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Abstract: Molecular dynamics simulation is a widely employed computational technique for studying
the dynamic behavior of molecular systems over time. By simulating macromolecular biological
systems consisting of a drug, a receptor and a solvated environment with thousands of water
molecules, MD allows for realistic ligand–receptor binding interactions (lrbi) to be studied. In this
study, we present MD–ligand–receptor (MDLR), a state-of-the-art software designed to explore the
intricate interactions between ligands and receptors over time using molecular dynamics trajectories.
Unlike traditional static analysis tools, MDLR goes beyond simply taking a snapshot of ligand–
receptor binding interactions (lrbi), uncovering long-lasting molecular interactions and predicting
the time-dependent inhibitory activity of specific drugs. With MDLR, researchers can gain insights
into the dynamic behavior of complex ligand–receptor systems. Our pipeline is optimized for high-
performance computing, capable of efficiently processing vast molecular dynamics trajectories on
multicore Linux servers or even multinode HPC clusters. In the latter case, MDLR allows the user to
analyze large trajectories in a very short time. To facilitate the exploration and visualization of lrbi,
we provide an intuitive Python notebook (Jupyter), which allows users to examine and interpret the
results through various graphical representations.

Keywords: molecular dynamics; protein–ligand interactions; nucleic acid–ligand interactions;
computational modeling of molecular systems

1. Introduction

A detailed understanding of ligand–receptor interactions is crucial for the effec-
tive design of new drugs and for a general appreciation of cellular functioning mech-
anisms [1]. In this context, methods such as molecular docking and molecular dy-
namics, together with innovative machine learning techniques, are revolutionizing the
approaches to the issue [2,3]. Molecular docking is a widely used tool for predicting and
studying protein–ligand interactions [4–6]. This approach is also used as a starting point
for the molecular dynamics simulation of the protein–ligand complex and the calculation
of binding energy, providing valuable information about the structure of the complex
and the strength of the interaction [7]. On the other hand, molecular dynamics provides
a much more detailed picture of the temporal behavior of interacting molecules, enabling
an investigation of not only stable conformations, but also the interaction path between
the ligand and receptor [8]. In recent years, the usage of machine learning techniques,
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including neural networks and deep learning algorithms, has gained significant traction
for the analysis of ligand–receptor interactions [9]. These approaches excel in identifying
intricate and non-linear patterns within extensive datasets, rendering them highly suit-
able for analyzing omics data, such as the genome or proteome [10]. The integration of
these advanced methodologies is paving the way for new frontiers in our comprehension
of ligand–receptor interactions [11]. The profound impact of this convergence extends
to enhancing our fundamental understanding of molecular interactions, accelerating
the development of targeted therapies, and unlocking novel possibilities for advancing
human health [12,13].

Molecular dynamics (MD) is a computational technique of great importance in
the field of biological macromolecular systems, offering a means to simulate and study
the dynamic behavior of such systems over time [14,15]. Studying ligand–receptor
binding interactions (lrbi) with MD can provide insightful dynamical structural informa-
tion about the macromolecular system and also offer valuable insights into the energy
landscape of lrbi [16]. Understanding the intricate structure–function relationship of
a ligand–receptor complex is fundamental to the fields of biochemistry and molecular
biology. Furthermore, the identification of the key elements of lrbi is a fundamental
step in guiding the drug discovery and design process [17]. The power of MD as a tool
for analyzing ligand–receptor binding interactions provides insights into the complex
behavior of these biological systems over time. MD analyses of such kind show broad
applicability and success at every stage of modern drug design and discovery [18]. MD
simulations provide a microscopic view of the motion and interactions of molecules, en-
abling the analysis of structural changes, energetics, and other properties that are critical
for understanding the action of drugs. Running MD simulations, especially of large sys-
tems for extended periods, poses a significant computational challenge [19–23], and the
hardware resources and storage required for such simulations are considerable [24,25].
This becomes even more evident when large simulation trajectories are generated, which
can result in data files of tens or even hundreds of gigabytes in size [26–28]. Conse-
quently, the downstream analysis of these MD simulations, which involves evaluating
lrbi over time, can also be computationally demanding, in terms of both CPU usage and
storage requirements.

