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Abstract: Psoriasis is a chronic inflammatory skin disease characterized by cutaneous eruptions and
pruritus. Because the genetic backgrounds of psoriasis are only partially revealed, an integrative
and rigorous study is necessary. We conducted a transcriptome-wide association study (TWAS)
with the new Genotype-Tissue Expression version 8 reference panels, including some tissue and
multi-tissue panels that were not used previously. We performed tissue-specific heritability analyses
on genome-wide association study data to prioritize the tissue panels for TWAS analysis. TWAS and
colocalization (COLOC) analyses were performed with eight tissues from the single-tissue panels
and the multi-tissue panels of context-specific genetics (CONTENT) to increase tissue specificity
and statistical power. From TWAS, we identified the significant associations of 101 genes in the
single-tissue panels and 64 genes in the multi-tissue panels, of which 26 genes were replicated in the
COLOC. Functional annotation and network analyses identified that the genes were associated with
psoriasis and /or immune responses. We also suggested drug candidates that interact with jointly
significant genes through a conditional and joint analysis. Together, our findings may contribute to
revealing the underlying genetic mechanisms and provide new insights into treatments for psoriasis.

Keywords: psoriasis; transcriptome-wide association study (TWAS); colocalization; protein—protein
network; drug candidates

1. Introduction

Psoriasis is an immune-related disease that is accompanied by chronic inflammation
of the skin [1,2]. Psoriasis affects approximately 2—4% of the global population, and the
number is increasing [3-5]. Psoriasis is characterized by itchiness, soreness, rashes, and pain
in skin lesions [6,7]. Although its etiology has not been clearly determined, multiple factors,
including infection, the external environment, and genetic backgrounds, are expected to
play important roles in the pathogenesis [6,8,9]. Therefore, an integrative approach is
required to identify putative therapeutic targets and druggable molecules for psoriasis
prevention and treatment.

Several studies have been conducted over the past decades to identify the psoriasis-
causal genes [10-13]. Genes encoding late cornified envelope (LCE) proteins that function
as barriers have been suggested as risk factors for psoriasis in population-level genome-
wide association studies (GWAS) and functional studies [12,14,15]. In addition, the genes
encoding proteins involved in the nuclear factor kB (NFkB) signaling pathway, including
interleukin 12B (IL12B), IL23A, and tyrosine kinase 2 (TYK2), have also been reported as
susceptibility genes for psoriasis [16-18].

GWAS has the advantage of using large-scale data compared with previous methods,
but there is a limitation in interpreting the biological functions of variants existing in
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non-coding regions. To address this issue, a transcriptome-wide association study (TWAS)
using gene expression imputation has been suggested [19]. TWAS predicts the level of
gene expression in the phenotype by calculating the association with the genotype using
the expression quantitative trait loci (eQTL) panels. Recently, multi-tissue eQTL panels,
including context-specific genetics (CONTENT) models and a unified test for molecular sig-
natures (UTMOST), combining tissue-shared genetic features in gene expression regulation,
have shown enhanced statistical power in TWAS [20,21]. Considering that TWAS has suc-
cessfully provided new insights into the pathogenesis of various diseases and prioritized
causal genes, it is one of the cutting-edge approaches for investigating the triangulated
mechanisms among genetic variants, gene expressions, and phenotypes [22-25].

Herein, we conducted TWAS for psoriasis using the publicly accessible GWAS sum-
mary statistics data from European ancestry. GWAS summary statistics data from the
GWAS Catalog (GCST90014456) was used to identify tissues associated with psoriasis
using the linkage disequilibrium score-specifically expressed genes (LDSC-SEG) analy-
sis [26,27]. With respect to the tissue prioritization result from LDSC-SEG, we selected eight
representative tissue panels (whole blood, sun-exposed skin, not-sun-exposed skin, spleen,
transformed fibroblasts, EBV-transformed lymphocytes, esophagus mucosa, and stom-
ach) in Genotype-Tissue Expression (GTEx) version 8. By estimating the gene expression
changes driven by genetic variants using TWAS, colocalization (COLOC), and CONTENT
analyses, 133 significantly associated genes with psoriasis were identified. To verify robust
psoriasis markers, we performed a conditional and joint analysis as a downstream analysis.
Functional annotation and network analyses were conducted to interpret the biological
mechanisms of psoriasis. Finally, drug candidates that can be used as the treatment options
for psoriasis were derived by confirming the gene—drug interactions. The overall workflow
of our study is depicted in Figure 1.
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Figure 1. Workflow of the overall study. The data obtained from the GWAS catalog (GCST90014456)
were used, and eight tissues were selected through the tissue prioritization process. TWAS, COLOC,
and CONTENT analyses were conducted with single- and multi-tissue panels. Downstream analyses
were conducted on 133 significant genes.

