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Abstract: The mechanisms underlying the transition from colitis-associated inflammation to carcino-
genesis and the cell origin of cancer formation are still unclear. The azoxymethane (AOM)/dextran
sodium sulfate (DSS) mouse model reproduces human colitis-associated colorectal cancer. To eluci-
date the mechanisms of cancer development and dynamics of the linker threonine-phosphorylated
Smad2/3 (pSmad2/3L-Thr)-positive cells, we explored the early stages of colitis-associated colorectal
cancer in AOM/DSS mice. The AOM/DSS mice were sacrificed at 4 to 6 weeks following AOM
administration. To analyze the initial lesions, immunofluorescence staining for the following markers
was performed: β-catenin, Ki67, CDK4, Sox9, Bmi1, cyclin D1, and pSmad2/3L-Thr. Micro-neoplastic
lesions were flat and unrecognizable, and the uni-cryptal ones were either open to the surfaces or
hidden within the mucosae. These neoplastic cells overexpressed β-catenin, Sox9, Ki67, and Cyclin
D1 and had large basophilic nuclei in the immature atypical cells. In both the lesions, pSmad2/3L-
Thr-positive cells were scattered and showed immunohistochemical co-localization with β-catenin,
CDK4, and Bmi1 but never with Ki67. More β-catenin-positive neoplastic cells of both lesions were
detected at the top compared to the base or center of the mucosae. We confirmed initial lesions in the
colitis-associated colorectal cancer model mice and observed results that suggest that pSmad2/3L-Thr
is a biomarker for tissue stem cells and cancer stem cells.

Keywords: mouse model; colitis-associated colorectal cancer; carcinogenesis; cancer stem cell; Smad

1. Introduction

Ulcerative colitis (UC) increases the risk of developing colorectal cancer (CRC) [1];
the number of UC-associated CRC patients is increasing worldwide as the number of UC
patients increases [2]. The risk of developing UC-associated CRC depends on the extent and
duration of inflammation of UC and genetic predisposition [3]. Nevertheless, the detailed
mechanism underlying the transition from UC-associated inflammation to carcinogenesis
remains to be elucidated.

Several animal models of colitis-associated CRC have been developed in rodents.
The induction of the best-studied mouse model of chemical-induced colitis-associated
CRC requires a single intraperitoneal injection of the colon carcinogen azoxymethane
(AOM) followed by colitis induction through the oral administration of dextran sodium
sulfate (DSS) [4,5]. This AOM/DSS mouse model recapitulates the course of human colitis-
associated CRC from inflammation to dysplasia and cancer, causing severe colitis with
weight loss, bloody diarrhea, and multiple colon tumors [5,6].

Recently, the cancer stem cell (CSC) theory has been accepted as an intriguing hy-
pothesis for cancer development and progression. The theory suggests that cancers are
composed of functionally heterogenous subsets of cells. In the CSC model, one small subset
of cancer cells has stem cell characteristics. These CSCs have both self-renewal capacity
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and the ability to differentiate into various cancer cells and play an important role in main-
taining the growth, invasion, metastasis, and recurrence capacity of malignant tumors [7,8].
Given that CSCs are relatively resistant to therapies developed to eradicate the non-CSC
component of cancer, the CSC model provides a theoretical basis for developing therapeutic
strategies targeting a minority of CSC populations and presents new perspectives on cancer
treatment [8].