In recent years, software tools optimized for high-performance computing (HPC) have
been developed to handle large volumes of data in bioinformatics [29]. These tools leverage
HPC clusters to process and analyze massive datasets efficiently, enabling comprehensive
investigations into genomics [30,31], transcriptomics [32–36], proteomics [37], metage-
nomics [38,39], and structural bioinformatics [40–42]. In this last area, in order to address
the computational challenges involved and to efficiently organize, manage, and analyze the
lrbi generated by MD simulation over time, we introduce the MD–ligand–receptor software
(MDLR), an HPC tool designed for analyzing MD trajectories of very large ligand–receptor
systems studied over long time scales.

MDLR establishes a pipeline capable of delivering lrbi results in just a few hours. It
achieves this by parallelizing the workflow on the available HPC resources. The software
leverages two third-party applications: GROMACS [43], for the efficient extraction of
conformational files (in PDB format) from the trajectory, and PLIP [44], for producing lrbi
results for each PDB file. Subsequently, the pipeline stores the lrbi in a dedicated Python
dictionary, where keys are tuples of the atom IDs involved in a specific lrbi.

One of the major highlights of MDLR is its adoption of a message passing interface
(MPI) parallel implementation. This enables distributing each task across the available
computational resources, significantly reducing the analysis time of the lrbi from days to
just a few hours.

The software was built using Python (version 3.7) and employs the mpi4py Python par-
allel library (version 3.3) [45,46] for its parallel phase. The MDLR software is freely available
on GitHub https://github.com/fraMade/MD_ligand_receptor (accessed on 16 April 2023)
and Figshare https://figshare.com/articles/software/MD-ligand-receptor_software/2356

https://github.com/fraMade/MD_ligand_receptor
https://figshare.com/articles/software/MD-ligand-receptor_software/23566245
https://figshare.com/articles/software/MD-ligand-receptor_software/23566245
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6245 (accessed on 16 April 2023). Instructions on its usage are provided in a comprehen-
sive tutorial on the GitHub page, showcasing the command-line application. In addition,
in order to enhance the user experience, an easy-to-use Plotly dashboard is provided,
which allows users to visualize the pipeline results of lrbi through a variety of graphical
visualizations.

2. Results

MDLR processes input derived from molecular dynamics simulations in the form
of trajectory data. A trajectory is further divided into numerous discrete time intervals,
designed to be examined concurrently. This parallel analysis facilitates efficient data
processing. The goal of this computation is to efficiently generate a suite of data about lrbi,
thereby illustrating the dynamic behavior of the ligand–receptor system over time.

In the following subsections, we present: (1) the main workflow of MDLR, (2) its
software details, (3) a test case on the analysis of MD trajectory of a solvated system made
of human DNA topoisomerase I in a complex with camptothecin venom (CPT) and in a
covalent complex with a 22-base-pair DNA duplex, (4) some benchmarks showing the
software performance in an HPC environment, and (5) the visualization tools developed to
promptly plot the main features of lrbi, as an example.

2.1. MD–Ligand–Receptor Workflow

The workflow of MDLR is depicted in Figure 1. The software accepts a trajectory from
a molecular dynamics simulation as input and starts by segmenting it into numerous time
intervals. These intervals can be examined in parallel, allowing for an efficient analysis
process. The input data, therefore, comprise a trajectory file and an associated system
topology file, both provided in XTC and TPR formats, respectively.

The workload is uniformly partitioned amongst the specified number of MPI processes.
GROMACS software is employed by each of these processes to extract coordinate files,
which are rendered in the Protein Data Bank (PDB) format. Each PDB file represents
the state of the simulation at a specific temporal step. Each process employs the PLIP
(protein–ligand interaction profiler, version 2.2.2) software to scrutinize the lrbi present
within each respective PDB file. The significant information extracted from this analysis
is subsequently encapsulated in XML files. Finally, all the data gathered by each process
are consolidated into a single Python dictionary and are saved in both JSON and CSV
formats. The aggregated data can then be visualized using the visualization tool proposed
in Section 2.4.

2.2. MD–Ligand–Receptor Software Details

In this section, we delve into the intricacies of the components deployed in MDLR.
The initial stage involves the activation of the MPI processes, to each of which an equitable
portion of the workload is assigned via the MPI primitive scatter. This mechanism ensures
an even distribution of the trajectory among all parallel workers. Given a molecular
dynamics trajectory of length T and p MPI processes, the length of the assigned time
interval for each process is then equal to t′ = T/p.

