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Abstract: LOXL2, a copper-dependent amine oxidase, has emerged as a promising therapeutic
target in hepatocellular carcinoma (HCC). Increased LOXL2 expression in HCC has been linked
with an aggressive phenotype and represents a poor prognostic factor. Here, we focus on the
mechanisms through which LOXL2 orchestrates multiple oncogenic functions in HCC development.
We performed a review of the current knowledge on the roles LOXL2 performs in the modulation of
the HCC tumor microenvironment, formation of premetastatic niches, and epithelial–mesenchymal
transition. We also highlighted the complex interplay between LOXL2 and hypoxia, angiogenesis,
and vasculogenic mimicry in HCC. At the end of the review, we summarize the current LOXL2
inhibitors and discuss their potential in HCC precision treatment.

Keywords: hepatocellular carcinoma (HCC); LOXL2; tumor microenvironment (TME); extracellular
matrix (ECM); LOXL2 inhibitors; target therapy

1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,
accounting for more than 80% of cases [1]. With incidence and mortality rates increasing
worldwide, it represents a global healthcare concern [1,2]. The underlying process in
the development of HCC is chronic liver damage leading to cirrhosis, which is most
often caused by chronic viral hepatitis (hepatitis B and C), alcohol abuse, and metabolic
dysfunction-associated steatotic liver disease (MASLD) [3]. Around 80% of HCC arises from
a cirrhotic liver, and among patients with cirrhosis of any etiology, one-third will develop
HCC [1,4,5]. The pathogenesis of HCC is a complex multistep process that usually starts
with liver injury and inflammation. Chronic liver inflammation triggers a fibrous process,
which over time can progress to cirrhosis and is characterized by the extensive disruption
of liver tissue architecture. Prolonged inflammation and cirrhosis create precancerous
settings resulting in the generation of dysplastic foci and dysplastic nodules, which further
accumulate genetic/epigenetic alterations, resulting in the development of hepatocellular
carcinoma [6].

The most appropriate therapeutic option is determined based on the TNM tumor stage,
degree of background liver damage, and the patient’s overall health [7]. The recommended
therapy for an early-stage HCC is surgical resection, liver transplantation, or radiofrequency
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ablation. Transarterial chemoembolization (TACE) and radiation therapy, alone or in com-
bination with systemic therapy, are used for intermediate-stage HCCs, while systemic
therapy (chemotherapy, molecular targeted therapy, immunotherapy, and gene therapy) is
the treatment of choice for advanced-stage HCCs [7,8]. Unfortunately, due to the asymp-
tomatic nature of early-stage HCC, more than 60% of cases are detected in the intermediate
or advanced stage, where curative therapeutic options are limited [9]. The backbone of
systemic therapy for HCC is sorafenib and other multi-kinase inhibitors [7,10–12]. More-
over, ramucirumab, a vascular endothelial growth factor (VEGF) inhibitor and immune
checkpoint inhibitors (nivolumab and pembrolizumab) are being increasingly used, either
separately or in combination [7,13]. Although the choices for therapeutic strategies in
advanced HCC are rapidly expanding, they provide a variable but still limited extension
of survival, cause a wide range of side effects, and ultimately, lead to the development of
tumor resistance, which is recognized as one of the biggest problems in the treatment of
HCC [10].

The multitude of underlying mechanisms that are responsible for the development of
resistance to therapy by HCC is not completely understood, although it has been shown
that tumor microenvironment (TME) plays an important role. The tumor microenviron-
ment has a crucial role in hepatocarcinogenesis and directly participates in the regulation of
liver fibrosis and tumor-progressive processes, such as epithelial–mesenchymal transition
(EMT), extracellular matrix (ECM) remodeling, migration, invasion, and metastasis [14].
Unraveling the complex interactions within the tumor microenvironment and targeting the
components of the TME, such as ECM remodeling enzymes, might serve as a valuable strat-
egy to improve the current therapeutic options and develop novel ones while attempting
to re-sensitize resistant tumors to existing therapeutic agents [10,15,16].

In the last fifteen years, lysyl oxidase-like 2 (LOXL2) has emerged as one of the major
mediators between tumor cells and TME. This research has implicated the involvement of
LOXL2 in every step of tumor progression [17–22]. The involvement of LOXL2 has been
reported in the regulation of cancer cell proliferation, epithelial–mesenchymal transition,
migration, extravasation, and creating premetastatic niches at distant sites, as reviewed by
Zhang et al. [23], Lin et al. [24], and Wen et al. [25]. The mechanisms through which LOXL2
affects tumor invasiveness can be used as a typical model of solid cancer progression
and spreading [26]. In addition, LOXL2 regulates tumor-induced angiogenesis [27–29]
and mediates the interaction between cancer cells and cancer-associated fibroblasts (CAF),
and macrophages [22,30,31]. Taken together, LOXL2 represents a multifunctional protein,
which is enrolled in almost every step of solid tumor propagation. In this review, we will
summarize the multiple roles of LOXL2 in the progression of HCC and its potential for
therapeutic targeting.