Although CRC has been thoroughly studied, the cell of origin for carcinogenesis is
still poorly understood. Two hypotheses have been proposed: the bottom-up model and
the top-down model. The bottom-up model proposes that normal stem cells are the first
transformed cells, either directly giving rise to cancer cells or reprograming themselves
to acquire CSC behavior before inducing cancer [9,10]. However, histological evidence
hints at a top-down model of CRC development, in which CRC can also arise from late
progenitors or early differentiated cells. The top-down model is supported by the finding
that dysplastic cells are routinely found at the luminal surface of the crypts, while the cells
at the bases of these same crypts appear morphologically normal during the early stages
of carcinogenesis [11]. Additionally, aberrant crypt foci (ACF), putative precursor lesions
for CRC, in AOM (and DSS)-treated rodents are observed by superficial examination of
the luminal mucosa of methylene blue-stained colon preparations [12–14]. On the other
hand, Schwitalla et al. have suggested that these theories may not necessarily be mutually
exclusive and that tumor-initiating mutations can occur in both normal stem cells and
more differentiated cells as long as both cells dedifferentiate and regain stem cell properties
through chronic inflammatory signaling [15]. They have demonstrated that epithelial
non-stem cells can re-express stem cell markers and be converted into CSCs, providing an
additional explanation as to why UC patients are at increased risk of developing CRC.

Smad proteins are core mediators that transduce signals from transforming growth
factor (TGF)-β superfamily receptors to the nuclei. They are regulatory proteins composed
of conserved Mad homology (MH) 1, intermediate linker, and MH2 domains [16,17]. The
catalytic TGF-β type I receptor (TβRI) phosphorylates COOH-terminal serine (Ser) residues
of receptor-activated Smads, such as Smad2 and Smad3 [18]. Specific Ser or threonine (Thr)
residues within the linker are phosphorylated by Ras-related (proline-directed) kinases,
which consist of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase
(JNK), and cyclin-dependent kinase (CDK) 4 [19–22]. TβRI and Ras-related kinases, specifi-
cally phosphorylate Smad2 and Smad3, generate several phosphoisoforms: Smad2/3 are
phosphorylated at the COOH-terminal (pSmad2C and pSmad3C); Smad2/3 are phospho-
rylated at the linker (pSmad2L and pSmad3L); and Smad2/3 are phosphorylated at both
the C-terminal and linker (pSmad2C/L and pSmad3C/L) [22–25]. Phosphorylated Smad2
and Smad3 rapidly oligomerize with Smad4 and translocate to the nucleus, where they
regulate the transcription of the target genes [26].

In our previous study, we confirmed the specific expression of linker Thr-phosphorylated
Smad2/3 (pSmad2/3L-Thr) in mouse colon epithelial cells, suggesting that these cells are
colon epithelial stem-like cells [27]. Subsequently, by investigating the AOM/DSS mouse
model and examining the Smad2/3 phosphorylation profiles, we clarified that carcinogenic
pSmad3L-Ser signaling triggered by chronic colitis is a key early event in colitis-associated
CRC. Furthermore, the study supported the theory that pSmad2/3L-Thr immunostaining-
positive cells are CSCs [28]. In our most recent study, the AOM/DSS mice were sacrificed
10, 20, and 30 weeks following AOM administration [29]. In mice 10 or 20 weeks after
AOM administration, most colon tumors showed features of intramucosal adenocarcinoma.
In mice 30 weeks after AOM administration, the main lesions further increased in size,
and infiltration into the submucosa and vascular invasion, which are considered to be
characteristic of early metastatic lesions, were observed at a high rate.

Therefore, in this study, in order to analyze the mechanism of colitis-associated CRC
at the time of initial tumor (dysplasia) development, the lesions of AOM/DSS mice
4 to 6 weeks following the administration of AOM were observed in detail, and we in-
tended to confirm the roles of pSmad2/3L-Thr-positive cells as CSCs.
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2. Results
2.1. Immunofluorescence Staining for β-Catenin, Sox9, Ki67, Cyclin D1, or CDK4 and H&E
Staining in the Micro-Neoplastic Lesions of the AOM/DSS Mice

The micro-neoplastic lesions (less than 300 µm wide) were flat and not macroscopically
recognizable on the mucosal surface in the colons of the AOM/DSS mice 4 to 6 weeks
following the administration of AOM.