In the second stage of the pipeline, each parallel worker partition has assigned a
chunk of trajectory corresponding to an interval of length t′ (measured in picoseconds).
The parallel worker extracts n configuration files in PDB format from the trajectory by
launching, for each interval of length t′, the command trjconv of GROMACS. In standard
cases, where trajectory configurations are saved every ten picoseconds, the number of
extracted PDB files, k, is equal to t′/10. However, for significantly large trajectories, the
size t′ of the interval and, consequently, the number k of extracted PDB files, can increase.
Hence, the amount of memory occupied by PDB files can become problematic. In order
to solve this issue, each worker of MD–ligand–receptor extracts only a minimum fixed
number of PDB files (default 10) at each iteration until the entire span t′ is covered.

https://figshare.com/articles/software/MD-ligand-receptor_software/23566245
https://figshare.com/articles/software/MD-ligand-receptor_software/23566245
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Figure 1. High-level description of the MD–ligand–receptor pipeline. Starting from the left, the
software takes, as input, XTC and TPR files of the trajectory, which are then fed to a cluster for
parallelization. The trajectory is partitioned in parallel in groups of PDB files, each corresponding to a
specific time interval [tx,ty]. Then, PLIP analyzes each PDB group in parallel and extracts interaction
data. Finally, results are merged and saved in JSON and CSV files, to be visualized with different
kinds of plots.

The third stage utilizes the PLIP (protein–ligand interaction profiler) to pinpoint the
non-covalent interactions between the ligand and the receptor. This procedure is applied to
each PDB file mined in the preceding step. PLIP provides all relevant information in an
XML file, from which the lrbi data are subsequently extracted. Upon completion of this
stage, all PDB and XML files are removed to liberate disk space.

In the final stage, once the time interval t′ is completely covered, the corresponding
extracted lrbi data are collected by a single process; this action is carried out by the MPI
primitive gather.

All steps of the parallel pipeline are depicted in Algorithm 1, which presents the
pseudocode for the algorithm. As a result, we obtained JSON and CSV files containing all
the lrbi. Details of produced output files are listed in Table 1.

Details about the programming language used and the parallel libraries employed can
be found in Section 4.

2.3. Application to the Study of Lrbi for Human Topoisomerase 1 and Camptothecin

To demonstrate the capabilities of MDLR, we launched the pipeline on the system:
human DNA topoisomerase I in a complex with camptothecin venom (CPT) and in a
covalent complex with a 22-base-pair DNA duplex. The initial structure was downloaded
from the Protein Data Bank (PDB ID: 1T8I [47]).

The biological system was chosen as the test case for MDLR, considering the pivotal
role of CPT as a chemotherapeutic drug targeting human topoisomerase I (hTop1p) [48].
Human topoisomerase I is an essential enzyme involved in DNA relaxation, and its inhibi-
tion by CPT leads to DNA replication disruption and the activation of apoptotic response
in cancer cells during the S phase of the cell cycle.

The reversible CPT inhibitor was initially extracted from the crystal structure and
subsequently reinserted into the receptor. This was carried out in order to perform a
molecular docking simulation, therefore providing us with the best pose (https://figshare.c
om/articles/dataset/MD-ligand-receptor_input_trajectory_best_pose/23566224, accessed
on 16 April 2023), which was used as the starting structure for the molecular dynamics
simulation.

https://figshare.com/articles/dataset/MD-ligand-receptor_input_trajectory_best_pose/23566224
https://figshare.com/articles/dataset/MD-ligand-receptor_input_trajectory_best_pose/23566224
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Algorithm 1. MD-ligand-receptor; The pseudocode describes the steps implemented in the pipeline.

Require: (topology, trajectory); Files describing the MD
Require: (start, end); Positive time interval T (ps)
Require: time limit; Set time limit for program execution
1: Procedure MD-ligand-receptor(topology, trajectory, start, end, time limit)
2: #Initial stage
3: comm = MPI.init() # spawns MPI processes
4: rank = comm.Get_rank() # gets MPI process id
5: t_start, t_end = comm.Scatter(start, end) # process obtains t′ from time interval T
6: N_PDB← 100 # fixes PDB number per iteration
7: interaction_table← dict()
8: time← 0
9: sub_t_start← t_start # initializes partial time interval sub_t for first iteration
10: sub_t_end← sub_t_start + N_PDB # sets end of sub_t interval
11: #Second stage
12: while time < time_limit and sub_t_start ≤ t_end do # iterates until all of t′ is covered
13: if sub_t_end > t_end then
14: sub_t_end = t_end
15: end if
16: gmx_trjconv(sub_t_start, sub_t_end) # splits the sub time interval in pdb files
17: #Third stage
18: for pdb_file in directory do
19: plip_analysis = PLIP(pdb_file) # generates the xml file with interaction data
20: interaction_table = parse_xml(plip_analysis) # extracts interactions from xml
21: end for
22: remove(pdb_file, plip_analysis) # deletes produced files to free disk space
23: sub_t_start += N_PDB # updates sub_t_start for the next iteration
24: sub_t_end = sub_t_start + N_PDB
25: time = timer()
26: end while
27: #Final stage
28: interaction_table = comm.Gather(interaction_table) # gathers the final result
29: if rank == 0 then # the leader process merges all the interactions data
30: merge_tables(interaction_table)
31: end if
32: end procedure