2. LOXL2 Introduction: LOX Family, Structure, and LOXL2 Function

LOXL2 is a secreted and copper-dependent amine oxidase that belongs to the lysyl
oxidase (LOX) family, which consists of five homologous members: LOX and LOX-like
l–4 (LOXL1–4) proteins [32–37]. The primary function of the LOX family enzymes is to
catalyze the cross-linking of elastin and collagen by oxidation, which is essential for main-
taining the rigidity, stability, and remodeling of the extracellular matrix (ECM) [38,39].
The human LOXL2 gene is positioned on chromosome 8p21-22 and encodes a 774 amino
acid protein [26,40]. Structurally, the LOXL2 protein contains a variable N-terminal region
and a highly conserved C-terminal region with catalytic activity (Figure 1). The catalytic
domains at the C-terminus are conserved among LOX family members and consist of the
copper-binding domain, lysyl tyrosine quinone (LTQ) element, which is required for cofac-
tor formation, and a cytokine receptor-like (CRL) domain [41,42]. The LOXL2 N-terminal
domain is more variable and includes a signal peptide and four scavenger receptor cysteine-
rich (SRCR) elements, which are responsible for protein–protein interactions [41,43].
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Figure 1. LOXL2 protein structure. Arrows indicate the variable N-terminal domain and conserved
C-terminal domain consists of several different functional domains, represented by boxes. Post-
translational modifications of LOXL2 were obtained using UniProt. Modified residues are represented
by blue triangles (phosphoserine at 601 and 722) and green triangle (2′,4′,5′-topaquinone at 689), while
N-linked glycans at N288, N455, and N644 are marked with yellow stars. Si, signal peptide; SRCR,
scavenger receptor cysteine-rich domain; Cu2+, copper binding domain; LTQ, lysine tyrosylquinone
cofactor residues; CF, cofactor formation; CRL, cytokine receptor-like domain; PTM, post-translational
modifications. The figure drawing is not-to-scale (for detailed LOXL2 structure, see Meier et al. [44]).

The existence of several different protein domains in the LOX family of enzymes
implies their multiple biological functions [26], in addition to maintaining the structure
of the ECM. The LOX and LOXL1–4 proteins are enrolled in other biological processes,
including embryogenesis and development [42,45,46]. Although LOXL2 is a secretory
protein, it is also distributed in the intracellular compartments and within the nucleus,
thereby can exert its intracellular and extracellular activities through various downstream
pathways (Figure 2a) [25]. LOXL2 participates in the structural maintenance of the ECM in
fibrotic tissues, such as in the liver tissue [47–49]. LOXL2-specific tissue expression among
various liver cell compartments can be estimated using multi-omics datasets, as presented
in Guilliams et al. [50], which detects the overall expression of LOXL2 in 0.7% of healthy
adult liver cells, dominantly in stromal and endothelial cells, as well as in hepatocytes and
cholangiocytes (Figure 2b) [51].

Figure 2. (a) LOXL2 protein interactome. Available on the String platform [52]. SNAI1, zinc finger
protein involved in the induction of the epithelial–mesenchymal transition (EMT); ELN, elastin;
FBLN5, fibulin-5, which is essential for elastic fiber formation; PCOLCE, procollagen C-endopeptidase
enhancer 1, which binds to the C-terminal propeptide of type I procollagen; TLL1, Tolloid-like protein
1, protease that processes procollagen C-propeptides; BMP1, bone morphogenetic protein 1, which
cleaves the C-terminal propeptides of procollagen I, II, and III. (b) LOXL2 spatial expression in healthy
liver cells. Available from the Liver Cell Atlas online dataset, Reprinted/adapted with permission
from Ref. [51]. 2023, Charlotte Scott and Martin Guilliams [51].