2. Results
2.1. Prioritizing Genetically Relevant Tissue for Psoriasis

TWAS enables the identification of gene-trait associations; however, appropriate tissue
selection is essential for obtaining accurate results [28]. To select and focus on the tissues
that are most related to psoriasis, we conducted the LDSC-SEG using a multi-tissue RNA
expression dataset and a multi-tissue chromatin modification (DNase hypersensitivity,
histone acetylation, and histone methylation) dataset [27]. The LDSC-SEG was developed
by Finucane et al. as a tool for identifying disease-relevant tissues [27]. They combined
the GTEx dataset [29] and the Franke group’s dataset [30,31], which were classified into
nine major categories (adipose, blood /immune, cardiovascular, central nervous system,
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digestive, liver, musculoskeletal /connective, pancreas, and “other”) that could be distin-
guished as multi-tissue RNA expression. Furthermore, this analysis using a multi-tissue
RNA gene expression dataset as a reference LD score suggests that three (blood /immune,
digestive, and “other”) out of nine categories have significant associations with psoriasis
(false discovery rate (FDR) < 0.05) (Figure 2). Because chromatin modification affects RNA
expression, additional analyses were performed using the chromatin modification dataset
to verify the results. Similar results were obtained when using the multi-tissue chromatin
modification dataset as a reference LD score (Supplementary Figure S1). Female-specific
tissues, such as the vulva and cervix uteri, were identified as being significantly relevant to
psoriasis, while male-specific tissues were not. Because it was reported that the prevalence
of psoriasis was not gender-specific, we excluded female-specific tissues to prevent unde-
sirable gender bias [32-34]. Combining these results, we finally selected eight tissue panels
(whole blood, sun-exposed skin, not-sun-exposed skin, spleen, transformed fibroblasts,
EBV-transformed lymphocytes, esophagus mucosa, and stomach) from the three categories
and the GTEx version 8 for subsequent analyses.
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Figure 2. Tissue prioritization using the LDSC-SEG. A scatter plot depicting the tissue prioritization
via the LDSC-SEG. GTEx data [29] and Franke group’s data [30,31] were divided into nine big
categories (scarlet: adipose; mustard: blood/immune; yellow green: cardiovascular; green: central
nervous system; blue green: digestive; turquoise: liver; light blue: musculoskeletal / connective; pink:
pancreas; and lilac: “other”) [27]. The Y-axis denotes —log(p-value) and the gray dotted line indicates
cutoff (FDR < 0.05).

2.2. Transcriptome-Wide Associations for Psoriasis

We conducted TWAS using functional summary-based imputation (FUSION) to iden-
tify susceptibility genes for psoriasis. FUSION is designed to identify associations between
GWAS phenotypes and gene expression values [19]. We used GWAS summary statistics
data (GCST90014456), including 329,533 European ancestry (5459 psoriasis patients and
324,074 healthy subjects), and eight tissue panels selected from the GTEx version 8. Among
a total of 60,579 associations, 101 genes in 44 loci were significantly associated after applying
the multiple testing correction with FDR (FDR < 0.05) (Figure 3A).



Int. . Mol. Sci. 2023, 24, 11717

40f17

A LC<1F
LCE3E~— ~LCE3C
LCE3C LCE3D
LCE4A Céorf3 TDH IL23A SSBPY  ,SPATA2
Ctorfes’. L§5§¢a' g g CTD220074 AF131216.5 SENPPTP12 KRG [ —cnpy2 AC1427127 LRRC25
SP140—,"—~SP110 TRAF3IP2-AST~ MTMR9 ATGH, PAN2_RP11-347119.8 CCDC116———!
3 - X 17 GALK1 > 'y
Fugp1 . NONOP2 G, ACODN9S02 sNRwpds  BP11-98167.25 ° R’BA 7 crsw! Kuzcz i S Ry 4 KB144003.14
KERP: § . Lt aall ke(iaa7i197 SETD3 3, . SLESAB

N
S > 2.5 vt

r
R
2" % )

&

TWAS-Z

SR
IR

¥ o e o 4 :’?s’upz
CTD.2260a173 *RP11-297Np4 “RMDN1T  HHEX, DGKZ /A

| . .
. 3 b4
psah e o ORHR Ysoery, GomMMDT

o~
* - TMEDBY > ~
SPRR2D PLCL2 ~ oo ZSWiM8, “EIF1AD “__POLIISYNAT"MED15
.l SHATC1 iR;:Ff’1175;(62 snHGTs SEC35G5 § PACélN}’ ~sTAT2 R11850A17.1 == e s
: o
SLC27A3 res VAW FUTIT zcaH1e "9:;;’;‘9776 o ICAMS' ELL 'KRT18P4
4LCE3A

poEs RNF145

| 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18 19 20 21 22
Chromosome Number

C Twas coLoc

0
B 1‘ (101 genes) (60 genes)
e
08 ,.’.‘-... 1 0.2
-r. - e
) ;
vf 0.6 'a = . /04 ,3 Non-sig
L - . LR
Q P = \ TWAS (101 genes)
04 g . _' "/ 06 COLOC (60 genes)
."'. - | = Both (54 genes)
» 08 \
0.2 by SRR : \ 26 /
S ] . \\\ y
- u . i) o ‘ 1 /
0 . \\..\___,_,
1 0.8 0.6 04 0.2 0 CONTENT
— PP0 +PP1+PP2 (64 genes)

