mol. Sci. 2023, 24, 11753 20 of 20

32. Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [CrossRef]
33. Du, H.; Pang, M.; Hou, X.; Yuan, S.; Sun, L. PLOD2 in cancer research. Biomed. Pharmacother. 2017, 90, 670–676. [CrossRef]

[PubMed]
34. Orhan, F.; Bhat, M.; Sandberg, K.; Ståhl, S.; Piehl, F.; Svensson, C.; Erhardt, S.; Schwieler, L. Tryptophan Metabolism Along

the Kynurenine Pathway Downstream of Toll-like Receptor Stimulation in Peripheral Monocytes. Scand. J. Immunol. 2016,
84, 262–271. [CrossRef] [PubMed]

35. Cho, Y.A.; Yoon, H.J.; Lee, J.I.; Hong, S.P.; Hong, S.D. Relationship between the expressions of PD-L1 and tumor-infiltrating
lymphocytes in oral squamous cell carcinoma. Oral. Oncol. 2011, 47, 1148–1153. [CrossRef]

36. Nguyen, N.; Bellile, E.; Thomas, D.; McHugh, J.; Rozek, L.; Virani, S.; Peterson, L.; Carey, T.E.; Walline, H.; Moyer, J.; et al. Tumor
infiltrating lymphocytes and survival in patients with head and neck squamous cell carcinoma. Head Neck 2016, 38, 1074–1084.
[CrossRef] [PubMed]

37. Mehla, K.; Singh, P.K. Metabolic Regulation of Macrophage Polarization in Cancer. Trends Cancer 2019, 5, 822–834. [CrossRef]
[PubMed]

38. Cho, J.H.; Lim, Y.C. Prognostic impact of regulatory T cell in head and neck squamous cell carcinoma: A systematic review and
meta-analysis. Oral Oncol. 2021, 112, 105084. [CrossRef]

39. Filaci, G.; Fravega, M.; Fenoglio, D.; Rizzi, M.; Negrini, S.; Viggiani, R.; Indiveri, F. Non-antigen specific CD8+ T suppressor
lymphocytes. Clin. Exp. Med. 2004, 4, 86–92. [CrossRef]

40. Filaci, G.; Rizzi, M.; Setti, M.; Fenoglio, D.; Fravega, M.; Basso, M.; Ansaldo, G.; Ceppa, P.; Borgonovo, G.; Murdaca, G.; et al.
Non-antigen-specific CD8(+) T suppressor lymphocytes in diseases characterized by chronic immune responses and inflammation.
Ann. N. Y. Acad. Sci. 2005, 1050, 115–123. [CrossRef]

41. Jia, Y.; Domenico, J.; Takeda, K.; Han, J.; Wang, M.; Armstrong, M.; Reisdorph, N.; O’Connor, B.P.; Lucas, J.J.; Gelfand, E.W.
Steroidogenic enzyme Cyp11a1 regulates Type 2 CD8+ T cell skewing in allergic lung disease. Proc. Natl. Acad. Sci. USA 2013,
110, 8152–8157. [CrossRef] [PubMed]

42. Wang, H.; Zhao, Q.; Zhang, Y.; Zhang, Q.; Zheng, Z.; Liu, S.; Liu, Z.; Meng, L.; Xin, Y.; Jiang, X. Immunotherapy Advances
in Locally Advanced and Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma and Its Relationship With Human
Papillomavirus. Front. Immunol. 2021, 12, 652054. [CrossRef] [PubMed]

43. Matoba, T.; Imai, M.; Ohkura, N.; Kawakita, D. Regulatory T cells expressing abundant CTLA-4 on the cell surface with a
proliferative gene profile are key features of human head and neck cancer. Int. J. Cancer. 2019, 144, 2811–2822. [CrossRef]

44. Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Lunceford, J.; Gause, C.; et al.
Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and
neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016, 17, 956–965. [CrossRef] [PubMed]

45. Rodriguez, C.P.; Wu, Q.V.; Voutsinas, J.; Fromm, J.R.; Jiang, X.; Pillarisetty, V.G. A Phase II Trial of Pembrolizumab and Vorinostat
in Recurrent Metastatic Head and Neck Squamous Cell Carcinomas and Salivary Gland Cancer. Clin. Cancer Res. 2020,
26, 837–845. [CrossRef]

46. Gallagher, S.J.; Shklovskaya, E.; Hersey, P. Epigenetic modulation in cancer immunotherapy. Curr. Opin. Pharmacol. 2017,
35, 48–56. [CrossRef]