Altered expression and activation of LOX family members can affect the tissue mi-
croenvironment, which is implicated in many pathological conditions, including tissue
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fibrosis, atherosclerosis, and tumor development [53]. Previous studies have indicated that
LOXL2 expression is regulated at the transcriptional and post-transcriptional levels [54–56],
as well as by alternative splicing [57,58], and through an interaction with micro-RNA
molecules [59–61]. LOXL2 protein activity can also be regulated by post-translational
modifications, specifically glycosylation, while an aberrant level of glycosylation has been
linked to human malignancies [62]. N-glycosylation is typical in membrane and secretory
proteins, while the recombinant human LOXL2 protein, from human embryonic kidney
cells, is glycosylated at N288, N455, and N644 (N-linked glycans), which significantly
improves its stability and secretion (Figure 1) [63].

In recent years, an increasing number of studies have revealed the upregulation of
LOXL2 expression in various solid tumors [64]. However, the mechanism of LOXL2-
mediated tumor progression has mostly been investigated in breast cancer [64,65]. In-
terestingly, in breast cancer cell lines overexpressing LOXL2, two forms of LOXL2 were
generated: a non-glycosylated intracellular form (~75-kDa) and an extracellular form
(~100-kDa), which had been glycosylated at N455 and N644 [66]. Moreover, it has been
shown that breast carcinomas have a more prominent invasive ability, via the actions of
intracellular LOXL2, compared to the extracellular effects of LOXL2 in ECM remodeling,
thereby suggesting that LOXL2 has specific intra- and extracellular functions [64–66]. Tu-
mor progression induced by enhanced LOXL2 expression has been well documented in
various digestive system-related cancers, including HCC [23]; thus, its extra- and intra-
cellular functions should be further explored as a potential novel therapeutic target for
HCC.

3. LOXL2 Expression in HCC and Correlation with Clinical Parameters

LOXL2 is overexpressed in human HCC tissue compared to healthy liver tissue, at
both the mRNA and protein levels [17,24,67–72]. LOXL2 protein expression has been
shown to correlate to the amount of fibrosis in the tumor stroma and was more pronounced
in the cytoplasm of cancer cells directly adjacent to a fibrous stroma, compared to centrally
located cancer cells [71]. LOXL2 expression was positively correlated with the direct
invasion of adjacent liver tissue [17], increased frequent portal vein invasion, poor tumor
differentiation, and more advanced TNM stage [71]. Moreover, LOXL2 expression in
HCC patients, especially high-risk HCCs (HCC tumor size > 5 cm, HCCs with portal vein
invasion, poor differentiation, and TNM stage II or III), correlated with shorter overall
survival, disease-free survival, disease-specific survival, and extrahepatic recurrence-free
survival [24,69–71]. Hypoxia, chronic inflammation, and fibrosis have all been shown to
induce LOXL2 expression in HCC [15,17]. Additionally, in human HCC tissue samples, the
co-expression of LOXL2 and carbon anhydrase IX, which is a hypoxia-related biomarker,
showed a better correlation with prognostic parameters compared to LOXL2 alone [71].
Interestingly, LOXL2 levels were significantly higher in the serum of HCC patients than in
the serum of non-HCC patients [17], making LOXL2 a promising biomarker for HCC.

4. LOXL2 in the Regulation of Tumor Microenvironment and Formation of
Premetastatic Niches

TME in HCC is a complex and dynamic landscape that is composed of tumor cells
and various host elements, including cells and extracellular ECM components, which
surround and interact with tumor cells, as well as with each other in multiple ways. These
interactions dramatically alter every step of HCC progression, and its phenotype, and
modulate the treatment response [14]. Numerous host cellular components are involved
in shaping the TME of HCC, including activated hepatic stellate cells (HSCs), cancer-
associated fibroblasts (CAFs), cells of innate and acquired immunity, sinusoidal endothelial
cells, and bone marrow-derived cells (BMDCs) [73,74]. These cells interact with the ECM,
an abundant meshwork of proteins, carbohydrates, and water, which is far from the passive
network, yet a very dynamic environment involved in every step of tumor development
and progression [74–76].
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The ECM constituents can be broadly defined as fibers (collagen, elastic, and reticular)
and ground substances (proteoglycans, glycoproteins, and glycosaminoglycans). In the
healthy liver, the ECM represents a small compartment situated within the liver capsule,
portal tracts, around the central vein, and in the space of Disse. The ECM serves as an anchor
to the hepatocytes and stromal cells and influences their polarity, differentiation, shape, and
migration, thereby representing a reservoir of signaling molecules, and playing a role in
intercellular communication [77]. Due to an imbalance between excessive production and
decreased degradation of certain components, the ECM undergoes profound remodeling
during HCC development and progression [16,77].