Immunostaining-positive cells of β-catenin (green; Figure 1A), Sox9 (red; Figure 1B),
Ki67 (green; Figure 1C), cyclin D1 (red; Figure 1D), or CDK4 (green; Figure 1E) were
observed in the micro-neoplastic lesions of the AOM/DSS mice using DAPI nuclear staining
(blue). After immunofluorescence staining, we stained the same sections with H&E and
confirmed the lesions and immunostaining-positive cells using a light microscope (right
panels in Figure 1).

Immunofluorescence staining for β-catenin showed positivity in the cell membrane of
the non-neoplastic epithelia. In the micro-neoplastic lesions, β-catenin-positive cells were
distributed throughout the lesions, and their expression was observed predominantly in
the cytoplasm and nucleus of the neoplastic cells (Figure 1A).

Sox9-positive cells were detected and confined around the crypt bases of the non-
neoplastic epithelia. In the micro-neoplastic lesions, Sox9-positive cells were diffusely
distributed throughout the lesions. Their expression was observed in the nucleus of the
non-neoplastic and neoplastic cells (Figure 1B).

Ki67-positive cells were detected and confined around the crypt bases of the non-
neoplastic epithelia. In the micro-neoplastic lesions, Ki67-positive cells were diffusely
scattered throughout the lesions. Their expression was observed in the nucleus of the
non-neoplastic and neoplastic cells (Figure 1C).

Immunofluorescence staining for cyclin D1 showed no positive cells in the non-
neoplastic epithelia. In the micro-neoplastic lesions, cyclin D1-positive cells were scattered
throughout the lesions, and their expression was observed in the nucleus of the neoplastic
cells (Figure 1D).

CDK4-positive cells were sparsely detected and confined around the crypt bases of the
non-neoplastic epithelia. In the micro-neoplastic lesions, CDK4-positive cells were sparsely
scattered in the lesions. Their expression was observed in the nucleus of the non-neoplastic
and neoplastic cells (Figure 1E).

The micro-neoplastic lesions showed characteristics of intramucosal adenocarcinoma.
The nuclei were enlarged, round, or ovoid, and the nucleoli were prominent; the lesions
had tubular structures, but nuclear polarity was significantly lost, with nuclei no longer
being oriented perpendicular to the basement membrane; there were numerous mitoses,
and goblet cells were almost absent (right panels in Figure 1).
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Figure 1. Immunofluorescence staining for (A) β-catenin (green), (B) Sox9 (red), (C) Ki67 (green), 

(D) cyclin D1 (red), and (E) CDK4 (green) in the micro-neoplastic lesions of the AOM/DSS mice. 

DAPI (blue) was used for nuclear staining. (A–E) In the right panels, the same sections were stained 

with hematoxylin and eosin after immunofluorescence staining and observed by light microscopy. 

Original magnification, ×200 (A–E). Scale bars: 300 µm (A–E). 
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positive cells using a light microscope (Figure 2D,H,L,P). 

Figure 1. Immunofluorescence staining for (A) β-catenin (green), (B) Sox9 (red), (C) Ki67 (green),
(D) cyclin D1 (red), and (E) CDK4 (green) in the micro-neoplastic lesions of the AOM/DSS mice.
DAPI (blue) was used for nuclear staining. (A–E) In the right panels, the same sections were stained
with hematoxylin and eosin after immunofluorescence staining and observed by light microscopy.
Original magnification, ×200 (A–E). Scale bars: 300 µm (A–E).
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2.2. Double Immunofluorescence Staining for pSmad2/3L-Thr with β-Catenin, Ki67, CDK4, or
Bmi1 and H&E Staining in the Micro-Neoplastic Lesions of the AOM/DSS Mice

Double immunofluorescence staining for pSmad2/3L-Thr (red; arrowheads in Figure 2)
with β-catenin (green; Figure 2B,C), Ki67 (green; Figure 2F,G), CDK4 (green; Figure 2J,K), or
Bmi1 (green; Figure 2N,O) were performed in the micro-neoplastic lesions of the AOM/DSS
mice using DAPI nuclear staining (blue). After immunofluorescence staining, we stained
the same sections with H&E and confirmed the lesions and immunostaining-positive cells
using a light microscope (Figure 2D,H,L,P).
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0.0001) or center (30.18 ± 4.81%; p < 0.0001) of the mucosae (Figure 3; n = 20). 