Figure 3. Results of the TWAS and COLOC analyses. (A) A Manhattan plot showing the integrative
results of TWAS in eight tissues. The X-axis indicates the chromosome number where the gene is
located, while the Y-axis denotes the TWAS-Z-score of the TWAS signals. Genes that passed the cutoff
(FDR < 0.05) are highlighted in yellow. If a gene was simultaneously identified in several tissues,
the gene is marked with the highest absolute value. (B) A ternary plot of the COLOC results. Grey,
red, blue, and purple dots represent non-significant genes in any analyses, significantly associated
genes in TWAS, significantly colocalized genes in the COLOC, and significantly associated genes in
both TWAS and COLOC, respectively. (C) A Venn-diagram showing the number of significant genes
identified in TWAS, COLOC, and CONTENT.

The tissue panels with the highest and lowest number of significantly associated
genes were sun-exposed skin and EBV-transformed lymphocytes with 35 and seven genes,
respectively. In other tissue panels, relatively moderate numbers of genes were significantly
associated: 28 in not-sun-exposed skin and esophagus mucosa, 25 in stomach, 23 in whole
blood and transformed fibroblasts, and 16 in spleen. A long non-coding RNA RP11-
977G19.11 and a well-known psoriasis risk gene, interferon requlatory factor 5 (IRF5), were
identified in every tissue except for spleen and EBV-transformed lymphocytes, respectively.

In order to verify robust genetic markers for psoriasis, we then compared the TWAS
results with the COLOC method, which is another gene prioritization method based on
the Bayesian test. It calculates the posterior probability (PP) of Hypotheses 0—4 (H0-H4)
corresponding to the colocalization patterns of GWAS and eQTL signals, as described
in Section 4. We found 130 significant associations with 60 genes (PP3 + PP4 > 0.8 and
PP4/PP3 > 2) in eight different tissues, and the majority (81%) of them overlapped with the
TWAS signals (Figure 3B).

To increase the statistical power, additional TWAS analyses were performed utilizing
the CONTENT panel. The CONTENT panel, designed by Thompson et al., combines
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and integrates tissue-shared and tissue-specific associations [20]. Consequently, 64 genes
were identified (FDR < 0.05) using the CONTENT panels (Supplementary Figure S2).
As a result of the three gene prioritization methods (TWAS, COLOC, and CONTENT),
a total of 133 genes were identified, 26 of which were robust genetic markers identified
in all three methods (Figure 3C, Supplementary Table S1). We also identified five novel
psoriasis risk genes, methionine sulfoxide reductase A, elongation factor for RNA polymerase 11
(ELL), Myotubularin Related Protein 9 (MTMRY), leucine-rich repeat containing 25 (LRRC25),
and single-stranded-DNA-binding protein 4 (SSBP4), among 26 genes. At the single-cell
level of TWAS using the panels from the California Lupus Epidemiology Study (CLUE)
consortium, there was no significant association that passed the multiple testing correction
threshold (FDR < 0.05); however, MTMR9 and killer-cell lectin-like receptor C4 (KLRC4)
showed marginal significance (0.05 < FDR < 0.1) in CD8+ T-cell and natural killer cell
(NK cell), respectively (Supplementary Table S2). These results show that MTMRY, one of
the novel psoriasis risk genes, may be associated with CD8+ T cells, which are known to be
a key cell type in psoriasis [35,36].

2.3. Biological Enrichment of Genetic Signatures of Psoriasis

Functional annotation confirmed the biological mechanisms of the 133 previously
identified genes. Based on their TWAS-Z-score, genes were categorized as up- or down-
regulated genes. Four genes (methyl-CpG binding domain protein 2, REL proto-oncogene (REL),
LCE3D, and ring finger protein 145) were either up- or down-regulated depending on the
tissues. Due to the importance of direction of regulation, we excluded these four genes
from the list for this analysis only and grouped 129 genes into 74 up-regulated and 55 down-
regulated genes. The IL-23-mediated signaling pathway was the most significantly enriched
Gene Ontology Biological Process (GOBP) term with the up-regulated genes, consistent
with previous studies that IL-23 is a cytokine that plays an essential role in the onset
and progression of psoriasis (Figure 4A) [37,38]. Because psoriasis is an immune-related
disease, the cytotoxicity and differentiation of lymphocytes including NK cells and T cells
were also enriched (Figure 4A). A significant association with lymphocyte cytotoxicity
and differentiation was also identified in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway (Supplementary Figure S3). Similarly, down-regulated genes were highly
enriched in immune-related and viral-related terms (Figure 4B).

