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Abstract: An integrative multi-modal metabolic phenotyping model was developed to assess the
systemic plasma sequelae of SARS-CoV-2 (rRT-PCR positive) induced COVID-19 disease in patients
with different respiratory severity levels. Plasma samples from 306 unvaccinated COVID-19 patients
were collected in 2020 and classified into four levels of severity ranging from mild symptoms
to severe ventilated cases. These samples were investigated using a combination of quantitative
Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) platforms to give
broad lipoprotein, lipidomic and amino acid, tryptophan-kynurenine pathway, and biogenic amine
pathway coverage. All platforms revealed highly significant differences in metabolite patterns
between patients and controls (n = 89) that had been collected prior to the COVID-19 pandemic. The
total number of significant metabolites increased with severity with 344 out of the 1034 quantitative
variables being common to all severity classes. Metabolic signatures showed a continuum of changes
across the respiratory severity levels with the most significant and extensive changes being in the
most severely affected patients. Even mildly affected respiratory patients showed multiple highly
significant abnormal biochemical signatures reflecting serious metabolic deficiencies of the type
observed in Post-acute COVID-19 syndrome patients. The most severe respiratory patients had a
high mortality (56.1%) and we found that we could predict mortality in this patient sub-group with
high accuracy in some cases up to 61 days prior to death, based on a separate metabolic model,
which highlighted a different set of metabolites to those defining the basic disease. Specifically,
hexosylceramides (HCER 16:0, HCER 20:0, HCER 24:1, HCER 26:0, HCER 26:1) were markedly
elevated in the non-surviving patient group (Cliff’s delta 0.91–0.95) and two phosphoethanolamines
(PE.O 18:0/18:1, Cliff’s delta = −0.98 and PE.P 16:0/18:1, Cliff’s delta = −0.93) were markedly
lower in the non-survivors. These results indicate that patient morbidity to mortality trajectories
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is determined relatively soon after infection, opening the opportunity to select more intensive
therapeutic interventions to these “high risk” patients in the early disease stages.

Keywords: COVID-19; SARS-CoV-2; NMR spectroscopy; mass spectrometry; plasma IVDr; metabolomics;
lipidomics; metabolic phenotyping; diagnostic modelling; lipoproteins; lipids; mortality prediction;
patient stratification

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic continues to present global chal-
lenges to individuals, health systems, and economies and the long-term consequences of
the disease are poorly understood. Our ability to develop effective therapeutic management
strategies remains reliant on improved understanding of the pathogenic mechanisms asso-
ciated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [1,2].
Spectroscopic measurements to establish metabolic consequences of human disease have
proved to be a powerful tool for exploring existing clinical challenges and can also readily
be applied to help understand emergent diseases such as COVID-19 [1].

COVID-19 has spread worldwide infecting over 767 million and killing more than
6.9 million as of July 2023. We have previously shown that, upon SARS-CoV-2 infection, a
metabolic “phenoconversion” from healthy through different stages of infection is readily
detectable by both Nuclear Magnetic Resonance (NMR) and mass spectrometry [1,3–6],
impacting multiple metabolic pathways and different organ systems. To understand the
acute and long-term effects of COVID-19, we and others have compared the plasma of
COVID-19 patients with healthy controls using a variety of analytical platforms [7–9].
In addition to damaging the respiratory system, SARS-CoV-2 infection affects multiple
organs [10–13], which creates a continuum of emergent metabolic phenotypes some of
which appear to relate to respiratory severity. In a meta-analysis of 57 studies, more than
50% of previously hospitalized SARS-CoV-2 survivors were found to have persistent post-
acute pathological sequelae including neurologic disorders, general functional impairment,
fatigue, and cardiac abnormalities [14]. At the molecular level, infection-related signatures
have been found across a range of molecular groups and pathways, some of which persist
for several months post-infection. For instance, perturbations in glutamine, glutamate, and
taurine are indicative of disruption of hepatic metabolism and, whereas elevated levels
of α1-acid Glycoprotein (GlycA) are associated with inflammation, disrupted tryptophan
metabolism in some individuals may relate to a neurological impact [2,3,15]. Given the
potential socioeconomic impact of SARS-CoV-2 infection, it is important to understand
whether respiratory severity of the acute infection is indicative of downstream impact
on other organs and systems. If the metabolic dysregulation associated with Post-Acute
COVID-19 Syndrome (PACS) [2,16,17] is not closely related to the respiratory infection
severity, then follow up and monitoring of patients who experienced mild symptoms
may be as important as those that experienced severe respiratory symptoms in their acute
infection phase, particularly if the biochemical profile indicates the involvement of multiple
systems or organs.

The aim of this study was to comprehensively map the metabolic signature of each
severity class to determine if a patient with SARS-CoV-2 infection who experiences mild
respiratory symptoms is metabolically distinct from a patient with severe symptoms using
a wide range of quantitative parameters (n = 1034) derived from targeted profiling using a
combination of NMR spectroscopy and ultra-performance high resolution mass spectrom-
etry (UPLC-MS) based on prior knowledge of disrupted molecular pathways [5,6,18,19].
Here, we explore further metabolic data from a previously reported Spanish COVID-19
cohort [5,20] to measure the impact of respiratory disease severity on the systemic metabolic
signatures. SARS-CoV-2 participants were stratified into four classes ranging from mild
respiratory symptoms to hospitalized with severe respiratory symptoms requiring ven-
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tilation in ICU. Serum from a further group of participants collected pre-pandemic were
included as non-infected controls. This system for stratifying severity has been widely
used in studies on the effects of COVID-19 [21,22]. In the most severely affected category,
a 56.1% mortality rate due to an immunological cytokine storm was observed consistent
with other similar studies [23–26]. We derived a predictive model of mortality for the most
severe class using multiple combined panels of molecules to achieve a broad phenotype of
SARS-CoV-2 infection.

2. Results and Discussion
2.1. SARS-CoV-2 Infection Induces Reproducible Metabolic and Lipidomic Consequences across
Severity Classes Reflective of Systemic Multi-Organ Effects

As reported in numerous articles, the impact of SARS-CoV-2 infection on the serum
metabolite profile causes a disruption of multiple metabolites reflecting dysregulation of
pulmonary, cardiovascular, hepatic, and neurological processes [27]. Many of these pathways
are immunologically driven via complex cytokine fluctuations [4,6]. Using the integrated
metabolite panel from the combined NMR and UPLC-MS assays to compare infected versus
non-infected individuals, regardless of respiratory severity class, it was apparent that the
differential molecular signature of SARS-CoV-2 infection included reduced levels of phospho-
choline, phosphoethanolamine, lysophosphocholine, hexosylceramide, glutamine, Fischer’s
ratio (sum of the branched chain amino acids/sum of the aromatic amino acids), histidine, high
density lipoprotein parameters, and lactate:pyruvate ratio with higher levels of ABA1, LDL
triglycerides, formate, pyruvate, phenylalanine, glutamate, aspartate, neopterin:tryptophan
ratio, and the (aspartic acid + glutamic acid)/(asparagine + glutamine) ratio (Figure 1). This
profile is consistent with previous studies [28–30], including our analysis previously carried
out for a subset of this study containing 75 SARS-CoV-2 positive patients [20], and reflects
the multi-organ impact of SARS-CoV-2 infection with differentially altered parameters indi-
cating increased cardiovascular risk [31], e.g., apolipoprotein B100/A1 ratio, liver damage,
e.g., the Fischer’s ratio and taurine [32] and cellular immune activation e.g., neopterin and
kynurenine:tryptophan ratio [3,33].