Figure 2. Double immunofluorescence staining for pSmad2/3L-Thr (red; arrowheads) with
(A–C) β-catenin (green), (E–G) Ki67 (green), (I–K) CDK4 (green), and (M–O) Bmi1 (green) in
the micro-neoplastic lesions of the AOM/DSS mice. DAPI (blue) was used for nuclear stain-
ing. (D,H,L,P) The same sections were stained with hematoxylin and eosin after immunofluores-
cence staining and observed via light microscopy. Original magnification, ×200 (A–P). Scale bars:
300 µm (A–P).

pSmad2/3L-Thr-positive cells were sparsely detected around the crypt bases of the
non-neoplastic epithelia. In the micro-neoplastic lesions, pSmad2/3L-Thr-positive cells
were sparsely scattered in the lesions. Their expression was observed in the cytoplasm and
nucleus of the non-neoplastic and neoplastic cells (Figure 2A,C,E,G,I,K,M,O).

In both the non-neoplastic and neoplastic cells, pSmad2/3L-Thr-positive cells showed
immunohistochemical co-localization with β-catenin (Figure 2C), CDK4 (Figure 2K), and
Bmi1 (Figure 2O) but never with Ki67 (Figure 2G).
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2.3. Locations of the Micro-Neoplastic Lesions in the AOM/DSS Mice within the Mucosae

After dividing the mucosae vertically into three sections of the same length, far more
β-catenin-positive neoplastic cells of the micro-neoplastic lesions in the AOM/DSS mice
were detected at the top of the mucosae (67.33 ± 5.50%) than at the base (2.14 ± 1.03%;
p < 0.0001) or center (30.18 ± 4.81%; p < 0.0001) of the mucosae (Figure 3; n = 20).
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Figure 3. Locations of the micro-neoplastic lesions in the AOM/DSS mice within the mucosae. Bars
represent the percentage of locations of the neoplastic cells at the base, center, and top of the mucosae,
respectively. Data are expressed as the mean ± standard error of the mean of 20 micro-neoplastic
lesions of the AOM/DSS mice. Results were compared using one-way analysis of variance followed
by Fisher’s protected least significant difference test (**** represents p < 0.0001).

2.4. Immunofluorescence Staining for β-Catenin and H&E Staining in the Uni-, Bi-, or Tri-Cryptal
Neoplastic and Micro-Neoplastic Lesions of the AOM/DSS Mice

Immunostaining-positive cells ofβ-catenin (green) were observed in the uni- (Figure 4A–F),
bi- (Figure 4G), or tri-cryptal (Figure 4H) neoplastic and micro-neoplastic (Figure 4I) le-
sions of the AOM/DSS mice using DAPI nuclear staining (blue). After immunofluores-
cence staining, we stained the same sections with H&E and confirmed the lesions and
immunostaining-positive cells using a light microscope (right panels in Figure 4). In the
serial sections, the same uni-cryptal neoplastic lesion of the AOM/DSS mice could be
completely observed from end to end (Figure 4A–E).

In the uni-, bi-, or tri-cryptal neoplastic and micro-neoplastic lesions, β-catenin-positive
cells were distributed throughout the lesions, and their expression was observed predomi-
nantly in the cytoplasm and nucleus of the neoplastic cells.
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Figure 4. Immunofluorescence staining for β-catenin (green) in the (A–F) uni-, (G) bi-, or (H) tri-
cryptal neoplastic and (I) micro-neoplastic lesions of the AOM/DSS mice. DAPI (blue) was used
for nuclear staining. (A–I) In the right panels, the same sections were stained with hematoxylin and
eosin after immunofluorescence staining and observed via light microscopy. (A–E) Serial sections of
the same lesion. Original magnification, ×200 (A–I). Scale bars: 100 µm (A–I).