To identify tissue-specific or cross-tissue biological enrichments in psoriasis, functional
annotation for each tissue was performed. Among 348 statistically significant pathways,
113 pathways were enriched in multiple tissue panels, indicating that the genetic signature
of psoriasis is conserved across tissue panels, showing cross-tissue effects. Figure 4C
shows that 10 GOBP enrichments were significantly associated with at least four tissues.
In the case of EBV-transformed lymphocytes, a statistically significant result could not
be obtained due to an insufficient number of genes. As previous studies suggested that
skin and gut microbiota may be one of the causes of psoriasis, the responses to bacterial
muramyl dipeptide and peptidoglycan, were significantly enriched in all tissues [39,40].
The production of IL-12, which plays an important role in the pathogenesis of psoriasis,
showed a very strong association with two types of skin tissues (not-sun-exposed skin and
sun-exposed skin) and stomach [41]. Whole blood and spleen panels showed significant
associations in all enrichments. Functional annotation using the KEGG pathway identified
necroptosis and/or immune-related pathways associated with psoriasis in every tissue,
except for EBV-transformed lymphocytes (Supplementary Figure 54).

Additionally, a phenome-wide association study (PheWAS) was conducted to check
the pleiotropic effects of psoriasis-related genetic features. We identified phenotypes associ-
ated with 56 variants from 133 significant psoriasis genes using GWAS ATLAS and 21 pheno-
type domains passed the Bonferroni-corrected significance threshold (p-value < 1.05 x 107°)
(Supplementary Figure S5) [42]. In previous studies, the two most significantly identified
domains, immunological and metabolic, have been reported to be strongly associated with
psoriasis [43-46]. Moreover, previous studies have shown that psoriasis patients are also
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linked to skeletal, psychiatric, and gastrointestinal diseases, which were the third, fourth,
and fifth significantly associated domains [47-49]. Because most phenotypes from the
PheWAS results were already known to be highly associated with psoriasis, our results
reflected the general genetic landscape of psoriasis patients hardly being affected by rare
cases of comorbidity.
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Figure 4. Functional annotation results of significant genes. A bar plot depicting the top 10 enrich-
ments of (A) up-regulated and (B) down-regulated genes in GOBP. The X-axes denote -log(p-value)
and the color of the bars shows the combined scores from Enrichr. (C) A heatmap showing tissue-
specific enrichments. The color of each cell represents the p-value for each tissue.

2.4. Conditional and Joint Analysis of TWAS Signals

To rigorously assess the significance of TWAS signals from potential inflation by LD
contamination, a conditional and joint analysis was conducted on all TWAS significant
loci in eight tissues. Because the significance of genes is more important than the direction
of regulation, all 133 genes identified in Figure 3C were used in subsequent analyses.
After removing expected gene expressions, 75 of the 133 significant genes remained jointly
significant. In the case of IRF5, which was previously identified in the seven tissue panels
(whole blood, sun-exposed skin, not-sun-exposed skin, spleen, transformed fibroblasts,
esophagus mucosa, and stomach) in TWAS, the same seven tissues remained statistically
significant after the conditional and joint analysis. Meanwhile, for RP11-977G19.11, which
was previously identified in the seven tissue panels (whole blood, sun-exposed skin, not-
sun-exposed skin, EBV-transformed lymphocytes, transformed fibroblasts, esophagus
mucosa, and stomach) in TWAS, only two tissues (EBV-transformed lymphocytes and
stomach) were jointly significant. In addition, the number of genes for each tissue was
relatively reduced after conditioning in all tissues (Supplementary Table S3).

Among the five novel genes, three genes (ELL, LRRC25, and SSBP4) remained jointly
significant after the conditional and joint analysis (Figure 5, Table 1). While these three
genes were located at the same genomic locus (19p13.11), they showed different association
patterns across the tissues, which is called the tissue-specific regulatory effect. There are two
types of tissue-specific regulatory effects: tissue-specific and tissue-sharing effects. Tissue-
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specific effects indicate that genes are associated with a specific tissue, while tissue-sharing
effects indicate that genes are simultaneously associated with multiple tissues. Additionally,
we verified the potential positional effect of eQTLs of the three genes. Utilizing the eQTL
browser in the GTEx portal (https://gtexportal.org/ accessed on 28 June 2023), we found
that up to 670 potential eQTLs for the three genes reside at the 19p.13.11 locus of each tissue
(Supplementary Figure S6). Among them, less than half of the SNPs showed the statistically
significant effect as the eQTL, of which, by filtering them via conditional and joint analysis,
only seven SNPs were identified to mediate the tissue-specific gene expression regulation
associated with psoriasis (Supplementary Table 54).
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Figure 5. Result of conditional and joint analysis on the 19p13.11 locus. A regional association plot of
chromosome 19. Genes in orange colors directly on top of the graph indicate the jointly significant
genes that best explain the GWAS signals. Colored dots next to jointly significant genes suggest
tissue panels where the gene was identified. Grey bars indicate the location of genes on chromosome
19. The bottom graph shows a Manhattan plot of the GWAS signals. Black and blue dots indicate
GWAS-p-values before (black) and after (blue) conditioning on jointly significant genes.