In the combined O-PLS-DA model calculated using 1034 fully quantified metabolic
variables from all four assays: lipids; lipoproteins, and low molecular weight metabolites
(MS derived amino acids and tryptophan pathway metabolites and the NMR derived small
molecules), an AUROC of 0.99 differentiating infected from non-infected participants was
achieved (Table 1). Of the 1034 variables in this model, 598 were significant after correcting
for multiple testing. All the significant metabolites in the combined model and the asso-
ciated Cliff’s delta and adjusted p-values can be found in Table S5. The level of statistical
significance attached to many of the COVID-19 biomarkers is striking. For instance, pyruvic
acid (4.04 fold higher than control; p-value 2.67 × 10−38), formate (3.71 fold higher than
control; adjusted p-value of 1.18 × 10−43), PC 18:2/18:2 (0.18 fold higher than control;
p-value of 4.48 × 10−39), PE.O 16:0/20:4 (0.18 fold higher than control; p-value 4.48 × 10−39),
Asp+Glu/Asn+Gln ratio (2.71 fold higher than control; p-value 1.21 × 10−38) and the PE.P
18:1/20:4 (0.17 fold higher than control; p-value 2.67 × 10−38) were the strongest directly
associated markers of SARS-CoV-2 infection (Figure S1).

As shown in Table S1, the average age of the controls is significantly different for each
of the COVID-19 severity groups. The 1034 fully quantified metabolic variables from the
four assays were therefore corrected for age and the controls versus SARS-CoV-2 positive
patients were modelled using O-PLS-DA (Figure S2). It can clearly be seen that the most
significant metabolites which are elevated in the non-age corrected model (Figure 1) are also
present and the most highly significant in the age corrected model (Figure S2). These include
formic acid (p-value of age corrected model = 3.16 × 10−29), pyruvic acid (p = 2.46 × 10−16),
H2TG (p = 1.61 × 10−14), LDTG (p = 3.67 × 10−12), aspartic acid (p = 2.65 × 10−14), and
glutamic acid (p = 2.37 × 10−13). While the same lipids are still most significantly decreased
in the COVID-19 patients, PC 18:1/18:2 (p-value of age corrected model = 5.51 × 10−25),
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PC 18:2/18:2 (p = 7.07 × 10−24), PE.P 18:1/18:2 (p = 4.58 × 10−22) and PE.P 16:0/18:2
(p = 5.48 × 10−22).

Figure 1. The integrative pan-metabolic model compares the controls and SARS-CoV-2 positive
patients. (A) Eruption plot of the controls vs. SARS-CoV-2 positive patients for the combined
model. (B) O-PLS-DA of the control samples (blue triangles) and SARS-CoV-2 positive patients
(red triangles) for all four integrated assays, R2X = 0.13, AUROC = 0.99. p-values for all metabo-
lites/lipids/lipoproteins can be found in Table S5.

Table 1. Classification ability and number of significant parameters identified in pairwise comparisons
of respiratory severity groups for each molecular panel.

Comparison
Integrated Data Set Lipids Lipoproteins Low mw Metabolites

AUROC No. AUROC No. AUROC No. AUROC No.

Control vs. Group B 0.99 404
(39.07%) 0.98 296

(34.22%) 0.91 65
(58.04%) 0.98 27

(47.37%)

Control vs. Group C 0.99 483
(46.71%) 0.97 372

(43.00%) 0.95 81
(72.32%) 0.99 35

(61.40%)

Control vs. Group D 0.99 537
(51.93%) 0.99 414

(47.86%) 0.97 84
(75.00%) 1.00 39

(68.42%)

Control vs. Group E 1.00 608
(58.80%) 0.99 490

(56.65%) 1.00 83
(74.12%) 1.00 34

(59.65%)

Group B vs. Group C NS
(0.51) X NS

(0.49) X NS
(0.58) X NS

(0.58) X

Group B vs. Group D 0.62 0
(0.00%) 0.64 0

(0.00%) 0.64 0
(0.00%) 0.76 4

(0.07%)

Group B vs. Group E 0.77 6
(0.01%) 0.79 4

(0.01%) 0.70 0
(0.00%) 0.78 5

(0.09%)
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Table 1. Cont.

Comparison
Integrated Data Set Lipids Lipoproteins Low mw Metabolites

AUROC No. AUROC No. AUROC No. AUROC No.

Group C vs. Group D 0.61 12
(0.01%)

NS
(0.59) x NS

(0.58) x 0.65 15
(26.32%)

Group C vs. Group E 0.73 175
(0.17%) 0.72 81

(0.09%) 0.72 58
(0.52%) 0.74 18

(31.58%)

Group D vs. Group E 0.64 x NS
(0.59) x NS

(0.59) x 0.62 1
(0.02%)

NS: not significant.

The observation of exceptionally high serum concentrations of pyruvate in COVID-19
patients is concordant with existing literature on SARS-CoV-2 infected individuals, with
some studies showing a correlation with severity [34,35]. This strong correlation of pyru-
vate with SARS-CoV-2 infection is consistent with reported altered mitochondrial function
(failure to utilize pyruvate as an energy source) following viral infection, which can trigger
an immune response that shifts towards aerobic glycolysis to increase production of fatty
acids, amino acids, and nucleotides [29]. Increased circulating hypoxia-inducible factor-1α
(HIF-1α), which induces glycolysis [36], has been reported in SARS-CoV-2 infected pa-
tients, as has lactate [37]. Disruption of oxidative phosphorylation has been independently
observed via transcriptomic measurements in COVID-19 [38] and further studies on the
dynamics of mitochondrial disruption during COVID-19 are warranted.

Whilst increased serum pyruvate could result from a dysregulation of mitochondrial
metabolism or hepatic central carbon metabolism [35], another theory is that the increase
in pyruvate concentrations is driven by an increase in lactate dehydrogenase activity [39].
Zhou et al. [39] reported that the lactate to pyruvate ratio, which reflects lactate dehydroge-
nase activity, was markedly lower in the infected group in comparison to the non-infected
group. Marin-Corral et al. [34] published similar findings and proposed that since the lower
lactate to pyruvate ratio in SARS-CoV-2 infection was not associated with a concomitant
increase in serum lactate concentrations, the high pyruvate concentrations may rather
reflect an imbalance of nicotinamide adenine dinucleotide (NAD) metabolism, which is
required to convert pyruvate into lactate. In support of this hypothesis, they found evidence
of alteration in other metabolite ratios that require NAD+ as a cofactor in SARS-CoV-2
patients including the transformation of cortisol into cortisone by 11β-hydroxysteroid
dehydrogenase type 2 [34]. The synthesis of NAD+ is dependent on the kynurenine arm
of the tryptophan pathway [40], which is also disrupted following SARS-CoV-2 infec-
tion. We also found a significantly lower lactate to pyruvate ratio in infected patients
(p-value = 6.10 × 10−35). However, although the infection-related increase in pyruvate
and decrease in the lactate:pyruvate ratio was amongst the strongest differentiators of
non-infected and infected samples, we did not find a direct relationship with severity
indicating a quantized shift of metabolic state associated with infection.

We found glutamate and aspartate to be directly associated with SARS-CoV-2 infection,
whereas glutamine and asparagine were moderately but significantly (Table S5) inversely
associated. Therefore, we calculated the ratio Asp:Glu/Asn:Gln to summarize these obser-
vations and found it to be strongly associated with the severity of infection. Other studies
have also shown that SARS-CoV-2 infection results in significantly enriched aspartate and
glutamate metabolism [3,28,41], and that impaired glutamate and glutamine pathways
were the strongest metabolic indices of SARS-CoV-2 infection [42], with some proposing
glutamine supplementation as part of the therapeutic management of the infection [43].
However, some research groups have reported lower plasma glutamate concentrations in
SARS-CoV-2 infected individuals [44]. On balance the literature and our results from the
current study indicate that the glutamate to glutamine ratio is strongly associated with
SARS-CoV-2 infection [45]. Both aspartate and glutamate are major anaplerotic carbon
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sources for the citric acid cycle, and they may be another indication of reduced mito-
chondrial efficiency during SARS-CoV-2 infection. Krishnan et al. reported higher levels
of serum glutamate and found that the surface expression of the glutamate transporter
xCT (SLC7A11) was increased in monocytes in SARS-CoV-2 infected patients and showed
that glutaminolysis was essential for replication of the SARS-CoV-2 virus [46]. There has
been considerable concern about reports of new onset diabetes caused by SARS-CoV-2
infections [3,47,48]. It is of note that high plasma glutamate and low plasma glutamine
observed here and in earlier work [3] is a strong feature in the plasma during the acute
phase of the disease. We previously reported that the glu/gln ratio remained persistently
high in patients following COVID-19 and was one of the least reversible of the metabolic
features measured in “long COVID” patients [2]. This indicates a persistent driver for
type 2 diabetes in post COVID-19 patients and warrants further investigation in relation to
long-term diabetic risks.

