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Abstract: Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine
kinases, widely associated with cell survival, proliferation, and migration. Historically considered
to be functionally redundant, independent roles for the individual isoforms have been described.
Whilst most established for their role in cancer progression, there is increasing evidence for wider
pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation,
thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascu-
lar tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be
upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition
may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease
and some of the associated risk factors. In this review, we discuss what is known about Pim kinase
expression and activity in cells of the cardiovascular system, identify areas where the role of Pim
kinase has yet to be fully explored and characterised and review the suitability of targeting Pim
kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
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1. Introduction

Signal transduction mediated by kinases is crucial in cell communication and in
controlling the function and response of cells. Protein phosphorylation, principally on
serine, threonine, or tyrosine residues, is one of the most important and widely understood
post-translational modifications [1]. Aberrant kinase activity leading to cancer can be
caused by mutations; however, in cardiovascular disease (CVD), altered kinase activity
may be regulated by an increase in cell stimulation and/or exposure to pathological
mediators, as well as protein mutations [2]. With an increased understanding of the
contribution of multiple kinases to cardiovascular biology, kinases are becoming more
desirable targets for cardiovascular disease. The progression of p38 MAP kinase inhibitors
into Phase 3 clinical trials for the prevention of cardiovascular events demonstrates that
kinase targeting therapies can be safely administered, but the failure of the inhibitors
to improve cardiovascular outcomes [3] identifies that more efficacious kinase targeting
therapies are required. Repurposing pre-existing therapies may offer a more advantageous
development strategy that quicken the drug development pipeline from synthesis to
patient testing.

2. Pim Kinases

Proviral integration site for MuLV (Murine Leukaemia Virus) (Pim) Kinases are a
family of serine/threonine kinases located in numerous cell types throughout the body [4].
Within the Pim kinase family, there are three isoforms, Pim-1, Pim-2, and Pim-3, and their
roles include promoting cell survival [5–8], proliferation [9], and migration [10]. They
are implicated in the pathogenesis of various diseases, with roles identified in multiple
cell types, but are most widely known for their contribution to haematological and solid
tumour malignancies, which have been reviewed elsewhere [11–14]. As Pim kinases are
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constitutively active [15,16], they have become a potential target for cancer therapy, with
numerous inhibitors being developed to treat myeloma and myelofibrosis, in addition
to other malignancies [17–19]. Interestingly, their expression and activity are not limited
to cancer, with the Pim kinase isoforms demonstrating widespread expression in cardio-
vascular tissues (Figure 1). Furthermore, Pim kinases can be upregulated in risk factors
associated with CVD. The Pim kinases, therefore, may be alternative therapeutic targets to
treat cardiovascular-related diseases and comorbidities.
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Figure 1. Bulk tissue gene expression of Pim kinases in tissues relating to the cardiovascular system.
Created using the GTEX portal [20,21]. Darker colour refers to more transcripts per million (TPM).

2.1. Structure, Regulation, and Localisation of Pim Kinases

Whilst the three Pim kinase family members are named isoforms due to being highly
conserved with high amino acid sequence homology (Figure 2), they are encoded by
separate genes and located on different chromosomes (Figure 3). They are classed as
serine/threonine kinases, yet the Pim kinases uniquely lack regulatory domains, with
only kinase domains present [22]. The kinases do adopt the commonly observed bi-lobed
kinase fold structure seen in other kinases; however, the Pim family members contain a
novel two-stranded β-sheet predating the αc helix, which distinguishes them from other
kinases [23]. Another distinctive feature of Pim kinases is that they contain a unique hinge
region [15,23], which makes targeting the kinase family attractive. The hinge region of
Pim kinases has two inserted proline residues, widening the ATP (adenosine triphosphate)
binding site. This widened ATP site does not allow for the typical hydrogen bonds between
ATP and kinases and results in high Km (Michaelis constant) values for ATP [24].
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Figure 2. Sequence alignment of Human Pim family kinases. Sequences were aligned using Clustal
Omega [25] and ESPript 3 [26] using Uniprot accession sequences Pim-1—P11309, Pim-2—Q9P1W9,
and Pim-3—Q86V86. Exact matches are shown in white text on a red background, and similar
residues in boxed yellow and black text on a white background are little consensus between the
three isoforms.
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Figure 3. Pim kinase family gene structures and corresponding protein structures. Each gene has
six codons surrounded by large untranslated regions (UTR). Alternative start codons within the
gene (*) correspond to alternate mRNA transcripts, representing the different isoforms. Each isoform
consists of only a serine/threonine kinase domain, with molecular weights varying from 34–44 kDa.
The largest isoform is shown in more detail as to where the kinase domain and hinge regions are
present and where key sites are located (not to scale). Pim-1 key sites include K67, H68 (site mutation
increases kinase activity [23]), P81 (site mutation decreases kinase activity [23]), P123 (proline region
in hinge site which is unique to Pim family kinases [11,15]), and S261 (phosphorylation site [27]). Pim-
2 key sites include P119 (proline residue in hinge site, unique to Pim kinases (Q9P1W9—[28]), K121
(site mutation renders kinase inactive [16]), D128 and E171 (required for potent drug inhibition [29]).
Pim 3 sites are the hinge region (Q86V86 [28]) and S190 (predicted autophosphorylation site [30]).