Table 1. Names of MD–ligand–receptor output files with a brief description.

Output File File Description

bonds_complete.json JSON dictionary containing all the recorded interactions

hbonds.csv CSV file containing all the recorded hbonds interactions

hydrophobic-interactions.csv CSV file containing all the recorded hydrophobic interactions

pi-stacks.csv CSV file containing all the recorded pi stacks interactions

water-bridge.csv CSV file containing all the recorded water bridge interactions

salt-bridges.csv CSV file containing all the recorded salt bridges interactions

LIG_ATOMS.csv CSV file containing all ligand’s atoms

RCPT_ATOMS.csv CSV file containing all receptor’s atoms

We conducted a molecular dynamics study of the system, immersed in a box of water
molecules, to demonstrate the analytical capabilities of MDLR and its performance in an
HPC environment. The system involved the addition of 137,340 atoms of water molecules,
amounting to a total of 148,201 atoms. The classical MD simulation of 1T8I was carried
out using the most favorable docked conformation of the CPT compound for a duration
of 1 microsecond to study the overall stability of the receptor and CPT compound. The
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average root mean square deviation (RMSD) of both the human topoisomerase and the
CPT compound, as a function of time, was observed to be, respectively, 0.43 nm and
0.05 nm (see Figure 2). This particularly suggests a high degree of binding stability of
CPT, corroborating the observations made in the previous docking study (binding affinity:
−8.5 kcal/mole) [26]. The trajectory resulting from the molecular dynamics simulation of
this system (https://figshare.com/articles/dataset/MD-ligand-receptor_input_trajectory
_test_case/23566080, accessed on 16 April 2023) was used as input for a test case analysis
of MD–ligand–receptor. The results of the analysis, in terms of the generated outputs, are
presented in in the following table.

In the following, we will, respectively, describe the benchmark analysis to illustrate
the software’s performance in an HPC environment and an additional tool for a quick
visualization of the lrbi results. Figures 3–5 depict several kinds of visualization of the
results obtained from the analysis through the use of the Plotly dashboard described in the
following Section 2.4. “MD–Ligand–Receptor Visualization Tools”.

Figure 2. Root mean square deviation (RMSD) relative to 1 µs of simulation. The RMSD of Cα human
topoisomerase 1 is shown in red, and the RMSD of compound CPT is shown in blue.

Figure 3. Plots of the bond types generated by the visualization tool after the analysis. (A): number
of timestamps collected for each bond type. (B): detailed view showing the number of timestamps
for each atom of the ligand, furtherly highlighted by bond type.

https://figshare.com/articles/dataset/MD-ligand-receptor_input_trajectory_test_case/23566080
https://figshare.com/articles/dataset/MD-ligand-receptor_input_trajectory_test_case/23566080
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Figure 4. Permanence analysis among couples of ligand–receptor elements provided by the visu-
alization tool. (A): percentage of interactions between each pair of ligand atoms and nucleotides.
(B): percentage of interactions between each pair of ligand atoms and amino acids.

Figure 5. In-depth analysis of lrbi on different bond types provided by the visualization tool. (A): a
histogram with a bar for each type of interaction performed. Each blue segment represents an
interaction present at time t of the specific bond type. (B): a histogram that represents the permanence
for each type of interaction in graph A. These plots are useful for understanding what type of
interactions and when they are performed for a given ligand’s atom or a given couple of ligand’s
atoms and a nucleotide or an amino acid receptor.

The results of the application of MD–ligand–receptor to the human topoisomerase
1–camptothecin system were uploaded on figshare https://figshare.com/articles/dataset
/MD-ligand-receptor_input_trajectory_results/23566230 (accessed on 16 April 2023). The
zipped folder (md_cpt_test_case_results.zip) contains all the MD–ligand–receptor data
results.