Table 1. Tissue-specific results of novel genes from conditional and joint analysis.

Gene Z (TWAS)

P (TWAS)

Z (Joint)

P (Joint)

Tissue

Direction of Regulation

ELL
LRRC25

4.3
-5
—49
—4.8
-5.0
—-5.0
-5.2

SSBP4

1.6 x 10~°
58 x 1077
9.5 x 1077
1.6 x 1076
6.6 x 1077
6.4 x 1077
2.6 x 1077

4.3
-5
—49
—4.8
-5.0
—-5.0
-5.2

1.6 x 10~°
58 x 1077
9.5 x 1077
1.6 x 1076
6.6 x 1077
6.4 x 1077
2.6 x 1077

Whole blood
Spleen
Sun-exposed skin
Not-sun-exposed skin
Transformed fibroblasts
Esophagus mucosa
Stomach

Up-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated
Down-regulated

Down-regulated

To increase the reliability of the results, the tissues where three genes were jointly
significant were compared with the tissues where the three genes were mainly expressed in
a consensus dataset in the Human Protein Atlas (HPA) that integrated HPA RNA-seq data
and GTEx RNA-seq data (Supplementary Table S4) [50]. First, spleen-specific LRRC25 also
showed the highest expression in HPA spleen and ELL, that was specific in whole blood,
showed the second-highest expression in HPA bone marrow following testis. However,
SSBP4, which was jointly significant in the five tissues (sun-exposed skin, not-sun-exposed
skin, transformed fibroblasts, esophagus mucosa, and stomach) showed relatively low
tissue specificity in the HPA dataset. These results suggest that the expression patterns of
LRRC25 and ELL demonstrated tissue-specific effects and those of SSBP4 showed tissue-
sharing effects of psoriasis.
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2.5. Protein—Protein Interaction Network Analysis and Cluster Identification

We constructed an initial protein—protein interaction (PPI) network using the search
tool for the retrieval of interacting genes/proteins (STRING) (ver. 11.5) to investigate how
the 133 significant psoriasis genes identified by TWAS, COLOC, and CONTENT analyses
(Figure 3C) were systematically connected. We removed genes that were not linked to other
genes and networks with three or fewer nodes. Then, three networks made up of 51 genes
remained, and the result was visualized. Additional clustering analysis was performed
using the molecular complex detection (MCODE) plug-in that identifies highly interacting
modules in PPI networks, and four distinctive color-coded sub-clusters were identified
(Figure 6). As shown in Figure 6 by the red-lined rhombi, more than half of the genes across
the network were jointly significant genes from the conditional and joint analysis results.

‘ ?

oe®

@0@0000 & =
5
e LN

jointly significant gene

Figure 6. Network analysis using significant psoriasis genes identified via TWAS, COLOC, and
CONTENT. PPI was constructed using STRING and visualized using Cytoscape. Only networks
with more than three nodes are shown. The color of the nodes indicates the sub-clusters assigned
with the MCODE plug-in. Rhombic-shaped nodes with red outlines are jointly significant genes in at
least one tissue panel.

The sub-cluster 1, highlighted in orange, consisted of LCE1F, LCE2A, LCE3A, LCE3C,
LCE3D, LCE3E, LCE4A, LCE5A, and small proline-rich protein 2D (SPRR2D) that were
involved in the keratinization. Previous studies have shown that the LCE family and
SPRR2D are involved in the pathogenesis of psoriasis by forming a tough structure beneath
the cell membrane during the differentiation of keratinocytes [51,52]. The sub-cluster 2,
highlighted in green, was composed of endoplasmic reticulum aminopeptidase 1 (ERAP1),
TYK2, tumor necrosis factor receptor-associated factor 3 interacting protein 2 (TRAF3IP2),
caspase recruitment domain family member 14, and ring finger protein 114, which are
involved in the immune response pathways, including the Janus kinase-signal transducer
and activator of transcription (JAK-STAT) and NF«B signaling pathways. The JAK-STAT
and the NFkB signaling pathways are the well-known pathways associated with the
pathogenesis of psoriasis and are mainly used as therapeutic targets [53,54]. The yellow
sub-cluster 3 (ELL, SSBP4, and LRRC25) composed of three novel genes is located at the
genomic locus 19p.13.11, and the purple sub-cluster 4 containing signal recognition particle
54, ribosomal protein 526, and chromosome 18 open reading frame 32 is related to the
formation of the 40S subunit.