The most important factors determining the specificity of the HCC TME are inflamma-
tion, hypoxia with vascular remodeling, and fibrosis [15,73,74]. HCC is a prototype of an
inflammation-associated carcinoma, where by around 90% of HCCs arise in the settings of
chronic inflammation caused by HBV and HCV, or MASLD [73,78]. Hypoxia, described in
more detail later in this review, has been traditionally reported as one of the typical features
of HCC [79]. As previously mentioned, more than 80% of HCC arises in the settings of
pronounced fibrosis or cirrhosis, which develop as a hepatic response to chronic liver injury
and significantly influence the TME [1,4,5]. The most abundant ECM component in the
fibrotic or cirrhotic liver is collagen type I, which is mainly synthesized by activated HSCs
and CAFs, although other ECM components are becoming increasingly recognized in this
process. Thus, numerous studies involving HCC cell lines and animal models have shown
that chronic inflammation (induced by activating TGF-β/SMAD4 pathway), hypoxia (dom-
inantly via HIF induction but also through the induction of TGF-β), and stiff fibrous ECM
(via integrin/JNK/c-JUN pathway) in the HCC microenvironment can upregulate LOXL2
levels (Scheme 1) [17,80].

Scheme 1. Interaction with HCC tumor microenvironment and roles in HCC progression. ECM,
extracellular matrix; EMT, epithelial–mesenchymal transition; VM, vasculogenic mimicry; PMN,
premetastatic niches.

Secreted LOXL2 catalyzes covalent cross-linking of collagen, which results in the for-
mation of thick collagen fibers [17]. The increased deposition of collagen fibers and LOXL2-
mediated collagen cross-linking results in a further increase in ECM stiffness, which changes
the biochemical and biomechanical ECM properties and, as it has been shown in cell cul-
ture experiments, facilitates cancer cell migration and metastasis, epithelial–mesenchymal
transition, stemness, and proliferation of HCC cells [15,81–83], which all correlate to a poor
prognosis [84]. Additionally, it has been demonstrated that a LOXL2-mediated increase in
ECM stiffness impairs the efficacy of chemotherapeutics 5FU and sorafenib through a cell
adhesion-mediated drug resistance mechanism and by limiting drug delivery [15,83].

Periostin, a matricellular glycoprotein secreted mainly by activated HSCs, has emerged
as a marker of poor prognosis and increased metastatic potential in HCC [85–88]. Periostin
plays an important role in liver fibrosis and ECM stiffness by stimulating the cross-linking
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of collagen I and influencing both the density and diameter of the collagen fibers. Periostin
binds to BMP-1 and enhances its incorporation into the fibronectin matrix, which facilitates
pro-LOX cleavage and its activation, which leads to collagen cross-linking [89]. In vitro
studies and experiments based on mouse models have shown that periostin significantly
induces LOXL2 expression in HSCs, at the mRNA and protein levels [90]. Adding to
the complexity, periostin treatment induced the secretion of collagen type I, fibronectin,
and TGF-β in cultured HSCs. Periostin performs its function via integrin αvβ3 and
PI3K signaling, which leads to TGF-β-independent SMAD2/3 phosphorylation and the
induction of LOXL2 transcription.

In addition to regulating fibrosis, periostin also induces epithelial–mesenchymal
transition in hepatocytes [90], a process whereby LOXL2 plays an important role, which
is described further below. In addition to interacting with collagen type I and periostin,
LOXL2 also interacts with many other partners from matrisome; however, the significance
of these interactions and their role in HCC progression has yet to be investigated [91].

The migration of cancer cells, which underlies the local invasion and represents
the initial event in the metastatic cascade, is a complex multistep process. It involves
integrin-mediated mechano-signal transduction from components of the ECM to the actin
cytoskeleton, which results in cytoskeletal remodeling and the formation of lamellipodia or
invadosomes at the leading edge of cancer cells [77,92,93]. Sensing biomechanical ECM
properties includes the formation of focal adhesion complexes, which consist of clusters of
integrins, signaling proteins (such as talin, paxillin, and tensin), the activation of several
kinases, and ultimately, modified gene transcription [77]. It has been shown that LOXL2-
mediated collagen cross-linking enhanced focal adhesion signaling and the formation of
prominent and dynamic cell protrusions [14,16,94] in HCC cell lines. LOXL2 influences
actin remodeling, which is a prerequisite for the formation of dynamic protrusions and cell
migration, by inducing integrin activation and the activity of crucial components of the focal
adhesions, including FAK, Rho kinase ROCK, paxillin, and vinculin (Scheme 1) [15,17]. Ani-
mal experiments in vivo showed that LOXL2 enhanced infiltrative tumor growth, and thus,
stimulated local invasion and the formation of intrahepatic and distant metastases [17].