2.4. MD–Ligand–Receptor Benchmarks

In this section, we offer a comprehensive performance analysis of MDLR, with a focus
on the elapsed time and attained speedup. As delineated in previous sections, the software
provides the flexibility to initiate a preferred number of parallel processes. An increase in
this number typically results in a decrease in execution time.

https://figshare.com/articles/dataset/MD-ligand-receptor_input_trajectory_results/23566230
https://figshare.com/articles/dataset/MD-ligand-receptor_input_trajectory_results/23566230
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In order to assess the MDLR performance, we implemented an extensive series of
tests utilizing a consistent trajectory input size of 0.1 microseconds (µs). We systemati-
cally doubled the quantity of processes, achieving a peak of 1024 processes. The results,
visually represented in Figure 6 and summarized in Table 2, unequivocally demonstrate
that the execution time is roughly halved when the number of processes is doubled. This
finding highlights the substantial degree of independence among the processes, as both
the trajectory partitioning and interaction analysis can be conducted without necessitating
significant inter-process communication.

Throughout the execution, the only exchanged information consists of the initial
workload assignment and the final analysis results, which were subsequently merged
into the JSON file. These findings validate the efficiency and scalability of the software,
emphasizing its ability to harness parallel processing power effectively.

Figure 6. A depiction of the performance of the software. The x-axis presents the number of processes
[1→ 1024] in a log scale, and the y-axis represents, on the left, the elapsed time in seconds on a log
scale and, on the right, the speedup with regard to single process execution.

Table 2. Benchmarks for MDLR. Notably, an increase in the number of processes leads to an enhance-
ment in speedup and a reduction in elapsed time.

# of Processes 1 2 4 8 16 32 64 128 256 512 1024

Speedup 1.0 1.7 3.1 6.4 10.6 19.5 37.5 67.0 121.2 213.7 331.6

Elapsed time (s) 136,948 78,788 43,857 21,266 12,874 7009 3654 2043 1130 641 413

2.5. MD–Ligand–Receptor Visualization Tools

We now present the visualization capabilities of MDLR, particularly focusing on its
Plotly (https://plotly.com/python, accessed on 16 April 2023, version 5.15.0) dashboard,
which offers a user-friendly interface for exploring the lrbi as a function of time. The
dashboard produces a range of interactive plots that effectively capture the interactions
performed by the ligand’s atoms and the receptor’s residues. This lightweight tool facilitates
a prompt visualization of the lrbi results, enabling users to gain valuable insights into the
dynamics of ligand–receptor complexes.

https://plotly.com/python
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Firstly, the dashboard provides a histogram that showcases the overall count of lrbi
for each kind of bond (an example of this graph is shown in Figure 3A). This visualization
provides a comprehensive overview of the frequency of different types of interactions
observed throughout the simulation. Additionally, a histogram is presented to display the
permanence time of the interaction between the ligand and receptor for each ligand atom
(an example of this graph is shown in Figure 3B). This histogram allows users to assess
the duration of specific types of bonds, such as hydrogen bonds, pi stacks, hydrophobic
interactions, and water bridges. To enhance visual clarity, each bar of the histogram is
represented by a maximum of four colors, corresponding to the time of permanence for a
particular bond type.

To further explore the lrbi, the dashboard provides informative heatmaps that visualize
the percentage of interaction permanence between each ligand atom and individual protein
residues and/or DNA nucleotides (examples of these graphs are shown in Figure 4A,B).
The composition of the receptor can be customized to focus on protein-only, DNA-only, or
protein–DNA interactions, allowing for a tailored analysis. These heatmaps play a crucial
role in identifying key regions or residues involved in significant interactions, thereby
enhancing our understanding of the structural dynamics within the ligand–receptor com-
plex. Furthermore, the dashboard includes a plot depicting the time-dependent behavior of
specific receptor residues and/or nucleotides during the trajectory. This plot, accompanied
by an associated histogram illustrating the cumulative interaction time, facilitates a com-
prehensive temporal analysis of lrbi. These visualizations enable the identification of both
stable and transient interactions, contributing to a deeper comprehension of the dynamic
nature of the ligand–receptor complex.

Finally, the software offers a plot of the permanence of the interaction during the
trajectory, focusing on a specific ligand atom and a designated receptor nucleotide or residue
(an example of this graph is shown in Figure 5A). This visualization allows users to explore
the dynamics of a particular interaction of interest, providing a detailed understanding of
its temporal behavior.