2.6. Potential Drug/Chemical Compound Candidates for Psoriasis

To derive drug candidates for psoriasis treatment, gene-drug interaction analysis
was performed. Using 75 jointly significant genes as a query set, we fed the data into the
Drug Gene Interaction (DGI) database and obtained 268 gene-drug interactions that scored
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greater than the interaction score of 0. Essentially, only a total of eight genes (KLRC1, TYK2,
galactokinase 1 (GALKT), N-sulfoglucosamine sulfohydrolase, TRAF3IP2, ERAP1, IL23A, and
DNA polymerase iota (POLI)) among 75 jointly significant genes had overlapping interactions
with 261 drugs, establishing 268 gene—drug interactions. Seven genes, excluding POLI,
were included in the top 10% of interactions based on the descending order of interaction
scores (Table 2). The highest interaction score was obtained between monalizumab and
KLRC1. Monalizumab is known to inhibit NKG2A, a receptor protein encoded by KLRC1,
whose expression is increased in lymphocytes of psoriasis patients [55-57]. Drugs that
interact with TYK2 or IL23A were JAK-STAT inhibitors or anti-inflammatory monoclonal
antibody drugs targeting TYK2 or IL23A, respectively.

Table 2. The top 10% of drug candidates interacting with jointly significant genes.

Gene Drug Candidate Interaction Score Gene Drug Candidate Interaction Score
KLRC1 Monalizumab 127.30 TRAF3IP2 Nevirapine 2.77
N-sulfoglucosamine Pyrantel pamoate 1.33
SGSH sulfohydrolase 63.65 GALK1 Tricetin 0.66
recombinant Suramin hexasodium 0.48
Guselkumab 31.83 Brepocitinib 1.03
Tildrakizumab 10.61 Tofacitinib 0.91
1234 Brazikumab 10.61 Peficitinib 0.82
Risankizumab 10.61 Delgocitinib 0.51
Briakinumab 7.07 TYK? Tofacitinib citrate 0.51
Ustekinumab 6.37 BMS-911543 0.51
Umbelliferone 5.30 Oclacitinib 0.51
Scopoletin 1.77 Solcitinib 0.51
ERAPI Esculetin 1.77 Cerdulatinib 0.46
Tosedostat 0.56 Upadacitinib 0.34

3. Discussion

TWAS is used to investigate the genetic effects of pathogenesis in various diseases.
It has the advantage of estimating the genotype-mediated gene expression changes at
the population level as it calculates expected gene expression values using large-scale
GWAS summary statistics data [58-61]. In the GWAS summary statistics data we used,
healthy subjects (n = 324,074) were approximately 60 times larger than psoriasis patients
(n = 5459), which could cause biased results. Therefore, we calculated the effective sample
size, and it seemed unlikely that case to control ratio biased the results. because the
genes can show distinct expression patterns in different tissues, it is important to select
the correct tissue for tissue-specific analysis [62]. We performed a tissue prioritization
process using LDSC-SEG analysis using a multi-tissue RNA expression dataset and a multi-
tissue chromatin modification dataset (Figure 2 and Supplementary Figure S1). Our tissue
prioritization results led us to include additional relevant tissues (spleen, EBV-transformed
lymphocytes, esophagus mucosa, and stomach) that were not used in the previous psoriasis
TWAS study [63]. Previous studies have demonstrated that the spleen, lymphocytes, and
gastrointestinal tract are associated with psoriasis [49,64—68]. Some of the marker genes
identified in this study may partially be due to the addition of these newly added tissue
panels. Using multi-tissue panels from the CONTENT, tissue-specific and tissue-shared
effects were also considered. It is very important to identify tissue-specific effects in
studying the pathogenesis of diseases; however, most genetic effects are shared across many
different tissues [69]. Especially, the TWAS results using two skin tissues (sun-exposed skin
and not-sun-exposed skin) showed high similarity (Pearson’s R = 0.88, p <2.2 x 10~16).
Therefore, it is necessary to integrate both tissue-specific and tissue-shared effects to identify
robust genetic markers of diseases.
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In addition to utilizing eight different tissue panels that are highly associated with
psoriasis, we performed three different gene prioritization methods (TWAS, COLOC, and
CONTENT). We believed that integrating the three approaches could complement the
deficiencies of each method and identified 133 significant genes for psoriasis (Figure 3). To
investigate the biological mechanisms of 133 significant genes, we grouped them into up-
and down-regulated genes and performed functional annotation (Figure 4). The genes were
enriched in signaling pathways related to cytokines, including interleukins and interferons,
which properly conformed with well-known pathogenic mechanisms of psoriasis [70-73].
Cytokines are also known to have significant effects on the severity of psoriasis lesions [70].
In tissue-specific enrichment analysis (Supplementary Figure 54), necroptosis was signif-
icantly identified in both sun-exposed and not-sun-exposed skin tissues. Necroptosis is
a regulated inflammatory mode of cell death that exhibits both aspects of necrosis and
apoptosis [74]. Necroptosis, programmed necrosis, is mediated by several cytokines and
receptor-interacting protein kinase 1 regulated by SPATA2, which is one of the signifi-
cant genes identified in all tissue prioritization analyses (Supplementary Table S1) [75-77].
Previously, several studies elucidated the association between necroptosis and psoriasis,
showing that inhibiting keratinocyte necroptosis can be an effective treatment strategy for
psoriatic inflammation [78-80].