We also found elevated plasma Ornithine in infected patient samples which may
indicate upregulation of the urea cycle, possibly driven by the increase in serum aspartic
acid. Upregulation of urea cycle metabolites was also reported by Costanzo et al. [6,28].
Elevated ornithine levels have been associated with an increase in ammonia burden due
to a metabolic block in the urea cycle. In such cases, the ammonia burden normally shifts
the glutamate:glutamine ratio towards glutamine. However, this is the reverse of what
we observed here with a highly significant shift towards glutamate. Recent large-scale
epidemiology studies have shown that a high glu:gln ratio is associated with type 2 dia-
betes and risk of metabolic diseases [48,49]. Higher plasma concentrations of glutamate,
lower glutamine concentrations, and the associated higher glutamate:glutamine ratio have
been associated with increased risk of type 2 diabetes in the PREDIMED trial. Proposed
mechanisms by which this altered glutamate to glutamine ratio impacts diabetes risk
includes the fact that glutamine can bring about lowering blood glucose levels by stimu-
lating insulin secretion via release of the glucagon-like peptide (GLP-1) [50]. Conversely,
high circulating concentrations of glutamate can increase oxidative damage in pancreatic
cells [51]. This is of interest because of the diabetogenic properties of the SARS-CoV-2
infection and the increased diabetes risk that is now recognized as a problem associated
with long COVID [48].

Of all the metabolites in the predictive molecular panel for infection, formate demon-
strated the strongest association with SARS-CoV-2 infection [9,52,53]. Formate is formed
as a by-product of the conversion of tryptophan to N-formyl-kynurenine and one of the
metabolic hallmarks of SARS-CoV-2 infection is the reduction of the bioavailability of
tryptophan through the activation of Indoleamine 2,3-dioxygenase (IDO), in-turn reducing
serotonin levels and elevating production of kynurenine and quinolinic acid products [6,54].
However, formate is also formed as part of gut microbial metabolism, and it is known that
the gut microbiome can be significantly impacted by SARS-CoV-2 infection and so this
potential biomarker is likely to have multiple origins directly and indirectly related to the
virus infection.

The parameters were ranked according to their significance in the overarching multi-
class severity model, and the top 50 parameters, mostly but not exclusively, belong to
the lipid and lipoprotein classes (Figure S1). Radar plots were constructed to show the
fold-changes between the control samples and the SARS-CoV-2 positive patients for the
50 most significant molecules by p-value; the radar plots were ordered clockwise by decreas-
ing fold change (Fold change is defined as (B − A)/A, so 0 means no change). Pyruvate
shows the largest fold-change between the controls and the SARS-CoV-2 positive pa-
tients. The lipids that were most significant in differentiating infected from non-infected
samples were the phosphatidylcholines (PC 18:2/18:2, PC 18:1/18:2, PC 18:2/20:4) and
phosphatidylethanolamines (PEP 18:2/18:2, PEP 18:1/18:2, PEP 16:0/18:2). This has been
reported previously but was based on a study with a smaller number of participants [22].
Several of the HDL subclass-4 lipoprotein parameters (H4A1, H4A2, H4CH, and H4PL)
were markedly reduced and featured in the most significant list. Previous studies have found
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an inverse correlation between levels of HDL particles and severity of SARS-CoV-2 infection,
with some studies showing binding between the spike protein of the virus and HDL [4,55].
In contrast, other studies have proposed that HDL facilitates infection of host cells by bind-
ing to angiotensin-converting enzyme 2 (ACE2) [56]. In one study, low pre-covid levels of
HDL cholesterol was found to be correlated with the severity of SARS-CoV-2 infection [57].

In previous research on pulmonary arterial hypertension, low plasma levels of HDL4
were found to be associated with mortality [58]. Plasma concentrations of HDL4 levels
were directly associated with several proteins involved in fibrinolysis and indeed small
HDL particles such as HDL4 are known to transport proteins such as prekallikrein [58].
Prekallikrein is the precursor of the serine protease kallikrein which acts to release kinins
such as bradykinin, which are involved in fibrinolysis, blood pressure control, and vascular
inflammation [59]. In addition to atheroprotective properties and a role in fibrinolysis,
HDL4 (also referred to as HDL3b and HDL3c in older nomenclature) has been shown to
have antioxidant and antiinflammatory properties, with the ability to stimulate production
of nitric oxide, mainly due to the effect of Apo-A1 [60]. The highest ranked lipoprotein
parameter in differentiating SARS-CoV-2 infection and control and which was also lower in
the participants who died was H4A1 (HDL4-Apolipoprotein-1), the main protein carried by
the small, dense HDL4 particles. Apo-A1 is inversely correlated to cardiovascular disease
and is arguably a better predictor of cardiovascular disease [61].

Stratification of the data by molecular class or assay type allows a more detailed
assessment of the impact of infection. The models for each assay type are provided in
Figure S3. While the model built using all four assays yielded a AUROC of 0.99 for differ-
entiating infected from non-infected samples, the models generated for lipoproteins, lipids,
and low molecular weight metabolites independently also showed excellent classification
predictivity (AUROC 0.95–1.00), indicating that any one of these assays on its own was
capable of accurately classifying SARS-CoV-2 infection (Table 1 and Figure S3).

2.2. Metabolite Classes Based on Severity of Infection

The key question to consider is whether the metabolite classes that are most sig-
nificantly perturbed within a mild case of COVID-19 disease are the same as those in
an individual with a severe infection. To obtain a more comprehensive view of all the
1034 variables in the integrated model and how the significant metabolites change with in-
creasing respiratory severity, significant metabolites were clustered and colored by assay in
a pan-metabolic plot (Figure 2): lipids in black; lipoproteins in green; low molecular weight
metabolites in magenta. For all three molecular panels, the core differential metabolites
remained the same across severity categories, with the ranked order of significant metabo-
lites being similar, but not identical across the severity levels (Figures 2 and 3, Tables S6–S9).
The similarity of the core metabolites across all severity models indicates that the metabolic
changes within the severity group B are similar to those in group E, at least within the top
50 most significant metabolites. However, it can be clearly observed that group E severity
log2 fold change is greater than group B, C, and D (Figure 3 and Figure S1B). Although the
core set of metabolites were stable as severity progressed, as the severity level of respiratory
symptoms increased, the number of discriminatory metabolites in the O-PLS-DA models
tended to increase incrementally (Table 2). Thus, the model for the mildest severity (group
B) contained the lowest number of statistically significant parameters (404 in Group B,
483 in Group C, 537 in Group D, and 608 in Group E, respectively).
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Figure 2. Metabolic Barcode Diagram illustrating the Pan-Metabolic statistically significant lipids,
lipoproteins, low molecular weight metabolites, amino acids, and tryptophan pathway intermediates
for each respiratory severity group versus the controls. The 1034 quantitative variables are ordered
by analytical technique, lipids (black), lipoproteins (green), and low molecular weight metabolites
and MS amino acids and tryptophan (magenta). White spaces on the plot indicate metabolites that
are not significant.