Due to the lack of regulatory domains within the protein (Figure 3) and its protein struc-
ture, the Pim kinases are hypothesised to be constitutively active [16,31], and regulation of
the kinases is via transcriptional, post-transcriptional, translational, and post-translational
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mechanisms (Figure 4). Transcriptional regulation of Pim kinases is usually in response to
mitogenic stimulants such as platelet-derived growth factor (PDGF) in vascular smooth
muscle cells [32,33], high glucose [34], hypoxia, [35,36] and inflammation such as in re-
sponse to cytokines, IL-6 (interleukin-6) [37], and TNF-α (tumour necrosis factor—alpha)
treatment [38]. Furthermore, transcription of Pim-1 has been demonstrated to be regu-
lated downstream of the Janus kinase/signal transducer and activator of the transcription
(JAK/STAT) signalling pathway, with activation of the pathway being responsible for its
upregulation [39]. Examples of this can be observed downstream of both the erythropoietin
(EPO) receptor and thrombopoietin (TPO) receptor (c-Mpl) [40], where EPO and TPO can
induce the expression of Pim-1 via JAK/STAT signalling [41,42].
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Figure 4. Regulation of Pim kinases. Some of the key regulatory pathways that control Pim kinase
activity and signalling. Stimuli—TNFα—Tumour necrosis factor alpha, EPO—erythropoietin, IL-
6—interleukin 6, PDGF—platelet-derived growth factor, hypoxia, and high glucose. Transcriptional
modifications include NF-Kb—Nuclear factor kappa B, Ets-1—ETS proto-oncogene 1, Sp1—Specificity
Protein 1, and HOXA9—Homeobox A9. Post-translational modifications include ubiquitination,
sumoylation, and phosphorylation. Post-transcriptional modification—mRNA degradation, and
miRNA binding. The figure was created using Biorender.

Post-transcriptional modifications are related to mRNA processing. Within the mRNA
sequence of each isoform are five AUUA destabilising motifs in the untranslated region
(UTR) at 3′ [43,44] (Figure 4), which target the transcripts for rapid degradation [45]. Indeed,
this appears to be a key mechanism for the regulation of the Pim kinases, with the half-life
of Pim-1 mRNA being approximately 25 min in vascular smooth muscle cells [33].

However, this may not be the sole mechanism of transcriptional regulation of Pim
kinase isoform expression levels. In vascular smooth muscle cells (vSMCs), there appear to
be other transcriptional methods of control, such as delayed transcription and translation.
Cell stimulation with PDGFbb leads to a transient increase in Pim-1 mRNA at 1 h; however,
the protein expression profile does not match this time course with protein levels peaking
much later at 24 h [33]. In contrast, in response to high glucose, vSMC Pim-1 mRNA
and protein levels do correspond to each other, with an increase in both observed at 48 h,
suggesting that there may be alternative mechanisms of Pim protein translation depending
upon the cellular stimuli [34].
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MicroRNAs have also been identified to be important in controlling Pim kinase ex-
pression. MicroRNAs interact with the UTR of their target mRNAs, and many have been
identified as targets for Pim kinases within the cardiovascular system (summarised in
Table 1).

Table 1. MicroRNAs targeting Pim kinase in cardiovascular cell types.

MicroRNA Target Cell Type Result Ref

MiR-328 Pim-1

Pulmonary artery smooth
muscle cells.
Human umbilical vein
endothelial cells

Overexpression of MiR-328 increases the level
of Pim-1 and promotes proliferation.
Inhibition of MiRNA-328 promotes
angiogenesis in high glucose conditions by
increasing Pim-1 expression.