2.5. Immunofluorescence Staining for β-Catenin, Sox9, Ki67, Cyclin D1, or CDK4 and H&E
Staining in the Uni-Cryptal Neoplastic Lesions of the AOM/DSS Mice

In the uni-cryptal neoplastic lesions of the colons of the AOM/DSS mice 4 to 6 weeks
following the administration of AOM, there were either those that opened on the mucosal
surfaces or those that were completely hidden within the mucosae without being exposed
on the surface.

Immunostaining-positive cells of β-catenin (green; Figure 5A), Sox9 (red; Figure 5B),
Ki67 (green; Figure 5C), cyclin D1 (red; Figure 5D), or CDK4 (green; Figure 5E) were
observed in the uni-cryptal neoplastic lesions of the AOM/DSS mice using DAPI nuclear
staining (blue). After immunofluorescence staining, we stained the same sections with
H&E and confirmed the lesions and immunostaining-positive cells using a light microscope
(right panels in Figure 5).
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Figure 5. Immunofluorescence staining for (A) β-catenin (green), (B) Sox9 (red), (C) Ki67 (green),
(D) cyclin D1 (red), and (E) CDK4 (green) in the uni-cryptal neoplastic lesions of the AOM/DSS mice.
DAPI (blue) was used for nuclear staining. (A–E) In the right panels, the same sections were stained
with hematoxylin and eosin after immunofluorescence staining and observed via light microscopy.
Original magnification, ×200 (A–E). Scale bars: 100 µm (A–E).
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In the uni-cryptal neoplastic lesions, β-catenin-positive cells (Figure 5A) and Sox9-
positive cells (Figure 5B) were distributed throughout the lesions, and their expression
was observed in the cytoplasm and nucleus and in the nucleus of the neoplastic cells,
respectively. Ki67-positive cells (Figure 5C) and cyclin D1-positive cells (Figure 5D) were
scattered throughout the lesions, and their expression was observed in the nucleus of
the neoplastic cells. CDK4-positive cells were sparsely scattered in the lesions, and their
expression was observed in the nucleus of the neoplastic cells (Figure 5E). These results
were precisely the same as those for the micro-neoplastic lesions of the AOM/DSS mice
(refer to Figure 1).

2.6. Double Immunofluorescence Staining for pSmad2/3L-Thr with β-Catenin, Ki67, CDK4, or
Bmi1 and H&E Staining in the Uni-Cryptal Neoplastic Lesions of the AOM/DSS Mice

Double immunofluorescence staining for pSmad2/3L-Thr (red; arrowheads in Figure 6)
with β-catenin (green; Figure 6B,C), Ki67 (green; Figure 6F,G), CDK4 (green; Figure 6J,K),
or Bmi1 (green; Figure 6N,O) was performed in the uni-cryptal neoplastic lesions of the
AOM/DSS mice using DAPI nuclear staining (blue). After immunofluorescence staining,
we stained the same sections with H&E and confirmed the lesions and immunostaining-
positive cells using a light microscope (Figure 6D,H,L,P).
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Figure 6. Double immunofluorescence staining for pSmad2/3L-Thr (red; arrowheads) with
(A–C) β-catenin (green), (E–G) Ki67 (green), (I–K) CDK4 (green), and (M–O) Bmi1 (green) in the
uni-cryptal neoplastic lesions of the AOM/DSS mice. DAPI (blue) was used for nuclear stain-
ing. (D,H,L,P) The same sections were stained with hematoxylin and eosin after immunofluores-
cence staining and observed via light microscopy. Original magnification, ×200 (A–P). Scale bars:
100 µm (A–P).
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pSmad2/3L-Thr-positive cells were sparsely detected around the crypt bases of the
non-neoplastic epithelia. In the uni-cryptal neoplastic lesions, pSmad2/3L-Thr-positive
cells were sparsely scattered in the lesions. Their expression was observed in the cytoplasm
and nucleus of the non-neoplastic and neoplastic cells (Figure 6A,C,E,G,I,K,M,O).