4.1. LOXL2 and Cancer-Associated Fibroblasts (CAFs)

One of the crucial components of the HCC tumor microenvironment is cancer-associated
fibroblasts (CAFs), which morphologically and phenotypically resemble myofibroblasts [95].
CAFs are most commonly derived from the hepatic stellate cells (HSCs) and to a lesser extent
from the resident tissue fibroblasts, mesenchymal stem cells, or endothelial cells [96]. The
relationship between CAFs and tumor cells has already been extensively studied. CAFs
promote HCC development, growth, angiogenesis, local invasion, and metastasis through
the secretion of numerous growth factors and cytokines, by interacting with other cellular
elements in the HCC tumor microenvironment, and through ECM remodeling [16,96,97]. On
the other hand, tumor cells secrete cytokines, such as TGF-β and PDGF, which stimulates the
transdifferentiation and activation of CAFs [16,97]. In chronic liver diseases, which precede
HCC development, the chronic damage of hepatocytes, its subsequent regenerative response,
and various inflammatory cytokines, all transform quiescent HSCs and fibroblasts into ac-
tivated myofibroblasts. Myofibroblasts synthesize numerous ECM components, including
collagen type I and growth factors, which leads to parenchyme reorganization, fibrosis, and
vascular remodeling [98–100]. Cell culture experiments have shown that CAFs upregulate
LOXL2 levels in HCC cells, thus, promoting their invasion and metastatic capacity [101].
In addition, studies using human HCC samples and cell culture experiments have shown
that the CAF-derived chemokine CCL5 can activate the HIF-1α/ZEB1 cascade and promote
metastatic spread [102]. As previously mentioned, HIF-1α is a potent inducer of LOXL2
expression [17]. On the other hand, some cell culture experiments have demonstrated that
HCC cells upregulate LOXL2 expression in CAFs by secreting various soluble mediators,
thus, creating a positive feedback loop in the HCC TME, which facilitates tumor invasion and
metastatic spread [101].
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4.2. LOXL2 and Tumor-Associated Macrophages (TAMs)

Adding further to the complexity of the HCC tumor microenvironment, cell culture
experiments showed that increased ECM stiffness induced the polarization of macrophages
towards the M2 phenotype and increased their LOXL2 expression. In the same study,
authors showed that the integrin β5–FAK–MEK1/2–ERK1/2 pathway mediated ECM stiff-
ness and induced HIF-1α upregulation, while HIF-1α further stimulated LOXL2 expression
in M2 polarized macrophages [31,67]. M2 macrophages phenotypically resemble tumor-
associated macrophages (most tumor-associated macrophages show M2 polarization). They
are also involved in the progression of HCC via the secretion of growth- and angiogenic
factors, ECM remodeling, and by inducing an immunosuppressive state [103,104]. A study
by Klepfish et al. supported these findings. This study showed that LOXL2 inhibition in
fibrotic liver disease led to the accumulation of reparative monocyte-derived macrophages,
which secrete matrix metalloproteinases (MMPs) and degrade fibrous collagen, thereby
paving the way to reverse liver fibrosis and many of its deleterious effects [105].

4.3. LOXL2 in the Formation of Premetastatic Niches (PNM)

Today it is known that before the metastatic spread has occurred, tumors actively
induce changes at distant sites, which leads to the formation of a permissive microenvi-
ronment and will facilitate the survival and proliferation of circulating tumor cells upon
arrival. These modified microenvironments are named premetastatic niches (PNM) [106].
The two most commonly described changes in the premetastatic niches are the recruitment
of bone marrow-derived cells (BMDC) and ECM remodeling. Cell culture experiments
showed that LOXL2 was secreted from HCC cells, which were stimulated by stiff TME, and
this further influenced the seeding, motility, and invasion of the BMDCs. Moreover, secreted
LOXL2-induced MMP9 and fibronectin expression in lung fibroblasts, which suggests it
plays a role in ECM remodeling (Scheme 1) [80]. The same research indicated AKT pathway
involvement in the LOXL2-induced upregulation of fibronectin in lung fibroblasts [80].
Secreted LOXL2-induced chemokine CXCL-12 (also called stromal cell-derived factor-1)
expression in lung fibroblasts, there by promoting the recruitment of endothelial progenitor
cells, chemotaxis of inflammatory and circulating cancer cells, and their proliferation and
survival [107]. The number of HCC cells that adhered to the LOXL2-exposed lung fibrob-
lasts was significantly higher than in those without LOXL2 exposure, further indicating
the role of LOXL2 in the seeding of circulating cancer cells in the premetastatic niches [80].
Experiments conducted in vivo have revealed that mice bearing HCC tumors with LOXL2
inhibition demonstrate a significantly reduced frequency of lung metastases [17,108]. Fur-
thermore, mice with HCC tumors with LOXL2 inhibition showed a significant reduction
in collagen cross-linking and BMDCs infiltration in the lungs, all of which indicates the
important role of LOXL2 in the formation of the premetastatic niches [17,108,109].