Figure 3. Pan Metabolic Severity Mapping of COVID-19 Severity—the top 50 most significant
differentiating metabolites in the controls versus each severity group models for the integrated
data set. The top 50 most significant metabolites by p-value of the integrated data set using the
controls vs. SARS-CoV-2 positive patients, ordered by log2 fold change. Fold changes with respect
to controls of each severity class are shown: group B (blue), group C (cyan), group D (orange), and
group E (red). The metabolite axis is colored according to the assay with which the metabolite is
measured: lipids (black), lipoproteins (green), and the low molecular weight metabolites (magenta).
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Table 2. Pan Metabolic Severity Mapping of COVID-19 Severity—the top 25 most significant differ-
entiating metabolites in the controls versus each severity group models for the integrated data set,
ranked by fold change. The metabolites are colored according to the assay with which the metabolite
is measured: lipids (black), lipoproteins (green), and the low molecular weight metabolites (magenta).

Rank Control vs. B Severity Control vs. C Severity Control vs. D Severity Control vs. E Severity

1 Pyruvic acid Pyruvic acid Pyruvic acid Neopterin/tryptophan

2 Formic acid Formic acid Formic acid Pyruvic acid

3 Asp:Glu/Asn:Gln Asp:Glu/Asn:Gln Asp:Glu/Asn:Gln Formic acid

4 PC (16:0/18:2) H4PL H4A1 Asp:Glu/Asn:Gln

5 PC (18:1/18:2) PC (18:1/18:2) H4PL TPA1

6 PC (20:0/20:4) H4CH H4A2 TPA2

7 HCER (22:0) HCER.d (18:0/18:0) PC (18:1/18:2) H4A1

8 HCER.d (18:0/18:0) PE.P (18:0/18:1) H4CH H4PL

9 PE.P (18:1/20:1) PC (18:2/20:2) PC (18:2/20:2) H4A2

10 PC (18:2/20:2) Lactate/pyruvate LPC (20:0) PC (18:1/18:2)

11 PE.P (18:0/20:1) PE.P (18:0/22:5) PE.P (18:0/22:5) H4CH

12 LPC (18:2) PE.O (16:0/18:1) PE.P (16:0/22:5) PC (18:0/20:1)

13 PE.P (18:0/20:4) PE.P (16:0/20:1) PE.P (16:0/20:4) PE.P (18:0/22:5)

14 PE.O (18:0/22:5) PE.P (16:0/22:5) LPC (18:2) PE.P (16:0/22:5)

15 PE.O (16:0/20:1) LPC (18:2) PE.P (18:1/20:4) PC (20:0/20:3)

16 PE.P (18:1/18:2) PE.P (18:0/20:4) PE.P (18:1/18:2) PE.P (16:0/20:4)

17 PC (18:2/18:3) PE.O (16:0/20:1) PC (18:2/18:3) LPC (18:2)

18 PC (18:2/20:4) PE.P (18:1/18:2) PC (18:2/20:3) PE.P (18:1/20:4)

19 PE.P (16:0/18:2) PC (18:2/18:3) PE.P (16:0/18:2) PE.P (18:1/18:2)

20 PE.P (18:2/20:4) PE.P (16:0/18:2) PE.P (18:2/20:4) PC (18:2/20:3)

21 PC (18:2/18:2) PE.P (18:2/20:4) PC (18:2/18:2) PC (18:2/20:4)

22 PE.P (18:0/18:2) PC (18:2/18:2) PE.P (18:0/18:2) PE.P (16:0/18:2)

23 PE.O (16:0/20:4) PE.P (18:0/18:2) PE.O (16:0/20:4) PE.P (18:2/20:4)

24 PE.P (16:0/18:3) PE.O (16:0/20:4) PE.P (18:2/18:2) PC (18:2/18:2)

25 PE.O (16:0/18:2) PE.O (16:0/18:2) PE.O (16:0/18:2) PE.O (16:0/20:4)

Expressed as a percentage of the total measured parameters, it is evident that the great-
est increment in percentage of differential parameters is observed between SARS-CoV-2
participants who did not require hospitalization (Group B) and those who required hos-
pitalization but with no requirement for oxygen (Group C). For lipids, the percentage of
statistically significant differential parameters ranged from 36% of all lipids measured
being discriminatory in the non-hospitalized category to 57% in the most severe category,
indicating that even at the lowest severity there is substantial metabolic dysregulation.
To display the pan-metabolic responses to different severity levels, we have introduced a
“Metabolic Barcode” model (Figure 2). Here, each line of the barcode represents an individ-
ual statistically significant parameter organized according to molecular class providing a
means for rapid visualization of similarities between the models, in this case relating to
increasing severity. Thus, it can be seen that the lipoproteins and most of the lipid classes
share strong similarities across severity levels but that the triacylglycerides are somewhat
different between the least and most severe class comparisons with control. For the low
molecular weight metabolites and the lipoproteins, the number of significant metabolites
increased most sharply between categories B (non-hospitalized) and C (hospitalized but
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not requiring oxygen) but plateaued at the more severe symptom categories. Since the
decision whether to administer oxygen can be partially dependent on the caregivers, there
is a certain amount of subjectivity in the distinction between hospitalized patients who did
or did not receive additional oxygen, and therefore the similarities between categories C
and D is not unduly surprising.

Another type of pan-metabolic response graph is shown in Figure 3 where the top
50 metabolites differentiating control from SARS-CoV-2 infected classes are ranked by order
of the variables in terms of their adjusted p-values in each of the pairwise comparisons
of the severity groups with non-infected controls for the integrated parameter set, and
shows the log2 fold change with respect to the non-infected control class, with the different
severity classes defined by the color of the coordinate (red for the greatest severity and
blue for the least severe). Thus, the longer the bar, the greater the difference in fold change
from the least to most severe class. The top 25 parameters differentiating infected and
control samples on a class-by-class basis are provided in Table 2, which shows that in
general, while there is some reordering in the rank of significant metabolites (based on
adjusted p-value) level of significance of the metabolites as severity increases (Table 2),
the same metabolites remain upregulated in the disease state. Formate is the most signif-
icant metabolite across all severities, except for Group E, where it falls to second place
behind the neopterin:tryptophan ratio. Pyruvate and the Asp:Glu/Asn:Gln are consistently
ranked in the top four places across all severity levels. It should also be noted that for the
control vs. B group (Table 2), most of the top 25 significant metabolites comprise mainly
of lipids but as severity increases a number of ranked HDL subparticle four lipoprotein
classes are involved. This is of note because we have previously shown that HDL subclass
four (the smallest high density HDL) is significantly reduced in COVID-19 [4,20]. HDL is
also reduced in pulmonary hypertension and carries several fibrinolytic proteins, such as
alpha-2-antiplasmin, prekallikrein, and coagulation factor XI [58], which potentially reflects
a predisposition towards micro blood clotting, a known problem of SARS-CoV2 infection.
In the higher severity groups, TPA1 and TPA2 (total Apolipoprotein-A1 and -A2) were
significant in differentiating between cases and controls in addition to H4A1 and H4A2,
emphasizing the roles of Apolipoprotein-A1 and -A2 in response to SARS-CoV-2 infection.

Inspection of the extended list of the top 50 most significant parameters (Figure 3 and
Table 2) shows that lipids dominate the ranked lists with lower levels of multiple phos-
phatidylcholines and phosphatidylethanolamines in the infected group being a defining
feature. Although the core molecular signature of SARS-CoV-2 infection was similar in
character regardless of the severity, the main exception lay in the impact on the tryptophan
pathway, which was differentially impacted in the most severely infected group (Table 2).