In both the non-neoplastic and neoplastic cells, pSmad2/3L-Thr-positive cells showed
immunohistochemical co-localization with β-catenin (Figure 6C), CDK4 (Figure 6K), and
Bmi1 (Figure 6O) but never with Ki67 (Figure 6G).

These results were precisely the same as those for the micro-neoplastic lesions of the
AOM/DSS mice (refer to Figure 2).

2.7. Locations of the Uni-Cryptal Neoplastic Lesions in the AOM/DSS Mice within the Mucosae

To confirm the locations of the uni-cryptal neoplastic lesions within the mucosae,
we analyzed those that could be observed completely from end to end on serial sections.
After dividing the mucosae vertically into three sections of the same length, far more β-
catenin-positive neoplastic cells of the uni-cryptal neoplastic lesions in the AOM/DSS mice
were detected at the top of the mucosae (62.49 ± 10.68%) than at the base (3.70 ± 3.70%;
p < 0.0001) or center (34.01 ± 8.78%; p < 0.05) of the mucosae (Figure 7; n = 10).
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Bars represent the percentage of locations of neoplastic cells at the base, center, and top of the mucosae,
respectively. Data are expressed as the mean± standard error of the mean of 10 uni-cryptal neoplastic
lesions of the AOM/DSS mice. Results were compared using one-way analysis of variance followed by
Fisher’s protected least significant difference test (* and **** represent p < 0.05 and p < 0.0001, respectively).

3. Discussion

Several animal models that resemble the characteristics of colitis-associated CRC have
been reported. The time-honored mouse model uses DSS. However, the development of
CRC in the DSS colitis model requires long-term exposure and the frequent administration
of DSS, and the incidence and multiplicity of induced neoplasms are low [30,31]. A
number of studies have shown that chronic or recurrent mucosal inflammation can cause
carcinogenesis through several proposed mechanisms, including the induction of genetic
mutations, increased proliferation, altered metabolism, and altered bacterial flora [3].
On the other hand, in the AOM/DSS mouse model, mice injected with a low dose of
AOM develop many neoplasms after relatively short-term DSS exposure. Therefore, the
AOM/DSS mouse model is suitable for studying colitis-associated CRC, and these dysplasia
and neoplasms show positive staining for β-catenin [6].
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ACF are early-appearing lesions found on the colonic luminal surface of AOM (and
DSS)-treated rodents and UC patients [12,32,33]. ACF are characterized by crypts with
altered luminal openings and thickened epithelia that are larger than the adjacent normal
crypts [33]. Although the numbers of ACF increase over time after exposure to the car-
cinogen, evidence correlating the development of neoplasia with ACF expression is weak.
Furthermore, in rodents with a predisposition to developing CRC, histological sections
(horizontal cross-sections) reveal dysplastic crypts with excessive β-catenin accumulation,
termed β-catenin-accumulated crypts (BCAC). BCAC have disrupted cell morphology
and cause greater dysplasia than ACF; they increase with time after carcinogen treatment.
BCAC are not similar to ACF in terms of appearance and are usually not recognizable on
the mucosal surface [34]. However, it is not clear whether BCAC represent a subgroup of
ACF or if they can be depicted as a separate entity. These foci spread over several crypts,
probably through crypt fission or cell migration [6].

The present study aimed to clarify the mechanism of colitis-associated CRC devel-
opment and the dynamics of pSmad2/3L-Thr-positive cells by analyzing the very early
stages of colitis-associated CRC development in AOM/DSS mice. We initially assumed the
veracity and suitability of the top-down model based on our past studies and the present
results of the locations of early neoplastic lesions within the mucosae [28,29]. However,
lesions coexisting with normal epithelial cells in the same crypts were never observed not
only in multi-cryptal neoplastic but also in uni-cryptal neoplastic lesions. In other words, all
cells in the uni-cryptal neoplastic lesions of the AOM/DSS mice were dysplastic cells with
a high β-catenin expression. From the results of the present study, in the initial neoplastic
lesions that occurred in the AOM/DSS mouse model, CSCs mutated from normal tissue
stem cells first appeared at the upper site of the mucosae similar to the bottom-up model
and formed uni-cryptal neoplastic lesions which grew to bi- and tri-cryptal lesions through
crypt fission or cell migration. This is considered to be the same reason that mucosal
regeneration starts in the upper site of the mucosae in active colitis in DSS mouse models
and human UC [35,36].