47. Woods, D.M.; Sodré, A.L.; Villagra, A.; Sarnaik, A.; Sotomayor, E.M.; Weber, J. HDAC Inhibition Upregulates PD-1 Ligands in
Melanoma and Augments Immunotherapy with PD-1 Blockade. Cancer Immunol. Res. 2015, 3, 1375–1385. [CrossRef]

48. Wang, J.; Sanmamed, M.F.; Datar, I.; Su, T.T.; Ji, L.; Sun, J.; Chen, L.; Chen, Y.; Zhu, G.; Yin, W.; et al. Fibrinogen-like Protein 1 Is a
Major Immune Inhibitory Ligand of LAG-3. Cell 2019, 176, 334–347.e12. [CrossRef]

49. Chauvin, J.M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 2020, 8, e000957. [CrossRef]
50. Lupo, K.B.; Matosevic, S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J. Hematol.

Oncol. 2020, 13, 76. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s12276-020-00504-8
https://doi.org/10.1016/j.biopha.2017.04.023
https://www.ncbi.nlm.nih.gov/pubmed/28415047
https://doi.org/10.1111/sji.12479
https://www.ncbi.nlm.nih.gov/pubmed/27607184
https://doi.org/10.1016/j.oraloncology.2011.08.007
https://doi.org/10.1002/hed.24406
https://www.ncbi.nlm.nih.gov/pubmed/26879675
https://doi.org/10.1016/j.trecan.2019.10.007
https://www.ncbi.nlm.nih.gov/pubmed/31813459
https://doi.org/10.1016/j.oraloncology.2020.105084
https://doi.org/10.1007/s10238-004-0042-3
https://doi.org/10.1196/annals.1313.013
https://doi.org/10.1073/pnas.1216671110
https://www.ncbi.nlm.nih.gov/pubmed/23630275
https://doi.org/10.3389/fimmu.2021.652054
https://www.ncbi.nlm.nih.gov/pubmed/34305889
https://doi.org/10.1002/ijc.32024
https://doi.org/10.1016/S1470-2045(16)30066-3
https://www.ncbi.nlm.nih.gov/pubmed/27247226
https://doi.org/10.1158/1078-0432.CCR-19-2214
https://doi.org/10.1016/j.coph.2017.05.006
https://doi.org/10.1158/2326-6066.CIR-15-0077-T
https://doi.org/10.1016/j.cell.2018.11.010
https://doi.org/10.1136/jitc-2020-000957
https://doi.org/10.1186/s13045-020-00913-2

	Introduction 
	Results 
	Identification and Analysis of Differential Amino Acid Metabolism-Related Genes in Patients with Head and Neck Cancer 
	Establishment of Signature Related to Amino Acid Metabolism in Patients with Head and Neck Cancer 
	Gene Set Enrichment Analysis between High and Low Amino Acid Metabolism Index Groups 
	Landscape of Immune Status and Tumor Immune Microenvironment in Head and Neck Cancer 
	Analysis of Immune Microenvironment between High and Low Amino Acid Metabolism Index Groups 
	Potential Association between AMI and Clinical Indicators and Predictive Value of AMI for Response to Immunotherapy 
	Potential Mechanisms of the Association between Amino Acid Metabolism Index and Tumor Immunity 
	The Expression of Nine Amino-Acid-Related Genes and the Impact on Tumor Invasion 
	Epigenetic Drugs Affect the Expression Level of AMGs and Tumor Immunity In Vitro 

	Discussion 
	Materials and Methods 
	Transcriptome Data Preparation and Clinical Data Collection 
	Identification of Differentially Expressed Genes in Head and Neck Cancer 
	Collection and Identification of Differentially Expressed Amino Acid Metabolism-Related Genes 
	Screening of Survival-Related Amino Acid Metabolism Genes 
	Construction of Amino Acid Metabolism Index in Patients with Head and Neck Cancer and Verification of Its Clinical Significance 
	Function Enrichment Analysis between High and Low Amino Acid Metabolism Index Groups 
	Immune Landscape of Head and Neck Cancer and Significance of AMI to Tumor Immune Microenvironment and Immunotherapy 
	Potential Mechanisms of Amino Acid Metabolism Regulating Tumor Immune Microenvironment 
	Cell Culture and Agents 
	siRNA Transfection 
	RNA Isolation and Quantitative Real-Time PCR 
	The Expression of Nine AMGs in Cell Lines 
	Tumor Invasion Assay 
	Statistical Analysis 

	Conclusions 
	References