For most parameters, the difference in magnitude of fold change between the least
(Group B, blue) and most (Group E, red) severe infection groups are not substantial and
many parameters do not demonstrate a linear progression with severity, again reinforcing
the observation that the molecular signature of the infection is similar regardless of respira-
tory severity. For example, in severity groups B and C, pyruvic acid, Asp:Glu/Asn:Gln, and
glutamic acid manifest the largest fold change from non-infected but the fold change does
not increase substantially as the respiratory severity of infection increases. This suggests
changes in these metabolites and ratios may be more indicative of the presence of infection.
The exception is for serum levels of tryptophan, neopterin, and quinolinic acid (Figure S5),
which show an abrupt concentration change with the transition from groups B and C to
groups D and E thereby associating with severity rather than presence of infection. Never-
theless, with the exception of the contribution from the tryptophan pathway metabolites,
the severity of respiratory infection has little impact on the core metabolic parameters
differentiating infected from non-infected individuals. To note, within severity group E, the
assisted ventilation patients, 22 were admitted into ICU while 35 were not. Comparison of
the 1034 fully quantified metabolic variables of those who were admitted into ICU versus
those who were not where all patients were subsequently discharged from hospital resulted
in all adjusted p-values being non-significant. Figure 3 and Table 2 shows some of the same
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metabolites that are highly significant are the same between controls versus mild cases
and controls versus assisted ventilation patients. This suggests the shifts in metabolomic
profile seen are highly dependent on the presence of infection with minimal contributions
from assisted ventilation and admission into ICU. These findings would indicate that the
metabolic monitoring of patients with mild acute phase respiratory disease may be equally
important as a patient that was severely ill in the acute phase. Indeed, it has been shown
previously that even with mild symptoms, metabolic perturbations are still present many
months after the acute phase of the disease is resolved [2], and several of these metabolic
perturbations may be associated with altered long-term disease risk.

When the datasets for the assays were modelled independently and stratified for
respiratory severity, all four infected categories ranging from non-hospitalized but symp-
tomatic (Group B) to hospitalized and requiring ventilation (Group E) when compared
with the non-infected group delivered robust models (Table 1). O-PLS-DA scores plots,
eruption plots, and variable importance plots of the variables of each model can be found
in the Supplementary Materials (Figures S6–S12 and Tables S10–S29). In most cases, the
AUROC values were as high for the model comparing the mild severity disease with the
non-infected group (AUROC= 0.98–1.00) as for the model of the most severe disease group
versus the non-infected group (AUROC > 0.99). Although the metabolic plasma profiles
showed a continuum of changes across the respiratory severity levels, even mildly affected
respiratory patients showed multiple highly significant abnormal biochemical signatures
reflecting serious metabolic deficiencies of the type observed in Post-acute COVID-19
syndrome patients.

For the lipoprotein dataset, strong models were produced for each severity classifica-
tion, which gives insights into cardio-metabolic complications of COVID-19 (Figures S6–S8).
Seven of the top ten lipoproteins appear as the most significant in each of the four severity
comparisons, namely: H4CH (high density cholesterol subfraction 4), H4PL (high density
phospholipid subfraction 4), TPA2 (Apolipoprotein-A2), H4A1 (high density lipoprotein
Apolipoprotein-A1 subfraction 4), H4A2 (high density lipoprotein Apolipoprotein-A2
subfraction 4), HDA1 (high density lipoprotein Apolipoprotein-A1), and H4FC (high den-
sity free cholesterol subfraction 4), which are all decreased in the SARS-CoV-2 infected
individuals. As before, the number of statistically significant metabolites increased as the
respiratory severity of the patient worsened (Tables 1 and 2). Low Density Triglyceride
(LDTG) had the greatest statistical significance across all severity classes. Interestingly,
ABA1 (Apolipoprotein-B100/Apolipoprotein-A1), a known cardiovascular risk lipoprotein
marker [1,31,62,63], demonstrated an increase in all severity classes in comparison to the
controls with a Cliff’s delta ranging from 0.91–1.00, which indicates that even with mild
disease the potential for detrimental cardiovascular effects is present.

Pairwise comparison of SARS-CoV-2 infected groups indicated that severity classes
B and C could not be significantly differentiated for any of the molecular panels with
AUROC < 0.6 for all single increment models (Table 1). Similarly, groups C and D and
groups D and E could not be differentiated based on their lipid or lipoprotein parameters,
although weak models were obtained for the low molecular weight parameter set for the
comparison of group C (hospitalized patients with no oxygen supplementation) versus
severity group D (hospitalized patients with low flow oxygen) and for group D versus E.
As a result, the number of differential metabolites for each assay was vastly reduced when
comparing between severity levels in comparison with comparing any of the infected
classes to those non-infected. This lack of ability to robustly differentiate sequential severity
classes supports the suggestion that metabolically the impact of SARS-CoV-2 infection is
much greater than differences between mild and severe infection.

As shown in the Eruption plots constructed from the lipid data (Figure S9), the major-
ity of the lipid parameters are reduced in SARS-CoV-2 infection from the mildest infection
to the most severe. However, from the lipids that increase with infection, monoacylglycerol
20:3 is the most significantly upregulated lipid in severity group B vs. controls and severity
group C vs. controls and remains highly significant in the more severe disease states. Phos-
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phoserine 18:0/18:0 is also highly significant in all models, while ceramide 18:0 increases in
significance as respiratory severity increases. Interestingly, of the lipids that decrease with
COVID-19 infection, the most significant in the control vs. B group comparison is also the
most significant in the control vs. E group: phosphocholine 18:1/18:2. In all the severity
classes vs. controls the phosphocholine, phosphoethanolamine, lysophosphocholine, and
hexosylceramide remain the most significant markers of COVID-19 infection, regardless of
severity class, all of which are present in reduced concentration compared to the controls
and have been reported to have been reduced previously in COVID-19 infections [5,64].

2.3. Tryptophan Pathway Metabolism Is Substantially Disrupted in Severe SARS-CoV-2 Infection

Although most of the low molecular weight metabolites, including many of the amino
and organic acids, did not associate with infection severity, we and others have reported
the tryptophan pathway to be disrupted by SARS-CoV-2 infection [6] and also influenced
by the severity of infection: quinolinic acid (positively associated), tryptophan (negatively
associated), and 3-hydroxykynurenine (positively associated), correlated with severity (See
Figures S11–S13). Indole-2,3–dioxygenase modulates the production of kynurenines and is a
known regulator of inflammation in the event of infection, including SARS-CoV-2 [65]. In the
integrated set of all metabolites stratified by severity, no tryptophan pathway metabolites
ranked in the top 50 most discriminatory parameters when comparing either group B or
C severity with control, whereas the neopterin to tryptophan ratio (positively associated)
ranks in the top 50 for Groups D versus control and both the neopterin to tryptophan
and quinolinic acid to tryptophan (positively associated) ratios rank in the top 50 most
significant parameters for the comparison of group E versus controls (Table S9). Low
tryptophan levels together with high neopterin concentrations have been associated with
cardiovascular disease and cancer [66] and are related to inflammation. Analysis of the low
molecular weight parameter set in isolation additionally finds higher serum concentrations
of quinolinic acid, neopterin, and 3-hydroxykynurenine, plus lower levels of tryptophan
and serotonin (Tables S21–S24). Lower serum serotonin levels are only apparent in the
models for the two highest severity categories.

Disruption of the tryptophan pathway following SARS-CoV-2 infection has been
reported in multiple studies [2,6]. Both quinolinic acid and 3-hydroxykynurenine, together
with glutamate, which is also directly associated with infection across all severity classes
(Tables S21–S24), are excitatory neurotoxins [67]. Increasing reports of associations between
quinolinic acid and neurodegeneration include conditions such as Huntington’s disease,
AIDS, dementia, Alzheimer’s disease, and Parkinson’s disease [67–69]. In the current
study, changes in serum concentrations of the kynurenine:tryptophan ratio and picolinic
acid were found to track with the severity of SARS-CoV-2 infection. Consistent with this
observation, kynurenine significantly differentiates classes C to E from controls but not B
whereas picolinic acid is only significant on the model comparing the most severe class E
with non-infected (Tables S21–S24). Upregulation of the kynurenine pathway occurs due
to proinflammatory cytokines including IL-1, TNF-α and IL-6 [70] and has been noted
previously in COVID-19 and other chronic diseases [71].