Although BCAC were observed only in the horizontal cross-section [34], we made
continuous vertical cross-sections in which small neoplastic lesions could be observed
from end to end. Similar to the large CRCs in the AOM/DSS mice we previously reported
on [28], these neoplastic cells overexpress β-catenin, Sox9, Ki67, and Cyclin D1 and have
large basophilic nuclei in the immature atypical cells. BCAC might have been observed in
the longitudinal direction.

Our previous studies have confirmed the significant expression of pSmad2/3L-Thr
in the normal colon epithelial cells of wild-type mice and the CRCs of AOM/DSS mice,
indicating that these cells are colon epithelial stem-like cells and colorectal CSCs, respec-
tively [27–29]. Furthermore, we have found that pSmad2/3L-Thr-positive cells retain BrdU
labeling, are slow-cycling, and are Ki67-negative resting cells in the G0 phase, located
adjacent to the actively proliferating cells of the normal colon epithelial cells [27]. We
have consistently believed that pSmad2/3L-Thr identifies normal epithelial stem-like cells
in the esophagus, stomach, small intestine, and colon and in colorectal CSCs just before
re-entering the cell cycle from the G0 phase (also known as the resting phase) [27–29,37,38].
We also performed double immunofluorescence staining for pSmad2/3L-Thr and Bmi1,
a representative marker for slow-cycling (cancer) stem cells [39,40]. In the present study,
pSmad2/3L-Thr-positive cells were confirmed to be cells with the same site and stainability
(Ki67-negative, CDK4- and Bmi1-positive), as previously reported in the surrounding
non-neoplastic epithelium and initial neoplastic lesions of the AOM/DSS mice. We were
able to reaffirm the results supporting the notion that pSmad2/3L-Thr is a biomarker for
normal tissue stem cells and CSCs.

In conclusion, we have confirmed the initial neoplastic lesions in a colitis-associated
CRC mice model. Similar changes may be observed in the development of human UC-
associated CRC, and we are going to investigate the clinical specimens of patients with UC.
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As in our previous studies, the present study has shown consistent results that indicate that
pSmad2/3L-Thr is a biomarker for tissue stem cells and CSCs.

4. Materials and Methods
4.1. Mice

Five-week-old male Crl:CD-1 (ICR) mice were purchased from Charles River Labora-
tories (Charles River Laboratories Japan, Inc., Yokohama, Japan). All the mice were housed
in a specific pathogen-free environment within the animal facility of Kansai Medical Uni-
versity. They were given commercial food pellets (F2; Funabashi Farm, Chiba, Japan) and
tap water. All of our experimental protocols were approved by the Ethics Committee for
the Use of Experimental Animals of Kansai Medical University (Approval Number 23-001).

4.2. Chemicals

AOM, a colon carcinogen (Sigma-Aldrich Japan K.K., Tokyo, Japan), and DSS, with
a molecular weight of 36,000–50,000 (MP Biomedicals, Solon, OH, USA) were purchased
from Sigma-Aldric and MP Biomedicals, respectively. DSS was diluted with water to form
a 2% solution to induce colitis.

4.3. Experimental Design

A single intraperitoneal injection of AOM (10 mg/kg body weight) was administered
to the ICR mice, and one week after this administration, the mice were given 2% DSS in
drinking water for 7 days. The mice that received AOM/DSS were sacrificed by cervical
dislocation 4 to 6 weeks following AOM administration [5,28,41].

After flushing the lumens with saline, their colons were excised and cut open longitu-
dinally. After washing several times with saline, they were cut and fixed in 10% buffered
formalin. Paraffin-embedded sections were prepared using a standard method.