As mentioned in Section 2, conditional and joint analysis is required to identify
rigorous causal genes by removing potential LD contamination-induced inflation. In this
study, we identified three novel genes associated with psoriasis after the conditional and
joint analysis (Figure 5 and Table 1): LRRC25, SSBP4, and ELL. We also identified seven
eQTLs showing statistically significant effects on the regulation of the tissue-specific gene
expression of these three genes (Supplementary Table S4). Previous studies have shown that
LRRC25 inhibits the NFkB signaling pathway and inflammatory responses by promoting the
degradation of the NF«B p65 subunit [81-83]. It is also known that the expression of LRRC25
is regulated by vitamin D, which reduces the progression of autoimmune diseases [84,85].
Because psoriasis patients in previous studies tended to have low vitamin D levels, increasing
vitamin D levels through consumption or synthesis by appropriate sun exposure may promote
the expression of LRRC25 and alleviate inflammatory responses [86,87]. Next, SSBP4 binds
to the transcriptional activation domain of interleukin 36 receptor antagonist (IL36RA) and
affects the activation of IL-36RA [88-90]. IL-36RA deactivates IL-1 and IL-36, which are
present in high levels in psoriasis patients [91,92]. Therefore, down-regulation of SSBP4
may lead to less activation of IL-36RA and cause and/or worsen psoriasis. Finally, ELL
binds to the genes involved with the proliferation of keratinocytes and stabilizes RNA
polymerase II to sustain cell proliferation [93]. Because one of the main characteristics of
psoriasis patients is keratinocyte proliferation, up-regulation of ELL can cause psoriasis [94].
These genes were located at the same genomic locus 19p.13.11 and were identified as
a single sub-cluster in PPI (Figure 6).

We identified the interactions between genes and drug/chemical compounds to derive
potential drug candidates for psoriasis (Table 2). There are drugs already in use for the
treatment or under study for the treatment of psoriasis/psoriatic arthritis, including tofaci-
tinib, peficitinib, and solcitinib [53,95,96]. These drugs are JAK-STAT inhibitors targeting
TYK?2, which belongs to the JAK family along with JAK1, JAK2, and JAK3 [97]. JAK-STAT
inhibitors are used to treat for skin diseases by blocking the function of immune-related
pathways [98]. Therefore, JAK-STAT inhibitors such as delgocitinib and oclacitinib, which
are not currently used for treating psoriasis, may also be used as therapeutic options for
psoriasis after a full-panel toxicological study. Esculetin, which interacts with ERAP1, is
extracted from Fraxinus rhynchophylla Hance and is used as a herbal medicine in Asian
countries (Table 2) [99,100]. It is known to have antioxidant, anti-inflammatory, and anti-
apoptotic activities, and in particular, it suppresses the NFkB signaling pathway [101-105].
A study using imiquimod-induced psoriasis-like mouse models showed that esculetin
alleviated the severity of skin lesions [106]. Therefore, it may have the potential to alleviate
psoriasis symptoms in humans. Although some anti-cancer drugs, including monalizumab,
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showed the highest interaction score, a very careful toxicological assessment is required to
be even considered as a psoriasis treatment option.

Although our study has contributed to comprehending the underlying mechanisms
of psoriasis, a couple of limitations exist. Because our study was conducted with only
computational analyses, experimental studies are required to validate significant genes.
Because we used GWAS summary statistics data consisting only of European ancestry, the
results of this study did not consider other races. In addition, we were unable to provide
the exact effect sizes at the individual-level for the risk factors identified in our study,
because we used population-level summary statistics. Lastly, some of the drug candidates
are currently in use or under study treatments for cancer and many anti-cancer drugs are
usually toxic to normal cells. Full-panel toxicological studies should be warranted to be
considered as treatment options for psoriasis [57,107]. Despite these limitations, we believe
that our study may contribute to revealing the underlying mechanisms of psoriasis by
utilizing eQTL panels that were not used in previous studies and integrating three different
gene prioritization methods (TWAS, COLOC, and CONTENT). In addition, we identified
three novel genes after the conditional and joint analysis and provided new insight into
treatments for psoriasis by suggesting potential drug candidates.

4. Materials and Methods
4.1. Data Collection and Pre-Processing

GWAS summary statistics data for TWAS analysis were retrieved from the GWAS
Catalog (GCST90014456) [26]. The data consisted of 329,533 Europeans that were made up
of 5459 psoriatic patients and 324,074 healthy subjects. Because the Z-score for each SNP
was not provided in the original GWAS summary statistics data, the Z-score was calculated

as follows:
_ log (Odd Ratio) Beta

"~ Standard Error  Standard Error

For subsequent analysis, the LDSC software (ver. 1.0.1) was used to convert the GWAS
summary statistics data to the LD score format [108]. The LD structure of the 1000 Genome
Project was used as a reference LD [109]. Pre-computed eQTL panels from the GTEx version
8 consortium were retrieved from the FUSION website (http://gusevlab.org/projects/
fusion/ accessed on 12 April 2022) [19,110].