These data indicate that as the severity increases, catabolism of tryptophan via the
kynurenine pathway increases [33]. Picolinic acid, a metabolite downstream in the path-
way, is the most significant metabolite in the D vs. E model while it was not significant
in the C vs. D model and has been previously shown to have a role in inflammatory
disorders within the central nervous system [72] and to be increased in cases of children
with malaria [73]. It has also been found to be significant in severity classification in
COVID-19 patients. Cihan et al. reported an association between SARS-CoV-2 infection
severity and picolinic acid and the kynurenine:tryptophan ratio and showed a correlation
between KYN:TRP and the inflammatory marker IL-6 [33]. It has been shown previously
that decreases in tryptophan concentrations become significant in severely ill COVID-19
patients in comparison to mild or moderately ill patients [38,74].
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2.4. Mortality Prediction in SARS-CoV-2 Positive Patients

This study was conducted early in the pandemic with the Wuhan sub-variant dominant
in an exclusively unvaccinated population with consequent high mortality. Within the
severely ill SARS-CoV-2 patients (group E severity), 56.1% died. No patients in severity
groups B, C, or D died. In terms of demographics, the subset of group E that did not survive
were significantly older than those that survived. In order to remove the effect of the age
disparity and compare the two groups, only participants that were between the ages 65–80
were selected, resulting in 13 people who survived (median age = 73) and 13 who did not
(median age = 75). The demographics of these two groups are found in Table S30.

For the 13 SARS-CoV-2 infected patients, it should be noted that the time between
blood collection to the patient dying ranged from 8–61 days. The resulting model (Figure 4),
which used all the 1034 variables from all four assays, had an AUROC of 0.96 indicating
that the retrospective model was able to predict mortality at a median of 25.5 days prior
to death. All significant metabolites can be found in Table S31. The severity classification
prediction model was then cross validated. Projection of the COVID-19 patients from this
study into the trained model provided high specificity. For the group B severity group
(Figure 4C), all were classified as survivors, so the specificity = 1.00. For group C severity
(Figure 4D), the specificity = 0.87, McNemar’s Test p = 6.15 × 10−5. For group D severity
(Figure 4E), the specificity = 0.89, McNemar’s Test p = 4.43 × 10−3.

Effectively this means that on hospitalization, the high mortality patients had a
pharmaco-metabonomic serum signature that was predictive of the outcome of the disease
for up to 25 days prior to death. The concept of pharmaco-metabonomic prediction was
proposed to define the ability to predict metabolic outcomes based on pre-intervention
or pre-disease metabolic profiles [75,76], and has previously been applied to retrospec-
tively predict survival in acute-on-chronic liver disease patients [77]. Knowledge of such
prognostic data could be applied to beneficially influence selecting the therapy of the
individual patient.

As shown in Figure 4A, the lipid family hexosylceramides were key indices of survival
and several ceramides were present in significantly higher levels (Cliff’s delta > 0.5) in
the patients who did not survive (hexosylceramide 16:0; 20:0, 22:0; 24:0; 24:1; 26:0; 26:1
and dihydrohexosylceramide 18:0/24:0; 18:0/24:1). An increase in ceramide species in
those patients that did not survive has previously been shown in a study predicting the
7-day mortality outcome [78,79]. It has also been demonstrated that ceramides could
predict death in patients with stable coronary artery disease and acute coronary syndromes,
where it was postulated that the ceramides are associated with lipoprotein aggregation and
uptake, superoxide anion production, apoptosis, and inflammation [80]. More specifically,
hexosylceramides have been found in higher concentrations in patients with multiorgan
dysfunction syndrome than sedated controls in an intensive care unit [81] and have also
been linked to viral load in hepatitis C infection [82].

In addition to the elevated hexosylceramides, three sphingomyelins with sidechain
lengths 20:1, 26:0, and 26:1 (Cliff’s delta values 0.70, 0.86, and 0.75, respectively) were also
elevated in the patients that did not survive. Increases in sphingomyelins have been shown
previously in COVID-19 infection in humans and in animal models [83]. In contrast to
hexosylceramides and sphingomyelins, phosphoethanolamines with chain lengths 16 and
18 and the triacylglycerides are decreased in the patients who did not survive. Correlation
plots were completed (Figure S14) and showed differing patterns between the two groups
in the model.
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Figure 4. Modelling Pharmaco Metabonomic COVID-19 mortality prediction on the integrated
dataset. (A) Eruption plot of the severity group E patients who survived vs. the severity group E
patients who died. (B) O-PLS-DA of severity group E patients who survived (green triangles) and
severity group E patients who died (red triangles), R2X = 0.26, AUROC = 0.96. Cliff’s delta, OPLS
loadings values and the adjusted p-values for this model can be found in Table S31. Model was
built using 1034 parameters. (C) O-PLS-DA of severity group E patients who survived (green closed
triangles) and severity group E patients who died (red closed triangles) with group B severity patients
projected onto the model (green open triangles). (D) O-PLS-DA of severity group E patients who
survived (green closed triangles) and severity group E patients who died (red closed triangles) with
group C severity patients projected onto the model (green open triangles). (E) O-PLS-DA of severity
group E patients who survived (green closed triangles) and severity group E patients who died (red
closed triangles) with group D severity patients projected onto the model (green open triangles).
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Using the combined panel of lipids, lipoproteins, and small molecules, the AUROC
for predicting survival was 0.96. This compares well with other previously published
predictive biomarkers and biomarker panels. In terms of single predictive clinical markers
of survival, placental growth factor (P1GF) returned an AUROC of 77.2% for predicting
survival at a median of 14 days after hospital admission (range 2 to 57 days) [84] and CRP
concentrations correlated with 14-day mortality with a sensitivity of 0.88 and specificity
of 0.56 [85], chromogranin A [86], and D-dimer [87]. In particular, D-dimer levels along
with high sensitivity CRP, ferritin, and IL-6 have been reported to be correlated with
the severity of SARS-CoV-2 infection with D-dimer demonstrating the best ability for
predictions of mortality [88]. Other research groups have proposed ratios of biomarkers for
predicting SARS-CoV-2 mortality such as (kynurenine/tryptophan)/(cirulline/ornithine),
which returned an AUROC of 0.95 [89]. Although various biomarker panels have been
proposed with relatively high sensitivity and specificity, many of these have not been
validated in other cohorts. One example is a panel of lactate dehydrogenase, CRP, and
lymphopenia which achieved >90% accuracy in predicting mortality in a Chinese cohort
but was not replicated in a cohort of Caucasian Dutch individuals [90].