5. LOXL2 Role in Epithelial–Mesenchymal Transition

Another important event in the metastatic spread of carcinomas is the process of the
epithelial–mesenchymal transition, whereby the cell, either partially or completely, acquires
a mesenchymal phenotype, which allows for cell migration. This further facilitates the
detachment of cancer cells from the tissue of origin and its invasion through surrounding tis-
sues, intravasation and extravasation, and dissemination to distant sites [110,111]. Previous
studies have demonstrated the relationship between LOXL2 intracellular activities and the
induction of the epithelial–mesenchymal transition in different tumor types [112–114]. The
epithelial–mesenchymal transition usually starts with the downregulation of E-cadherin
expression [115]. It is important to note that the Snail transcription factor is one of the direct
E-cadherin repressors, and its elevated expression has been detected in many invasive
carcinomas [116]. The mechanism responsible for LOXL2-induced epithelial–mesenchymal
transition includes the inhibition of E-cadherin expression via interaction with the Snail
transcription factor (Scheme 1) [116]. At first, the study by Peinado et al. [116] revealed that
the amine oxidase activity of LOXL2 regulates Snail stability, and subsequently inhibits the
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expression of E-cadherin. However, further analysis showed that LOXL2 point mutants
with inactivated catalytic activity also induced epithelial–mesenchymal transition by physi-
cally interacting with Snail1 [117]. Park et al. [108] revealed that the FoxM1b transcription
factor, which plays an important role in HCC progression, increases LOXL2 expression
through directly binding to the promoter of the LOXL2 gene, which consequently activates
the AKT–Snail1 pathway and triggers epithelial–mesenchymal transition in mouse-derived
HCC cell lines. This process boosts liver fibrosis and HCC metastasis in vivo. In addition, a
previous study on human HCC samples confirmed a significant correlation between LOXL2
expression and the epithelial-mesenchymal transition status measured by the vimentin to
E-cadherin ratio [118].

6. LOXL2 and Hypoxia, Angiogenesis, and Vasculogenic Mimicry

Hypoxia is a frequent characteristic of the tumor microenvironment in solid tumors, in-
cluding HCC [79]. Moreover, standard palliative HCC treatments impair afferent blood flow
and suppress cancer growth, simultaneously creating a hypoxic microenvironment [17].
Hypoxic conditions trigger activation of the hypoxia-inducible factor, HIF-1α, which acts as
a transcription activator of numerous genes, including LOXL2, by binding to the hypoxia-
responsive element (HRE) within the LOXL2 promoter (Scheme 1) [119,120]. In experiments
using human HCC cell lines, Wong et al. demonstrated that HIF-1α enhanced LOXL2
expression both directly and indirectly via the TGF–β/SMAD4 pathway [17]. Moreover,
Tse et al. [121] studied the interaction between the HBV viral oncoprotein HBx with its
transactivator activity and HIF-1α in mice HCC lines, and the results revealed that HBx
overexpression induces HIF-1α stabilization, which further activates LOXL2 expression
and HCC metastatic spread in transgenic HBx mice. Results published by Fan et al. [122]
showed that LOXL2 also acts as an activator of HIF-1α expression in HCC cell lines, through
the Snail–FBP1 pathway. Collectively, these findings indicate the significant role of LOXL2
in HCC progression induced by hypoxia.