4.4. Histopathological Analysis

First, immunofluorescence staining for β-catenin was performed on sections selected
at appropriate intervals to detect minute initial neoplastic lesions. After finding those
lesions, immunofluorescence staining for other markers was performed on serial sections
as explained below in detail.

Histopathological changes were observed in hematoxylin and eosin (H&E)-stained
specimens on the same sections after immunofluorescence staining. Colorectal neoplasms
were diagnosed based on Ward’s description [42]. Uni-, bi-, or tri-cryptal neoplastic
(dysplasia) and micro-neoplastic lesions (less than 300 µm wide) could be also observed in
these sections.

4.5. Domain-Specific Antibodies against the Phosphorylated Smad2 and Smad3

Rabbit polyclonal anti-human pSmad2/3L-Thr (Smad2: Thr 220, Smad3: Thr 179) sera
were raised against the phosphorylated linker region of Smad2 and Smad3 by immunizing
rabbits with synthetic peptides [24,43,44]. The antisera were subjected to antigen affinity
purification using phosphorylated peptides as described previously [45].

4.6. Immunohistochemistry

Immunofluorescence staining was performed on the formalin-fixed paraffin-embedded
sections as previously described [27,28,37]. The paraffin-embedded sections were deparaf-
finized, washed with xylene and ethanol, and rehydrated. Non-enzymatic antigen retrieval
was performed by heating the sections at 121 ◦C for 10 min in 0.01 M sodium citrate buffer
(pH 6.0). After cooling, the sections were immersed in Tris-buffered saline (TBS) and
blocked with 3% bovine serum albumin in TBS for 5 min. The primary antibodies (Abs)
were diluted with TBS containing 0.1% Tween 20 and incubated at 4 ◦C in a humidity cham-
ber. The primary Abs used in this study were as follows: mouse monoclonal anti-human
β-catenin Ab (sc-7963, Santa Cruz Biotechnology, Santa Cruz, CA, USA), rat monoclonal
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anti-mouse Ki67 Ab (652402, BioLegend, San Diego, CA, USA), mouse monoclonal anti-
human CDK4 Ab (sc-23896, Santa Cruz Biotechnology), rabbit monoclonal anti-human Sox9
Ab (ab185230, Abcam, Cambridge, UK), goat polyclonal anti-human B cell-specific Moloney
murine leukemia virus integration site 1 (Bmi1) Ab (ab115251, Abcam), rabbit monoclonal
anti-mouse cyclin D1 Ab (ab16663, Abcam), and rabbit polyclonal anti-human pSmad2/3L-
Thr Ab. The secondary Abs used were the appropriate species-specific AlexaFluor (488 or
568)-conjugated Abs (Thermo Fisher Scientific, Waltham, MA, USA). Slides were mounted
in VECTASHIELD mounting medium containing 4′,6-diamidino-2-phenylindole (DAPI)
(Vector Laboratories, Burlingame, CA, USA) and stained for the nuclei. Images were cap-
tured using a fluorescence microscope (Olympus, Tokyo, Japan). After immunofluorescence
staining, the specimen slides were immersed in distilled water and the cover glasses were
gently removed to avoid tissue damage. After extensive soaking in TBS, H&E staining was
performed using a standard staining procedure. Following this, the same sections were
observed under a light microscope.

Well-oriented lesions from the base to the surface were selected to measure the loca-
tions of the lesions and immunostaining-positive cells within the mucosae using the inForm
software (PerkinElmer, Waltham, MA, USA) according to the manufacturer’s instructions.
The mucosae were vertically divided into three sections of the same length, and lesions
and immunostaining-positive cells were confirmed to be present at the base, center, or top
of them.

4.7. Statistical Analysis

Values are expressed as the mean ± standard error of the mean. Data were ana-
lyzed using a one-way analysis of variance followed by Fisher’s protected least significant
difference test.

p < 0.05 was indicative of statistical significance.
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