To enhance the usability of the tool, the Plotly dashboard includes a dynamic filtering
feature for each of the five described representations. This feature allows users to filter and
visualize specific lrbi based on their preferences or research requirements, enabling a more
targeted and customized analysis.

Overall, the visualization capabilities provided by the MD–ligand–receptor software
empower researchers to gain comprehensive insights into the lrbi as a function of time.
These visualizations aid in the identification of critical interactions, understanding the
temporal dynamics, and facilitating the interpretation of the complex behavior exhibited
by ligand–receptor complexes.

3. Software Comparison
3.1. Useful Tools for Preprocessing

MDLR was designed to natively analyze GROMACS trajectories. Accepting only one
trajectory format as input, the Gromacs format, could be considered a limitation for MDLR.
However, this can be resolved thanks to an additional easy step. GROMACS is one of
the most popular software packages for molecular dynamics, along with others such as
AMBER (version 23) [49], NAMD (version 2.14) [50], LAMMPS (version 15.06.2023) [51],
and CHARMM (version c47b2) [52]. In general, the use of a specific software package
depends largely on research needs, available hardware resources, and user familiarity
with the software. In cases where a trajectory is not generated with GROMACS, but with
other molecular dynamics tools, it is necessary to convert this trajectory into GROMACS
format before using MDLR (version 1.0). To make it easier for users to use our pipeline
with trajectories described in different formats, we report in Table 3 the list of trajectory
conversion software toward the GROMACS format.
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Table 3. List of software for converting molecular dynamics trajectories into various formats. “Initial
format” refers to the trajectory formats that can be read by the software, and “Final format” refers to
the GROMACS conversion format. Some of these software packages also allow conversion to formats
other than GROMACS, but the GROMACS format is the only one of interest for MDLR use.

Resource Initial
Format Final Format Link Reference

ACPYPE AMBER GROMACS

https://alanwilter.github.io
/acpype/

accessed on 16 April 2023,
Version 2022.7.21

[53]

TopoGromacs CHARMM GROMACS

https://github.com/akohl
mey/topotools/blob/maste

r/topogromacs.tcl
accessed on 16 April 2023,

Version 1.8

[54]

InterMol LAMMPS
DESMOND GROMACS

https://github.com/shirtsg
roup/InterMol

accessed on 16 April 2023,
Version 0.1.2

[55]

MDTraj

NAMD
TINKER

DESMOND
AMBER

CHARMM
LAMMPS

GROMACS

https://www.mdtraj.org/1.9
.8.dev0/index.html

accessed on 16 April 2023,
Version 1.9.8.dev0

[56]

3.2. Comparing MDLR with Other Tools

Here, we introduce three software tools, JGromacs [57], MD-IFP [58], and a pipeline
for visualizing large-scale protein–ligand interaction data sets (from here onwards, P1) [59],
that can provide significant assistance for downstream analyses of molecular dynamics
trajectories. For this reason, we highlight similarities and differences with MDLR.

JGromacs (version 1.0) is a general-purpose software for building additional analysis
software, while MDLR is a pipeline that uses third-party programs, GROMACS, and PLIP
to achieve a specific objective: the characterization and visualization of lrbi over time.
Furthermore, MDLR enables an extremely rapid analysis through the use of parallel MPI
libraries and does not require software development skills as it is an automated pipeline.
Each of these components is important for highlighting the unique features of MDLR that
make it powerful and versatile.

MD-IFP (version 1.1) provides an efficient computational engine for the estimation
of the relative residence times of compounds against a macromolecular target and tools
for obtaining insights into the underlying mechanisms determining ligand unbinding
kinetics. This software has capabilities similar to PLIP for the study of lrbi and is
able to automatically read trajectories in GROMACS format. Compared to MDLR, it is
not optimized in terms of the calculation of lrbi over time and therefore is not able to
exploit HPC resources. Furthermore, it does not provide incorporated tools for promptly
visualizing the lrbi.