In the current cohort, we found altered serum lipoproteins also contributed to the
model differentiating patients who did and did not survive (Figure 4 and Figure S15). Key
changes were observed in predominantly cholesterol and free cholesterol components.
These include HDCH (Cliff’s delta = 0.80), LDCH (Cliff’s delta = 0.69), H3FC (Cliff’s
delta = 0.83), HDFC (Cliff’s delta = 0.70). Total Apoprotein A1 (TPA1, Cliff’s delta = 0.60),
HDL Apoprotein A1 (HDA1, Cliff’s delta = 0.61), and HDL subfraction 4 Apolipoprotein
A1 (H4A1, Cliff’s delta = 0.61) are all increased in the patients who did not survive. The
very low density lipoprotein fractions were present in higher concentrations in those who
survived compared to those who did not. These observations are in concordance with
the work from Masana et al. [91] who noted that low plasma HDL cholesterol and high
triglyceride concentrations were correlated with infection severity. Similarly decreased
plasma concentrations of several lipid classes has been reported as a feature of SARS-CoV-2
with lysophosphocholine (LPC) 18:0 and LPC 18:2 being inversely correlated with mortality.
Although we did not find a specific correlation between these lipids and survival in the current
cohort, LPC 18:0 and LPC 18:2 were associated with both the presence of SARS-CoV-2 infection
and severity (Tables S5, S17 and S19) [92]. Given the predictive strength of the lipid data, we
assessed the ability of the top lipid species defining the SARS-CoV-2 positive and control
groups according to the adjusted p-value (HCER 16:0 and PE.O 18:0/18:1), respectively, to
predict mortality. The AUROC based on these two lipid species was 0.99 (Supplementary
Figure S16) suggesting that this may be a good diagnostic for SARS-CoV-2 mortality and
that the diagnostic value of these lipids warrants validation in independent datasets.

The only low molecular weight metabolite with a Cliff’s delta above 0.6 in the model
predicting mortality was taurine which was higher in the patients that did not survive.
The Mann-Whitney test showed the significance between the two groups to be 2.3 × 10−3.
Elevated taurine levels have previously been associated with liver injury and hepato-
toxicity [93]. However, taurine is also present in large quantities in skeletal and cardiac
muscle [94], and as COVID-19 causes skeletal muscle loss it may be a result of muscle
breakdown [95]. Other groups have previously achieved accurate mortality prediction
using clinical [96,97] and metabolomic [38,89,98] data only. Here we present a model which
contains a larger patient cohort, therefore adding statistical power, and measuring consid-
erably more variables facilitating deeper understanding of mechanistic pathways involved
in SARS-CoV-2 infection.

3. Materials and Methods
3.1. Participant Enrolment and Sample Collection

The cohort consisted of non-infected control participants (n = 89) and patients who
tested positive for SARS-CoV-2 infection from upper and/or lower respiratory tract swabs
by RT-PCR (n = 306). These samples were collected early in the pandemic with the Wuhan
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sub-variant dominant in an exclusively unvaccinated population. The infected participants
were divided into four categories based on severity of respiratory symptoms: severity
group B, symptomatic but no hospitalization; group C hospitalized, no oxygen required;
group D hospitalized supplemental oxygen required; and group E hospitalized, assisted
ventilation [21]. No asymptomatic patients were in this cohort (group A). The cohort
demographics are provided in Table S1.

All serum samples were provided by the Basque Biobank for research (BIOEF). Control
serum samples were collected prior to the COVID-19 pandemic by Osarten Kooperativa
Elkartea from an apparently healthy population (employees of the Mondragon Coopera-
tive [Basque Country], during the annual medical test). For the control samples only the
participant gender, age, and BMI were provided for this study (Table S1). No information
was provided upon the possible presence of any other diseases such as diabetes or car-
diovascular disease. For this reason, within this study, they are not referred to as healthy
controls but controls of a normal population.

The COVID-19 samples were collected at the Cruces University Hospital (Barakaldo,
Spain) from patients who presented compatible symptoms, confirmed by a RT-PCR assay
on nasal swab samples. All blood was collected in BD vacutainer serum tubes with clot
activator with the same pre-analytical handling procedures for the controls and patients.
All participants provided informed consent, according to the Declaration of Helsinki, and
data were anonymized to protect their confidentiality. The sample handling protocol
was evaluated and approved by the ethics committee of Basque Country (Report of the
ethics committee for research on medicinal products in the Basque Country, CEIm-E,
PI+CES-BIOEF 2020-04, and PI219130). Shipment of human samples to the ANPC had the
approval of the Ministry of Health of the Spanish Government and were imported under
Import Permit 0004275122 issued by the Australian Government Department of Agriculture,
Water, and the Environment. Upon receipt samples were stored at −80 ◦C. Samples
were approved for analysis as part of the International Severe Acute Respiratory and
Emerging Infection Consortium (ISARIC)/World Health Organization (WHO) pandemic
trial framework (SMHS Research governance office PRN:3976). Research was conducted in
accordance with the Murdoch University Human Ethics Committee approval (no. 2020/052
and 2020/053).

3.2. 1H NMR Spectroscopy Sample Preparation

All sample preparation and processing followed the guidelines recommended by
Loo et al. [99]. Samples were defrosted at room temperature for 1 h prior to preparation
for analysis. NMR samples were prepared in a SamplePro Tube (Bruker Biospin, GmbH,
Ettlingen, Germany) robot system for liquid handling with integrated temperature con-
trol. Every sample was automatically prepared as a mixture of phosphate buffer (75 mM
Na2HPO4, 2 mM NaN3, 4.6 mM sodium trimethylsilyl propionate-[2,2,3,3-2H4] (TSP) in
H2O/D2O 4:1, pH 7.4 ± 0.1) and serum at a 1:1 ratio for a final volume of 600 µL into the
5 mm SampleJetTM NMR tubes. Samples were then manually shaken for several seconds
and stored at 5 ◦C inside the SampleJetTM automatic sample changer until measurement
(<24 h). All methods were validated for COVID-19 samples as previously reported [99].

3.3. 1H NMR Spectroscopy Data Acquisition and Processing Parameters

NMR spectroscopic analyses were performed on a 600 MHz Bruker Avance III HD
spectrometer, equipped with a 5 mm BBI probe and fitted with the Bruker SampleJetTM

robot cooling system set to 5 ◦C. A full quantitative calibration was completed prior to the
analysis using a protocol described elsewhere [100]. All experiments were acquired using
the Bruker In Vitro Diagnostics research (IVDr) methods. For each sample prepared, a stan-
dard 1D experiment with solvent pre-saturation (32 scans, 98K data points, spectral width
of 30 ppm) amounting to a total experiment time of 4 min 3 secs was generated and a total
of 112 lipoprotein parameters were measured [18] using the Bruker IVDr Lipoprotein Sub-
class Analysis (B.I.-LISATM) method whereby the –(CH2)n at δ = 1.25 and –CH3 at δ = 0.80
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peaks of the 1D spectrum after normalization to the Bruker QuantRefTM manager within
TopspinTM were quantified using a PLS-2 regression model. B.I.LISA. Parameters measured
consisted of total serum lipid analytes cholesterol, free cholesterol, phospholipids, triglyc-
erides, Apolipoproteins A1/A2/B100 and the B100/A1 ratio, and analytes distributions
in different density classes of serum-lipoproteins: high-density lipoprotein (HDL, den-
sity 1.063–1.210 kg/L), intermediate-density lipoprotein (IDL, density 1.006–1.019 kg/L),
low-density lipoprotein (LDL, density 1.09–1.63 kg/L), and very low-density lipoprotein
(VLDL, 0.950–1.006 kg/L). The main lipoprotein classes HDL, LDL, VLDL were subdi-
vided into different density sub-classes. LDL subdivisions included: LDL-1: 1.019–1.031
kg/L, LDL-2: 1.031–1.034 kg/L, LDL-3: 1.034–1.037 kg/L, LDL-4: 1.037–1.040 kg/L, LDL-5:
1.040–1.044 kg/L, LDL-6: 1.044–1.063 kg/L). HDL sub-fractions were also assigned to 4 den-
sity classes: HDL-1 1.063–1.100 kg/L, HDL-2 1.100–1.125 kg/L, HDL-3 1.125–1.175 kg/L,
and HDL-4 1.175–1.210 kg/L and the VLDL sub-fractions were divided into five density
classes. A list of all the 112 lipoprotein subfractions and parameter annotations are shown
in Table S2. In addition to the 112 lipoprotein parameters, 11 low molecular weight metabo-
lite concentrations were obtained from the Bruker IVDr Quantification in Plasma/Serum
B.I.Quant-PS (acetic acid, acetoacetic acid, acetone, citric acid, creatine, creatinine, formic
acid, glucose, D-3-hydroxybutyric acid, lactic acid, pyruvic acid) (Table S3).