HCC represents one of the most vascularized solid tumors, which is one of the main
features of highly malignant tumors [123,124]. Hypoxic conditions in the TME induce de
novo vascularization or angiogenesis, which additionally enhances tumor growth, invasion,
and metastatic spread (Scheme 1) [125]. VEGF is the promoter of classical tumor angiogen-
esis and its expression can be regulated by LOXL2 via the PDGFRβ/Akt axis [126]. It has
been shown that extracellular LOXL2 inhibition in tumor xenografts significantly reduces
VEGF-A and CXCL12 signaling [127]. CXCL12 acts synergistically with VEGF in promoting
the migration and proliferation of endothelial cells [128]. The standard management of ad-
vanced HCC using first-line antiangiogenic agents (sorafenib, lenvatinib, and regorafenib)
represents a promising treatment approach, although the patient’s response can be unsatis-
factory [129–131]. Antiangiogenic therapies further cause oxygen and nutrient deprivation
within HCC tissue and may induce an alternative method of tumor neovascularization
called vasculogenic mimicry [132]. Vasculogenic mimicry is characterized by the formation
of vessels lined by tumor cells and supported by ECM elements [133]. In HCC, vasculogenic
mimicry is associated with tumor aggressiveness and poor clinical outcome [134]. Recent
studies provide evidence that LOXL2 is also involved in vasculogenic mimicry during the
progression of HCC [29,67]. Wang et al. [67] investigated the mechanisms underlying the
enhanced levels of LOXL2 in a hypoxic TME of HCC cells and noted that the activation of
LOXL2 by HIF-1α also promoted vasculogenic mimicry, which helped HCC progression.
Further in vitro and in vivo analysis of vasculogenic mimicry in HCC revealed that LOXL2
induces vasculogenic mimicry and the metastatic spread of the tumor by upregulating
Snail1 and VE-cadherin [29]. A better understanding of LOXL2-mediated vasculogenic
mimicry may enable the development of a new treatment strategy, which could compensate
for the side effects of classical antiangiogenic drugs used in HCC treatment. In the study
by Li et al., from 2022, the authors demonstrated that the knockdown of LOXL2 effectively
inhibited the expression of the anti-apoptosis proteins BIRC3 and MDM2 and induced cell
apoptosis and cell cycle arrest in HCC cell lines [135]. However, further research is needed
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to fully understand the complexities of the LOXL2-mediated apoptosis pathways and their
implications in HCC [29,67,123–135].

7. LOXL2 and micro-RNAs in HCC

Recent studies have revealed that micro-RNAs (miRs) may be differentially expressed
in HCC and that some of them function as negative epigenetic regulators of LOXL2,
thereby affecting the LOXL2 TME-mediated processes. Wong et al. demonstrated that
miR-26 and miR-29 suppress LOXL2 in HCC by directly binding to the 3′UTR of LOXL2
mRNA [17]. Specifically, miR29-a has been identified as a negative regulator of hypoxia-
responsive genes, such as HIF-1α, VEGFa, LOX, and LOXL2 in HCC cell lines and HCC
tissue functional studies [69,136]. Repression of miR-29a has been mediated by MYC; MYC
amplification represents one of the earliest events in HCC development [137,138]. Recent
bioinformatics analysis proposed hsa-miR-192-5p as a potential LOXL2 regulator in HCC;
however, more in vivo studies are required to clarify these interactions between LOXL2
and specific micro-RNAs in the pathogenesis of HCC [139].

8. LOXL2 as Potential Target for Treatment of HCC

The well-established treatment options for patients with HCC have limited clinical
efficacy in the late stages of HCC due to severe fibrosis and cirrhosis [140]. Therefore,
chemoresistant HCC cases require novel combined treatment strategies. Since LOXL2 is
unquestionably involved in almost every step of HCC progression and dissemination, this
protein fulfills conditions that are required for a potential target in developing molecular
anticancer therapy. Considering the LOXL2 protein structure, two approaches for targeting
this protein were considered in drug development studies. The first was based on the
fact that LOXL2 demands copper ions for enzyme activity, and the second was to target
the lysine tyrosylquinone region (LTQ), which possesses a cofactor binding function [141].
Designing highly selective LOXL2 inhibitors is promising and could be beneficial for
HCC patients with LOXL2 overexpression since the downregulation of LOXL2 expression
reduces tumor cell invasiveness and metastatic spread [142].

The first monoclonal LOXL2 antibody, AB0023, which specifically binds to the fourth SRCR
domain was developed in 2010 and has been effective in clinical studies (Table 1) [49,127,143]. Its
efficacy was demonstrated in both tumor xenografts as well as in liver fibrosis models [49,127].
On the other hand, simtuzumab, a humanized LOXL2 antibody (AB0024), has not achieved
satisfactory results in clinical trials for fibrotic diseases and several solid tumors [144–146]. The
lack of clinical effectiveness can be explained by the fact that specific antibody inhibitors probably
only deactivate extracellular LOXL2, while the intracellular functions of LOXL2 remain preserved
due to incomplete antibody internalization or the compensatory activity of other LOX family
members [25,82]. In the search for more selective LOXL2 inhibitors, most efforts have been
toward designing a small molecule inhibitor in order to increase specificity and efficacy, and to
minimize its side effects [141]. According to the data available on the PHAROS web interface for
exploring target/ligand interactions [147], a query for ”LOXL2” resulted in 227 active ligands
(ChEMBL compounds with an activity cutoff of <30 nM), although clinical trials that focus on
testing LOXL2 based-drugs for HCC are still lacking.