[46,47]

MiR-214 Pim-1
Bone marrow-derived
mesenchymal stem cells
Vascular smooth muscle cells

PDGF increases the expression of this MiRNA,
resulting in Pim-1 knockdown. [32]

MiR-206 Pim-1

Mesenchymal stem cells
in hypoxia
Pulmonary artery smooth
muscle cells.

Reduction in miR-206 causes increased
proliferation and reduced apoptosis, which is
protective in infarcted hearts.

[36,48]

Mir-1 Pim-1 Vascular smooth muscle cells
Myocardin increases the expression of Mir-1,
which results in the inhibition of VSMC
proliferation via the knockdown of Pim-1.

[49]

miR 410-5-p Pim-1 Diabetic cardiomyopathy

MiR-410-5p inhibition decreases high
glucose-induced myocardial apoptosis,
preventing cardiomyopathy through the
upregulation of Pim-1.

[50]

MiR-195 Pim-1 Sepsis—endothelial cells Inhibition of miR-195 results in increased Pim-1,
which is protective in a model of sepsis. [51,52]

Post-translational modifications of Pim kinase include phosphorylation, dephosphory-
lation, ubiquitination, and sumoylation. Initially considered to regulate Pim kinase activity,
phosphorylation of the Pim-1 isoform on its N terminus [31] was demonstrated instead to
control protein stability and degradation rather than catalytic activity. Various candidates
have been identified as possible mediators of Pim phosphorylation including Protein Ki-
nase C α (PKCα) and endothelial/epithelial tyrosine kinase (Etk) [53]. PKCα-dependent
phosphorylation of Pim-1 has been demonstrated to enhance protein stability, increasing
the half-life of the protein [54]. Unphosphorylated Pim-1 is still maintained within the
active conformation, with active site residues of the kinase prepared to initiate phosphate
transfer [15,31].

Pim kinase autophosphorylation is also believed to be important for kinase stability.
Pim-1 was initially thought to be auto phosphorylated on serine 261; however, it has been
identified that this occurs on serine 8 [31]. Pim-1 mutants that are unable to autophospho-
rylate due to mutations within their kinase structure have significantly shorter half-lives,
although this could be mediated due to increased clearance [55].

Dephosphorylation and subsequent degradation of Pim kinase occur via protein
phosphatase 2A (PP2A), with inhibition of PP2A activity increasing the half-life of Pim
kinases [56]. However, it is not clear whether this mechanism is direct or mediated through
Suppressors of Cytokine Signalling-1 (SOCS-1). SOCS-1 is involved in the degradation
of proteins through ubiquitination [57]. Indeed, SOCS-1 binds to Pim kinases [58], and is
required for the PP2A-mediated degradation of Pim kinase [56].

Pim-1 has been shown to be protected from ubiquitin-mediated proteasome degra-
dation following heat shock via a mechanism that involves heat shock protein 90 (HSP90)
binding. During the treatment of cells with geldanamycin, an HSP90 inhibitor, rapid degra-
dation and reduced kinase activity of Pim-1 occurs [59,60]. However, ubiquitin-mediated
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degradation may not extend to all Pim isoforms, as ubiquitination of Pim-2 does not appear
to target the kinase for degradation. Adam et al. demonstrate that inhibiting the formation
of the cullin RING ligase-containing ubiquitin ligase complex via inhibition of NEDD8-
Activating Enzyme did not lead to a modulation of Pim-2 protein levels, despite control
proteins being altered. Furthermore, the E1-ubiquitin ligase inhibitor PYR-41 did not alter
the stability of the Pim-2 protein [61]. In contrast, a recent study has proposed that ubiquiti-
nation of both Pim-1 and Pim-2 is important in regulating the stability of the protein, when
under conditions of hypoxia, during hypoxia, deubiquitinase USP28 preferentially binds to
Pim-1 and -2 and prevents their degradation [62], suggesting that alternative regulatory
mechanisms of Pim kinase degradation may take place under hypoxic conditions.

Degradation of Pim kinases may also occur via Small Ubiquitin-like Modifier (SUMOly-
ation). Mutation of the potential SUMO site, E171, in Pim-1, increases the protein half-life
to almost double that of wild type [55]. Whilst only Pim-1 was studied, Pim-2 and Pim-3
also share similar consensus sequences for the SUMOylation [55]. Furthermore, silencing
of the SUMO-targeted E3 ubiquitin ligase RNF4 also increases Pim-1 levels. This suggests
ubiquitin-facilitated proteasomal regulation of Pim kinase levels [55].