4.2. LDSC-SEG

To prioritize tissue types for TWAS, a tissue-specific heritability enrichment analysis
was performed for GWAS summary statistics data using LD score regression applied to
the LDSC-SEG method [27]. Multi-tissue gene expression and multi-tissue chromatin
modification (DNase hypersensitivity, histone acetylation, and histone methylation) data
from the previous study by Finucane et al. were used for the analyses [27]. The tissue
panels that passed the threshold (coefficient p-value < 0.05) were selected for use in TWAS.

4.3. Transcriptome-Wide Association Analysis

The overall analysis pipeline for TWAS followed the contents of the FUSION (http:
/ /gusevlab.org/projects/fusion/ accessed on 12 April 2022), and the FDR threshold
(FDR < 0.05) was applied as the multiple testing correction method. The predicted gene ex-
pression changes were computed with linear-based models for the eight tissues (whole blood,
sun-exposed skin, not-sun-exposed skin, spleen, transformed fibroblasts, EBV-transformed
lymphocytes, esophagus mucosa, and stomach) that showed significant heritability for
GWAS signals in the previous step. The results of the best-performing model for each
gene were selected as expected changes in gene expression. To ensure the robustness of
TWAS signals, permutation tests using the FUSION were performed (number of permuta-
tions: 100,000).
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4.4. Colocalization

Because the FUSION performs TWAS based on the triangulated association among
genotype, gene expression, and phenotype, the associations may contain statistical bias
caused by LD contamination. Therefore, we validated the results from the FUSION with
Bayesian test-based gene prioritization method, COLOC [111]. There are five hypotheses
(HO, H1, H2, H3, and H4) regarding whether the variant has a significant association
between the GWAS signal and the eQTL, and the posterior probabilities for each hypothesis
are calculated [112,113]. Each hypothesis stands for the following circumstances [112].
HO: there is no causal variant; H1: there are only causal variants between genotype and phe-
notype; H2: there are only causal variants for eQTL; H3: phenotype and gene expressions
are driven by two independent causal variants; and H4: phenotype and gene expressions
share one causal variant. We set the threshold for the COLOC as PP3 + PP4 > 0.8 and
PP4/PP3 > 2 following previous studies [58,114].

4.5. Multi-Tissue Signals Using CONTENT

To obtain additional TWAS associations with increased statistical power, multi-context
panels from the CONTENT were utilized [20]. We used the CONTENT (full) panel that
showed the best results in the original paper by integrating the CONTENT (tissue-shared)
panel and the CONTENT (tissue-specific) panel. Eight tissue panels (whole blood, sun-
exposed skin, not-sun-exposed skin, spleen, transformed fibroblasts, EBV-transformed
lymphocytes, esophagus mucosa, and stomach) used in single-tissue analysis were utilized
to identify multi-tissue signals. Furthermore, single-cell RNA-sequencing data from the
CLUE were also used as eQTL panels to examine the associations with psoriasis at the
single-cell level.

4.6. Functional Annotation of Significant Psoriasis Genes

To identify the functional roles of psoriasis markers that were significantly identified at
least once in TWAS, COLOC, and CONTENT, functional annotation analysis was conducted.
Enrichr, a web-based tool for biological function or pathway analysis of gene lists, was
used for functional annotation [115]. We grouped the gene sets by panels or by up- and
down-regulated genes. The groups were subjected to enrichment analysis via GOBP and
KEGG pathways [116,117].

4.7. Conditional and Joint Analysis

Conditional and joint analysis using the post-process function of the FUSION was
performed to identify independent TWAS signals at the same loci in each panel. Genes
that passed the FDR threshold (FDR < 0.05) were subjected to conditioning the signals. To
identify robust genetic signatures, the p-values of TWAS signals were compared before and
after conditioning. Genes with a significant p-value even after conditioning were defined
as jointly significant genes.

4.8. Network Analysis with Clustering

To identify the systematic interconnections underlying psoriasis etiology, significant
genes identified in TWAS, COLOC, and CONTENT were used as nodes for network anal-
ysis. PPI networks were constructed using STRING (https:/ /string-db.org/, accessed
on 28 June 2023) (ver. 11.5) with medium confidence (interaction score > 0.4) [118]. The
networks were visualized using Cytoscape app (ver. 3.9.1), and only networks consist-
ing of more than three nodes were displayed [119]. Among the networks, the highly
interconnected regions (sub-clusters) were identified by MCODE plug-in (ver. 2.0.2) [120].

4.9. Gene-Drug Interaction Analysis

Gene—drug interaction analysis was conducted to identify potential drug candidates
for psoriasis using the DGI database. The DGI database provides integrated information on
gene—drug interactions and druggable genes from other publications, databases, or other
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web-based sources [121]. Drugs having an interaction score greater than 0 with jointly
significant genes were regarded as potential drug candidates for psoriasis.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms241411717 /s1.
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