P1 provides an aggregated overview of the system. It focuses on the “contact” between
the ligand and protein at different timeframes from a GROMACS trajectory, without
providing specific details about the type of ligand–receptor interaction. It provides details
of aggregated data in terms of mesh, i.e., a collection of vertices, edges, and faces that
defines the shape of a polyhedral object in 2D/3D space, containing color values for each
of the accumulated quantities. This software is optimized but conceptually different from
MDLR results in terms of lrbi analysis and their molecular mechanisms.

https://alanwilter.github.io/acpype/
https://alanwilter.github.io/acpype/
https://github.com/akohlmey/topotools/blob/master/topogromacs.tcl
https://github.com/akohlmey/topotools/blob/master/topogromacs.tcl
https://github.com/akohlmey/topotools/blob/master/topogromacs.tcl
https://github.com/shirtsgroup/InterMol
https://github.com/shirtsgroup/InterMol
https://www.mdtraj.org/1.9.8.dev0/index.html
https://www.mdtraj.org/1.9.8.dev0/index.html
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In contrast, MDLR focuses on simulating and analyzing ligand–receptor systems
using molecular dynamics. It offers a comprehensive analytical approach, providing
detailed information on binding properties and system dynamics. Additionally, MDLR
takes advantage of HPC resources, if available, for analyzing very large trajectories. Unlike
the aforementioned software, MDLR integrates the PLIP software for an accurate analysis
of protein–ligand interactions over time. In terms of visualization, MDLR is at the forefront
and provides an intuitive user interface using Jupyter notebooks to create a dashboard
based on the Plotly graphical visualization library. This simplifies the exploration and
visualization of molecular dynamics simulation results.

4. Discussion

High-performance computing (HPC) resources are essential for an efficient simulation
of molecular behavior in different environments, including aqueous solutions or vacuum
conditions. By exploiting HPC, researchers can study the impact of various parameters on
molecular behavior, leading to valuable insights into molecular interactions.

An important application of HPC resources is the study of molecular interactions,
particularly in the context of drug design. HPC allows researchers to study the binding
mechanisms between ligands and receptors, providing valuable information for the devel-
opment of new drugs. With the help of tools such as MDLR, the structural dynamics of
ligand–receptor complexes can be analyzed and visualized. This powerful tool efficiently
handles large amounts of data and offers visualization capabilities to trace intricate details
of the complex.

Among the specific advantages of MDLR, the software allows users to comprehend the
behavior of a ligand–receptor binding system simulated realistically using the molecular
dynamics (MD) technique. Hence, they can explore long-term binding interactions between
ligands and receptors, obtaining detailed information on the binding properties and dy-
namics of the system. Furthermore, as mentioned above, MDLR is designed to run on HPC
clusters, which enables it to handle large amounts of data and analyze complex systems
efficiently. The software also offers an intuitive Python notebook-based user interface
(Jupyter) to explore and visualize the results of molecular dynamics simulations.

However, MDLR requires a considerable amount of computational resources to ana-
lyze the molecular dynamics simulations, which may limit the size of the system that can
be studied. Furthermore, the accuracy of molecular dynamics simulations depends on the
quality of the force parameters used to describe the interactions between molecules, and the
correct interpretation of the results produced requires some experience in analyzing molec-
ular dynamics data. Finally, it is important to note that MDLR may not be able to accurately
model some complex molecular interactions, such as protein–lipid or protein–carbohydrate
interactions.

5. Materials and Methods
5.1. Software Included in the Pipeline

Two key software packages, GROMACS and PLIP (protein–ligand interaction profiler),
are crucial components employed in our software pipeline.

GROMACS is a highly versatile and widely used molecular dynamics simulation
package. It enabled us to simulate and analyze the dynamic behavior of the ligand–
receptor system, facilitating several essential steps, including energy minimization using
the steepest descent and conjugate gradient methods. Moreover, GROMACS performs
molecular dynamics simulations in the isothermal–isobaric (NPT) ensemble, allowing us to
balance pressure and temperature. These simulations provide valuable insights into the
stability and conformational changes of the ligand–receptor complex over time. By solving
Newton’s equations of motion, GROMACS accurately captures the intricate interactions
and dynamics between the ligand and receptor, shedding light on the binding mechanism
and intermolecular forces involved.
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Another integral component of MDLR is PLIP (protein–ligand interaction profiler).
PLIP plays a pivotal role in the downstream analysis of the ligand–receptor interactions.
It efficiently extracts essential information from the MD trajectory, with a particular focus
on the non-covalent interactions between the ligand and the receptor. PLIP’s robust
functionality allows us to identify and analyze various types of interactions, including
hydrogen bonds, hydrophobic interactions, pi stacking, and water bridges. By analyzing
the resulting data, we have gained valuable insights into the key molecular interactions that
contribute to the stability and binding affinity of the ligand–receptor complex. PLIP’s ability
to generate informative visualizations, such as heatmaps and interaction plots, further
facilitates the interpretation and understanding of the complex dynamics exhibited by the
ligand–receptor system.