2.2. Pim-1

Of the three Pim kinase isoforms, Pim-1 is the most extensively researched family
member. The Pim-1 gene is located on chromosome 6, and in-frame initiation translation
codons on the chromosome result in two Pim-1 isoforms of different sizes [63]. Pim-1L
(44 kDa) is an N-terminal extension of Pim-1S (34 kDa), initiated by an upstream CUG
codon [44,64], as shown in Figure 3. Both isoforms have comparable kinase activity [44],
but due to the extra proline-rich motif in Pim-1L, it is suggested that Pim-1L primarily
localises at the plasma membrane, with Pim-1S being primarily nuclear or cytosolic [65].
There is little literature focusing on the differing isoforms of Pim-1; however, one study
has identified that there may be subtle differences between their phosphorylation activities
within the context of cancer [66].

Pim-1L and Pim-1S can phosphorylate the androgen receptor at serine-213, whereas
only the larger isoform could phosphorylate at threonine 850 in vivo suggesting some
differential phosphorylation, which may be related to their localisation within the cell [66].

Pim-1 expression is widely associated with hematopoietic neoplasia and solid tu-
mours [11,22], and increased Pim-1 expression is typically a marker of poor prognosis [67].
Pim-1 inactivates pro-apoptotic protein BAD by phosphorylating it on Ser112 [5]. Fur-
thermore, it promotes cell cycle progression through phosphorylation and activation
of Cdc25 [68,69], and phosphorylation and inhibition of Cdc25-associated kinase 1 (C-
TAK1) [70], an inhibitor of Cdc25C. The promotion of tumorigenesis through phospho-
rylation of c-Myc [71,72] and regulation of mTORC [73] is also be mediated via Pim-1.
Pim-1 has also been shown to promote cell migration and chemotaxis (metastasis) via the
phosphorylation of CXCR4 [74].

2.3. Pim-2

Pim-2, located on the X chromosome, is the most divergent member of the kinase
family (Figure 2). Similar to Pim-1, Pim-2 also has multiple isoforms, 34, 37, and 40 kDa
(Figure 3) [75]; however, it only shares 66% amino acid sequence homology with Pim-1, with
the most substantial differences being within the C terminal (23 residues) (Figure 2). Within
this sequence are six proline residues that are not predicted to form a helical structure;
therefore, Pim-2 lacks a C-terminal α helix [24] compared to the other isoforms. This
lack of helical structure is thought to increase the flexibility of the terminus, resulting in
structural changes to Pim-2 compared with Pim-1 and -3, which may offer an explanation
as to why pan-Pim kinase inhibitors appear to be less potent on Pim-2 compared to the
other Pim family members [76,77]. Modelling approaches have demonstrated that amino
acids D128 and E171 are required for potent inhibition of Pim-2 but not Pim-1 and -3 [29].
Despite these apparent differences in structure, Pim-2, like Pim-1, can also phosphorylate
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c-Myc [72] and maintain mTORC signalling by maintaining inhibitory phosphorylation on
eukaryotic initiation factor 4E binding protein (4E-BP1) and BAD, allowing for cell growth
and survival [16].

All three Pim-2 isoforms are cytoplasmic; however, they do have different levels of
expression and protein stability. 37 kDa and 34 kDa isoforms of Pim-2 have very short
half-lives (less than 30 min), whereas the 40 kDa isoform has a half-life approximately twice
that of the shorter isoforms [61]. These differences in protein stability are likely due to the
disordered N-terminal domains that can be recognised directly by the proteasome [61].

Differences in the activity of the Pim-2 isoforms have also been observed in vitro. The
largest isoform has been shown to be less active when compared to the smaller isoforms;
however, it is unclear why this is; one hypothesis is that the larger 40 kDa isoform may
contain an auto-inhibitory sequence [7].

2.4. Pim-3

Pim-3 is located on chromosome 22 and shares 77% sequence homology and similar
protein structure with Pim-1. However, unlike the other family members, which are
expressed as multiple-length variants, Pim-3 is only expressed as one 34 kDa isoform
(Figure 3) [78]. Similar to Pim-1 and Pim-2, Pim-3 can phosphorylate BAD at Ser112, with
Pim-3 knockdown shown to reduce phosphorylation at this site [8,79]. MYC activity can
also be augmented by Pim-3, along with control of protein synthesis [80].

The summary of the key differences between the different members of the Pim kinase
family can be found in Table 2.

Table 2. Comparison of the Pim kinase family members.