3.4. Liquid Chromatography Mass Spectrometry (LC-MS)

Biogenic amines, amino acids, and tryptophan metabolites were measured using two
LC-MS quantification methods following previously reported methods for tryptophan and
associated catabolites [101] and amino acids [19,102], which were used to measure forty-five
parameters (thirty-six individual metabolite concentrations and nine ratios, Table S2). In brief,
samples were thawed at 4 ◦C and prepared for analysis. For the quantification of the biogenic
amines and amino acid metabolites, a Bruker Impact II QToF mass spectrometer (Bruker,
Daltonics, Billerica, MA, USA) coupled to a Waters Acquity I-class UPLC system (Waters
Corp, Milford, MA, USA) was used. Full scan mass spectrometry data in high resolution were
acquired using electrospray ionisation positive in a mass range of m/z 30–1000. Tandem mass
spectrometry (MS/MS) were collected on all acquired samples using Bruker broadband
collision-induced dissociation (bbCID) function. Resulting data files were processed for
peak integration and quantification using the Target Analysis for Screening Quantification
(TASQ; v2.2) software (Bruker Daltonics, Bremen, Germany) where calibration curves
were linearly fitted with a weighting factor of 1/x. For the measurement of tryptophan
and associated catabolites, a Waters TQ-XS triple quadrupole (QQQ) coupled to a Waters
Acquity I-class UHPLC system (Waters, Wilmslow, UK) was used. The QQQ was operated
in positive electrospray ionisation using multiple reaction monitoring (MRM). Raw files
were processed for peak integration and metabolite quantification using the the TargetLynx
package within MassLynx v4.2 (Waters Corp., Milford, MA) where calibration curves were
linearly fitted using a weighting factor of 1/x. Resulting data matrices were combined and
quality control checked prior to statistical analysis.

3.5. LC-MS Lipid Analysis

Serum lipid analysis was performed by ultra-high performance liquid chromatography-
tandem mass spectrometry (UHPLC-MS/MS) using predefined MRM transitions Sciex
sMRM Pro Builder, Framingham, MA, USA) and in-house chromatographic retention time
windows [5]. In brief, serum samples (10 µL) were thawed at 4 ◦C and prepared for analysis.
For quality control (QC), an independent serum pool was prepared as per the samples and
aliquots were then injected following each block of nine experimental samples throughout
the analytical sequence, which were used for the assessment of analytical precision. Ob-
tained raw files were pre-processed using SkylineMS [103], and quality control random
forest signal correction (QC-RFSC) from the statTarget package was used to correct for
analytical drift [104]. Feature filtering, RSDQC > 30%, and feature intensity threshold
filtering <5000 in >50% of the QCs were applied and metabolites were removed from
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further statistical analysis based on their failure to meet acceptable analytical precision. The
comprehensive analysis covered 865 different lipid species across 19 subclasses (Table S4)
of lipids including cholesterol esters (CEs), ceramides (CERs), diacylglycerides (DAGs),
dihydroceramides (DCERs), free fatty acids (FFAs), hexosylceramides (HCERs), lacto-
sylceramides (LCERs), lysophosphocholines (LPCs), lysophosphoethanolamines (LPEs),
lysophosphoglycerols (LPGs), and lysophosphoinositols (LPIs), monoacylglycerols (MAGs),
phosphocholines (PCs), phosphoethanolamines (PEs), phosphoglycerols (PGs), phospho-
inositols (PIs), phosphoserines (PSs), sphingomyelins (SMs), and triacylglycerides (TAGs).

3.6. Data Analysis

All computation and data visualization was performed using R and RStudio IDE
with the open-source R package metabom8 (version 0.2), available from GitHub (github.
com/tkimhofer/metabom8 (accessed on 1 June 2022). Orthogonal projection to latent
structures-discriminant analysis (O-PLS-DA) [105] was used to model the respiratory
symptom variance in the data and to extract discriminating features. An O-PLS-DA model
was calculated to differentiate between infected and non-infected samples for the low
molecular weight metabolites, lipids, and lipoproteins. In addition, each severity class was
modelled against the control group, and the different severity classes were modelled against
each other. In order to balance the numbers for severity group B, which contained fewer
samples than the other severity groups, only 25 controls were modelled, selected randomly.

The optimal number of orthogonal components for each model was determined
using the area under the receiver operator characteristic curve (AUROC) calculated from
predictive component scores, generated using an internal sevenfold cross-validation (CV)
procedure. The Cliff’s delta statistic was calculated for all the O-PLS-DA models to assess
the overall effect size for the intergroup differences [106].

4. Conclusions

COVID-19 is a heterogeneous disease with strong patient-to-patient variability of
symptoms and severity. We used a multi-platform approach to determine the metabolic
signature of SARS-CoV-2 severity across a moderately to severely infected cohort. Whilst
stratification of the datasets by metabolite class allowed for deeper insight into the metabolic
consequences of SARS-CoV-2 infection, the combined multi-modal dataset delivered a
stronger model for predicting infection presence, severity, and ultimate mortality.

Although the number of significant metabolites, lipids, and lipoproteins increased as
respiratory severity increased, the core metabolic signature of infection was the same for
lipids, lipoproteins, and most low molecular weight metabolites regardless of severity level
indicating multiorgan involvement of the disease even in mild cases where no hospitaliza-
tion was required. This raises the question as to the necessity of long-term monitoring of
these patients in relation to PACS to establish their long-term recovery and potentially mod-
ified disease risks. Marked alterations on pyruvate, formate, and the lactate to pyruvate
ratio indicate perturbation of the tricarboxylic acid cycle and energy metabolism at all levels
of infection, whereas the disparity of the Asp:Glu/Asn:Gln indicates liver involvement and
the increase in the Apolipoprotein-B100/Apolipoprotein-A1 ratio (ABA1) in combination
with changes in other lipid and lipoprotein parameters suggests increased cardiovascular
disease risk.

Tryptophan pathway metabolism was heavily disrupted by SARS-CoV-2 infection but
in contrast to the majority of metabolites, we find that the disruption of this pathway was
associated with infection severity and that the pathway was only substantially disrupted in
the hospitalized patients requiring oxygen. The change in balance of the pathway from
serotonin to quinolinic acid production indicates a shift towards a neurotoxic systemic
environment.

It should be noted that there are limitations within this study. The samples were
collected at the start of the pandemic. Several publications have alluded to the altered
expression of infection symptoms and generally decreased respiratory severity over the
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successive waves of SARS-CoV-2 infection, typically corresponding to the progression of
variants [107,108], so the infection may have ongoing changing disease risks and potentially
different metabolic sequelae. Certain sociodemographic and pre-existing health factors
have been shown to be associated with SARS-CoV-2 outcomes such as age, BMI, and chronic
health conditions including diabetes and cardiovascular disease. Thus, the distribution
of numbers of patients with some of these parameters is skewed for the higher severity
categories. Of note, and as expected, greater mortality was observed in the more severe
respiratory infection classes (statistics on sociodemographic, anthropometric, and selected
clinical parameters are provided in Table S1). Nevertheless, the metabolic signature for
mortality was distinct from the signature associated with severity, indicating that the
prediction of mortality was not solely related to the severity of respiratory symptoms. As
expected, mortality was associated with infection severity and could be predicted based on
the hexosylceramide and sphingomyelin profiles 8–61 days prior to death. Early indices
of adverse clinical outcomes have value in identifying the most ‘at risk’ patients and may
provide a window of opportunity for tailoring the therapeutic monitoring and management
of those patients.
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