In summary, GROMACS and PLIP have played an indispensable role in the MDLR
pipeline, allowing us to perform accurate molecular dynamics simulations and conduct
in-depth analyses of ligand–receptor interactions. Their inclusion in our pipeline has
ensured the robustness and reliability of our software in studying the dynamic behavior of
molecular systems.

5.2. Programming Language and Parallel Libraries (MPI)

To develop MDLR, we used Python, a high-level programming language that is easy
to use and is endowed with many ready-to-use libraries. mpi4py is a library that provides
Python bindings for the message-passing interface, allowing applications to exploit multiple
processors on workstations, clusters, and supercomputers. For software development and
testing, we used version 3.1.3.

5.3. HPC Setup for Testing

To conduct all the previously described work, we used the HPC environment of
CINECA. The organization allowed us to use the Galileo100 cluster to develop and test the
proposed software. Galileo100 (https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.
3%3A+GALILEO100+UserGuide, accessed on 16 April 2023) is a supercomputer that uses
the Slurm Workload Manager to schedule and execute typically parallel jobs on a set of
requested nodes. The cluster is composed of 528 computing nodes having 2 × CPU Intel
CascadeLake 8260, with 24 cores each, 2.4 GHz, and 384 GB RAM. This setup allowed us to
easily test our software with a great number of available resources.

5.4. Input Data Preparation and HPC Environment

The pipeline starts by launching the command line, as shown in the GitHub tutorial
https://github.com/fraMade/MD_ligand_receptor accessed on 16 April 2023 (version
1.0). For a reference to the workflow of the pipeline, see Figure 1. In particular, it takes as
input the two result files of the molecular dynamics of the system: trajectory and topology
(XTC, TPR) files produced with the GROMACS software. It is important for all the ligand’s
atoms to belong to a single group, which has to be specified as an option in the input. The
program accepts as parameters the number of parallel processes (N) and the start and end
values (magnitude in ps) of the interval of the trajectory of interest. The software was
developed in an HPC environment that uses Slurm as a scheduler. However, the software
is also scheduler-independent and can be run on a simple server node. For further details,
see the examples on the GitHub page.

5.5. Visualization Libraries

To develop the visualization tool, we employed the Plotly graphing library (version
5.9.0), which produces interactive plots. Furthermore, we used Plotly Dash, which, in
combination with Plotly, produces dashboards with interactive plots.

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide
https://github.com/fraMade/MD_ligand_receptor
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5.6. Molecular Docking and Dynamics Protocol Utilized in the Test Case

As a first step, we downloaded the structure of human DNA topoisomerase I in
complex with camptothecin venom (CPT) and in a covalent complex with a 22-base-pair
DNA duplex from the Protein Data Bank https://www.rcsb.org (accessed on 10 April 2023)
(PDB ID: 1T8I). The protocol used for preparing both ligand and receptor for molecular
docking simulation is described in [60]. The structure was prepared using AutoDock-
Tools [61] by removing the camptothecin, creating space in the receptor pocket for the
subsequent docking with the ligand. We conducted molecular docking analyses launching
Autodock Vina [62] on the CPT-deprived 1T8I complex as the receptor and CPT as the
ligand. From the docking results, we selected the best pose of CPT, corresponding to
−8.5 kcal/mole, as the starting structure for the molecular dynamics simulation of the
solvated system. A classical molecular dynamics simulation was executed using GRO-
MACS https://manual.gromacs.org/2021.2/index.html, accessed on 16 April 2023 (version
2021.2) [43,63] with the AMBER99 force field [64]. The topology of the CPT was generated
using Acpype software (version 2022.7.21) [53] with AMBER atom types. The simula-
tion complex, solvated with the TIP3 water model and neutralized with 18 sodium ions,
underwent energy minimization using the steepest descent algorithm until the force fell
below 1000.0 kJ/mol/nm. This was followed by two equilibration stages: first, a 1 ns
NVT (number of particles, volume, and temperature) equilibration at a consistent 300 K
temperature, and second, a 2 ns NPT (number of particles, pressure, and temperature)
equilibration to stabilize the pressure at 1 bar. Long-range electrostatics were evaluated via
the particle mesh Ewald method. Subsequently, unrestrained 1 us production simulations
were performed with a 2 fs time step and coordinates were saved every 10 ps.
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