Pim-1 Pim-2 Pim-3

Isoforms
44 kDa
34 kDa
[42,64]

34 kDa
37 kDa
40 kDa
[7,61,73]

34 kDa [78]

Isoform differences

Preferential of targets as opposed
to others for Pim-1L and Pim-1S
[66] such as Pim-1S favouring the
androgen receptor [81] and
Pim-1L phosphorylating Etk [65]

Largest isoform less
active [7,61] N/A

Protein localisation Pim-1L plasma membrane
Pim-1S cytosolic [65] Cytoplasmic [61] Cytoplasm [82]

Chromosome [83] 6 [63] X [83] 22 [83]

Sequence similarity [24,78]

Pim-1 Pim-2 66%,
Pim-1 Pim-3 77% [82],
Pim-2 Pim-3 44%
(Figure 2)

Structural differences

C-terminal helix missing
in Pim-2
Six proline residues in the
last structure [24].

Transcriptional regulation
differences

NF-KappaB [84].
HOX9A upregulates
Pim-1 [85]

Not dependent on
NF-KappaB, but Sp1 and
Ets-1 [86].
HOX9A downregulates
Pim-3 [87].
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Table 2. Cont.

Pim-1 Pim-2 Pim-3

Degradation Ubiquitination [59,60,62]

Ubiquitin independent in
normoxia [61]. Under
hypoxia, ubiquitination
takes place [62]

Believed to be
Ubiquitinated similarly to
Pim-1 [62]

Consensus peptide sequence
(AKRRRRHPSGPPTA)
binding affinity [31]

40–60 nM 640 nmol/L 40–60 nM

Kd for consensus sequence [31] 0.058 µM 0.64 µM 0.039 µM

3. Pim Kinase and Cardiovascular Disease

Whilst most well known for their role in cancer progression, there is increasing evi-
dence for wider pathological roles of Pim kinases, including in CVD, a leading cause of
mortality worldwide [88]. Atherosclerotic plaque rupture or erosion activates circulating
platelets, resulting in activation of the coagulation cascade and thrombosis. Plaque dy-
namics are regulated by multiple cell types, including endothelial cells, vascular smooth
muscle cells (VSMCs), monocytes, and platelets. The formation of an occlusive thrombus
that blocks an artery can subsequently lead to myocardial infarction (MI).

The Pim kinase isoforms have a widespread expression in cardiovascular tissues, in-
cluding the heart, coronary artery, aorta, and blood (Figure 1), and have been demonstrated
to be upregulated in a number of co-morbidities/risk factors for cardiovascular disease
such as smoking and hyperglycaemia [34,89]. Pim-1 is increased 11-fold in coronary artery
disease [90], present in pulmonary arterial hypertension [91], and Pim-2 is upregulated
in atherosclerotic arteries in coronary artery disease [92]. This suggests that Pim kinase
inhibition may be a desirable therapeutic for a multi-targeted approach to prevent and treat
cardiovascular disease.

3.1. Hypertension

Pulmonary arterial hypertension (PAH) is defined as high blood pressure within the
lungs. In PAH, Pim-1 has been identified as a potential biomarker, with plasma Pim-1
levels correlating directly to disease severity [91], and increased expression of Pim-1 was
observed in PAH patients’ pulmonary artery smooth muscle cells (PASMCs), compared to
healthy controls [93].

3.1.1. Vascular Smooth Muscle Cells

Vascular smooth muscle cells (vSMCs) are found in the arterial walls and are cru-
cial to maintaining arterial wall integrity and regulating vascular tone. Cellular DNA
damage and its repair in PASMCs are one of the main contributors to the causes of PAH
pathology [94]. Usually, cells undergoing DNA damage are destined for apoptosis if they
are inefficiently repaired [94]. In cancer cells, Pim kinases have been demonstrated to
regulate non-homologous end joining, allowing for cells to pass DNA damage check-
points, evading apoptosis [95], and this can also be observed in PASMCs. In vitro Pim-1
inhibition in PASMCs using SG1-1776 decreases DNA damage repair, proliferation and
induces apoptosis [93]. In vivo mice experiments demonstrated, using two different Pim
kinase pharmacological inhibitors and two different models of PAH, that Pim kinase inhibi-
tion significantly reduces pulmonary pressure, demonstrating the potential of Pim kinase
inhibition to be used as a therapeutic for PAH [93].