One of the most explored LOX inhibitors is β-aminopropionitrile (BAPN), a small irre-
versible inhibitor that blocks the catalytic activity of all LOX members and displays specific
affinity to LOXL2 [141,148]. Previous studies have shown significant tumor suppressive
effects by BAPN in several solid tumors and tumor-cell lines [149–153]. Moreover, some
studies demonstrated that BAPN affects the TME and impedes the interaction between
cancer-associated fibroblasts and gastric cancer cells, resulting in a reduction in the fre-
quency and size of the liver metastasis [154]. In HCC, BAPN inhibited tumor growth and
angiogenesis in vivo and hampered the migration and invasion of HCC cell lines [70,118].
According to the study by Liu et al. [155], BAPN also showed an ameliorative effect in
the CCl4-induced model of liver fibrosis. The first selective LOXL2 inhibitor, LOXL2-IN-1
hydrochloride, demonstrated potential for use in HCC treatment since it suppressed Snail1,
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HIF-1α, and VEGF, the main drivers of HCC progression, as mentioned above [24]. In re-
cent years, the second generation of small-molecular-weight haloallylamine-based LOXL2
inhibitors was explored, including PXS-5338, PXS-5382, and PXS-5878, which showed
promising results in inhibiting the catalytic activity of LOXL2 [156]. A dual LOXL2/LOXL3
inhibitor, PXS-5153A, was designed in 2019 by Schilter et al. [157] and also demonstrated
ameliorating effects and a significant improvement in liver fibrosis.

Table 1. LOXL2 inhibitors for HCC and liver fibrosis.

Type Agent Target References

monoclonal
antibody

AB0023 LOXL2 [46,121,122]
AB0024 LOXL2 [123–125]

small-molecule
inhibitor

BAPN LOX/LOXL1-4 [100,133,134]
LOXL2-IN-1 LOXL2 [122]

PXS-5338 LOXL2 [156]
PXS-5382 LOXL2 [156]
PXS-5878 LOXL2 [156]

PXS-5153A LOXL2/LOXL3 [157]

(2-chloropyridin-4-yl)
methenamine LOXL2 [158]

BAPN, beta-aminopropionitrile; PXS, (2S)-propane-1,2-diyl dihexadecanoate.

Currently, the most promising results on the potential utility of LOXL2 inhibitors in
HCC treatment have been published by Gong et al. [15]. The authors demonstrated that
a highly selective LOXL2 inhibitor, namely (2-chloropyridin-4-yl) methenamine [158], in
combination with 5FU and sorafenib treatment, significantly decreased the tumor size in a
mouse model study. Moreover, HCC cells treated with this agent showed a significantly
better response to 5FU and sorafenib treatment [15]. These results suggest that LOXL2
inhibition has the potential to be more successful in patients with HCC in late fibrotic stages
with the concomitant application of 5FU and sorafenib. However, these observations in
animal studies need to be validated in further clinical studies.

9. Conclusions

Although treatment strategies for HCC are continuously developing, the treatment of
intermediate- and advanced-stage HCC remains a major clinical challenge. This indicates the
need for novel molecular therapeutic targets. Data summarized in this review emphasize
the multiple roles of LOXL2 in crucial processes involved in HCC progression: remodeling
of the HCC TME, stimulating the migration of cancer cells, and therefore, local invasion,
the formation of premetastatic niches and metastasis, epithelial–mesenchymal transition,
angiogenesis, and vasculogenic mimicry. All these features make LOXL2 an attractive potential
target for innovative therapy design. Further research on clinical–pharmacological solutions
of LOXL2-based therapy is warranted. More comprehensive analyses are needed to establish
the role of other LOX family members and mutual interactions among the LOX members in
the HCC pathogenesis. Targeting LOXL2 must be approached from the perspective of the
matrisome, as a whole. In other words, detailed knowledge of multiple LOXL2 interactions
with various tumor microenvironment components in HCC and other malignancies, as well
as in healthy tissues, is necessary to understand the many effects resulting from LOXL2
inhibition. In conclusion, the development of a highly selective LOXL2 inhibitor compatible
with the concomitant application of standard HCC chemotherapy might represent a future
direction for a personalized treatment strategy for HCC.
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