In addition to PAH, exposure to high glucose in culture, similar to those experienced
in hyperglycaemia and diabetes, has also been shown to induce Pim-1 mRNA and protein
expression in VSMCs. Wang et al., using both in vitro and in vivo models, increased Pim-1
expression in the tunica media of hyperglycaemic rats [34]. The same group also previously
demonstrated that high glucose induces VSMC proliferation, a feature of PAH, via an
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increase in CXCR4 signalling [96]. Whilst the authors demonstrated that this was due to
the increased expression of SDF-1α, Pim-1 has been shown to positively regulate CXCR4
signalling in other cell types [97], indicating the potential to target the kinase to prevent
CXCR4-mediated VSMC proliferation during hyperglycaemia.

Roles for both Pim-1 and Pim-3 have also been proposed in the regulation of VSMC
contractility via phosphorylation of the myosin targeting subunit (MYPT1) [98]. MYPT1
phosphorylation inactivates myosin light-chain phosphatase, suppressing myosin dephos-
phorylation and causing hypercontractility [99]. Hypercontractility of VSMCs contributes
to vascular remodelling, leading to rigid and stiff vessels, contributing to hypertension.
This suggests that the inhibition of Pim kinases may be beneficial to reduce hypertension.

3.1.2. Endothelial Cells

Endothelial cells play key roles in the regulation of VSMCs and hypertension, par-
ticularly via the production of nitric oxide, which causes vasodilation of VSMCs [100].
Studies using human umbilical vein endothelial cells (HUVECs) have identified a role
for Pim in the regulation of VEGF-dependent endothelial nitric oxide synthase (eNOS)
signalling downstream of the VEGF receptor Flk1 [101]. siRNA-mediated knockdown
of Pim-1 in HUVECs reduces VEGF-induced eNOS phosphorylation at Ser-663 [101]. In
addition, treatment of HUVECs with Pim kinase inhibitor SMI-4a reduces VEGF-mediated
nitric oxide (NO) production after 24 h of treatment. Inhibition of Pim kinases under these
conditions may result in a reduction of nitric oxide-mediated relaxation of the vessel and
promote hypertension.

Further research is thus required to investigate the impact of Pim kinase inhibition
on the underlying mechanisms and relationship between VSMCs and ECs that control
vasodilation and vasoconstriction.

3.2. Atherosclerosis

The formation of atherosclerotic plaques can partially be attributed to altered choles-
terol levels within the blood, increasing the amount of foam cells and fatty deposits within
the arterial wall.

3.2.1. Cholesterol Metabolism

Studies using Pim-1 deficient mice have identified a negative regulatory role for Pim-1
in atherosclerotic plaque formation. Pim-1 has been identified to phosphorylate and reg-
ulate ATP-binding cassette transporter A1 (ABCA1) and subsequently enhance reverse
cholesterol transport, preventing the formation of foam cells [102]. siRNA-mediated dele-
tion of Pim-1 in ABCA1-expressing hepatocytes was found to associate with decreased
levels of ABCA1 present on the surface of HEP2G cells [102], resulting in lower levels of
cellular high-density lipoprotein (HDL) and HDL efflux and an increased risk of cardiovas-
cular events [103,104]. In support of this, Pim-1 KO mice were found to have less plasma
HDL [102], and an earlier study investigating the effects of increasing levels of mIR-33,
which targets and decreases Pim-1 levels, [105] demonstrated decreased plasma levels of
HDL in mIR-33-treated mice [106].

3.2.2. Endothelial Cells and Atherosclerosis

Endothelial cell dysfunction is a contributor to the formation of atherosclerosis. In-
creased vascular permeability supports monocyte transmigration and differentiation into
macrophages and foam cells, leading to the promotion of atherosclerotic plaque devel-
opment [107]. Inflammatory cytokines derived from the plaque and other vascular cells
increase vascular permeability via the formation of actin stress fibres, filopodia, and mem-
brane ruffles in endothelial cells [38]. Cytokines can also influence endothelial cell migra-
tion [108] and angiogenesis [109]. Endothelial cell angiogenesis-driven neovascularisation
of plaque material contributes to atherosclerotic plaque growth and instability [110,111].
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Indeed, neovascularisation of plaque regions is associated with a 1.5-fold increased risk of
cardiovascular events compared to plaque regions with lower levels of vessel density [112].

Although the endogenous expression of Pim-1 in HUVECs appears low, it has been
shown to increase in response to VEGF treatment [101] and following pharmacological
inhibition of PI3K [113].

Quiescent endothelial cells rapidly switch to an activated state gaining the ability
to sprout, migrate, and proliferate [114] in response to VEGF released from VMSCs and
macrophages [115]. Pim-1 has been shown to mediate VEGF responses in mice endothelial
precursor cells [116]. Silencing of Pim-1 using a lentiviral vector expressing Pim-1 siRNA
causes a significant reduction in PECAM-1 after 5.5 days after differentiation, with VE-
cadherin surface levels also being reduced at a later time point of 8.5 days [116]. Pim-3 has
also been shown to mediate inflammatory TNF-α signalling in endothelial cells, with TNF-α
treatment associated with increased Pim-3 mRNA expression in HUVECs [38] in vitro and
Pim-3 silencing attenuating endothelial cell sprouting in vivo [38]. These findings support
a positive role for Pim-3 in TNF-α inflammation-mediated cytoskeletal rearrangements,
vascular permeability (cell detachment), and angiogenesis, thereby demonstrating the
potential of targeting Pim-3 to protect against pathological endothelial cell activation to
reduce vascular permeability and neovascularisation.

3.2.3. Monocytes and Macrophages

Transmigration of monocytes and their differentiation into macrophages is a key step
in atherosclerotic plaque development, promoting the formation of unstable plaques and
enhancing the proinflammatory environment. In macrophages, Pim-2 mediates suppression
of the mTORC1 pathway restraining inflammation [117]. Macrophages overexpress Pim-
2 in response to stimulation by oxidised low-density lipoprotein (LDL) and enhanced
Pim-2 expression is observed in macrophages from Apo-E-deficient mice compared to
C57BL/6 controls [117]. In support of these findings, overexpression and knockdown of
Pim-2 in mouse models demonstrated a decrease and increase in aortic plaque regions,
respectively, suggesting that Pim-2, in contrast to that observed for Pim-1 that lowers
plasma cholesterol [102], through suppression of the mTORC1 pathway, is anti-atherogenic
and protective in hyperlipidaemic conditions [117].

3.2.4. Vascular Smooth Muscle Cells and Atherosclerosis

Aberrant VSMC proliferation also contributes to initial plaque formation by increasing
the mass and width of the atherosclerotic plaque. They may also contribute to vessel
hardening, inflammation, and development of the necrotic atherosclerotic core, by secretion
of extracellular matrix and cytokines, respectively [118]. Pharmacological inhibition of Pim
kinases results in decreased phosphorylation of BAD, leading to the initiation of VSMC
apoptosis [34], mirroring observations made in cancer cells [5,8]. Similarly, Paulin et al.
observed decreased phosphorylation of BAD (Ser112) and enhanced apoptosis in PAH
PASMCs treated with siRNA targeting Pim-1 [119]. VSMC proliferation was also found
to be reduced following treatment with Pim-1 shRNA [46], identifying a potential target
for the inhibition of initial plaque formation. However, it has been proposed that VSMC
proliferation may be beneficial for atherosclerotic plaque stability in advanced lesions [118];
therefore, inhibition of Pim kinases may not be a desirable therapeutic at advanced stages
of plaque development, if it leads to VSMC cell death.

3.3. Thrombosis

During atherosclerotic plaque rupture or erosion, endothelial cells detach from the
vascular wall and contribute to the pathogenesis of atherothrombosis, where exposure of
atherosclerotic plaque components and the underlying extracellular matrix proteins, and
endothelial cell damage precipitate platelet activation and thrombus formation.
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3.3.1. Endothelial Cells and Thrombosis

Walpen et al. demonstrated that Pim-1 regulates the adhesive phenotype of mouse
aortic endothelial cells, with the loss of Pim-1 associated with increased endothelial cell
adhesion [120]. In addition, there also appears to be a role for Pim-3 in endothelial cell
attachment. RNAi silencing of Pim-3 reduces HUVEC spreading and migration [121] but
does not alter endothelial adhesion to cell matrices In vitro. The mechanisms behind the
contribution of Pim-1 and Pim-3 to increased endothelial cell attachment and spreading may
be related to their function in relation to the cytoskeleton. Pim-1 has been shown to regulate
cytoskeletal organisation in cancer cells [10,122], siRNA mediated Pim-1 knockdown in
HUVECs has been shown to attenuate endothelial cell sprouting [116], but more work is
required to elucidate the specific role of Pim-1 in this regard. Pim-3 has been observed
to be localised at the leading edge of lamellipodia in specialised actin focal complexes
within endothelial cells, supporting its role in the regulation of the actin cytoskeleton.
Pim-3 silencing was subsequently shown to reduce the ability of endothelial cells to form
stress fibres, Ref. [121] suggesting that Pim-3 plays a role in regulating the endothelial
cytoskeleton. The inhibition of Pim kinases in this context may be beneficial as it may result
in reduced detachment of endothelial cells, limiting the exposure of thrombogenic material
to the blood.

3.3.2. Platelets

Pim kinases have also been shown to play a role in mediating circulating platelet
functions. Platelets are key initiators of arterial thrombosis following exposure to the sub-
endothelium and atherosclerotic plaque contents, whereby platelets adhere and aggregate
forming an occlusive thrombus [123,124], which can lead to myocardial infarction and
cardiac death. Our study investigating the role of Pim kinase in platelet function identified
anti-platelet properties of pan-Pim kinase inhibitors. Treatment of human platelets with
AZD1208 caused a reduction in surface expression levels of the thromboxane A2 receptor
(TPaR), leading to a reduction in signalling events downstream of TP-coupled G proteins
(Gq and Ga13), leading to reduced platelet activation [125].

In addition to regulation of TPaR-dependent platelet responses, Pim kinase inhibition
also attenuates CXCR4-mediated platelet responses, with platelet aggregation to CXCR4;
ligand SDF-1a also reduced following treatment with AZD1208. These observations are
supported by other studies demonstrating that Pim-1 mediates regulation of CXCR4 sig-
nalling in CLL and Jurkat cells [97]. These findings indicate that Pim-1 inhibition could be a
novel mechanism for anti-platelet target therapies. This is supported by observations from
thrombosis studies using Pim-1 deficient mice, which show reduced thrombus formation
using in vitro models and reduced thrombosis in vivo following acute treatment of mice
with a pan-Pim kinase inhibitor AZD1208 [125]. The roles of Pim-2 and Pim-3 in platelet
function have yet to be described. Despite Pim-1 mice demonstrating reduced thrombotic
capacity, normal haemostatic functions were maintained, suggesting that Pim-1 inhibition
may be a suitable target for antiplatelet therapy, having no adverse effects on bleeding [125].

In addition to platelet function, higher platelet counts and thrombocytosis are strongly
associated with cardiovascular disease [126]. Studies using mice demonstrate that indi-
vidual deletion of either Pim-1 or Pim-2 does not alter platelet number [127,128], whereas
triple deletion of all three Pim kinases in mice has been associated with reduced platelet
count [43,129], suggesting some but not total compensation between the isoforms. In
support of roles for the Pim kinases in haematopoiesis, bone marrow hematopoietic stem
cells in triple Pim KO mice show a reduced ability to differentiate into haematopoietic
cell lineages including megakaryocytes in vitro [43] and have reduced gene expression
of myeloid lineage transcription factor GATA1 [128]. This is supported by observations
that Pim-1 mRNA is upregulated in response to thrombopoietin, [128] and erythropoi-
etin [42], mediators of thrombopoiesis and erythropoiesis, respectively. Observations of
thrombocytopenia in clinical trials using pan-Pim kinase inhibitors to treat varying malig-
nancies [17–19] also further provide evidence that Pim kinases mediate platelet production;
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however, reports vary regarding the extent of reduced platelet count, with one study re-
porting no thrombocytopenia events [130] or occurring in a small subset of patients [17]
(Table 3).

Cortes et al. describe no reports of thrombocytopenia following treatment of acute
myeloid leukaemia patients with AZD1208 (ClinicalTrials.gov, NCT01489722) but did
observe thrombocytopenia in 14.3% of solid tumour patients [17]. Furthermore, two Phase
I multiple myeloma trials for PIM447 (ClinicalTrials.gov; NCT01456689, NCT02160951)
observed 32.9% [19] and 53.8% [18] incidence rates of grade 3/4 levels of thrombocytopenia,
with additional patients experiencing reduced platelet counts [18,19]. In both trials, a
reduction in therapeutic dose or cessation of treatment facilitated the recovery of platelet
count. These observations demonstrate that patient response to drug therapy may be
affected by disease-specific pathologies with thrombocytopenia as a common complication
in patients with solid tumours [131] and multiple myeloma [132].

Interestingly, a recent study investigating the potential of using Pim kinase inhibitors
for the treatment of myelofibrosis demonstrated that pan-Pim kinase inhibitor TP3654
(ClinicalTrials.gov; NCT04176198, accessed on 21 April 2023) reduced myelofibrosis me-
diated thrombocytosis (increased platelet count) in mouse models [133], highlighting the
potential suitability of Pim kinase inhibitors for the treatment of conditions associated with
aberrant platelet production, turnover, and thrombocytosis. Further studies are needed
to elucidate the role of Pim kinase in platelet production and determine the cardiotoxicity
profiles of Pim kinase inhibitors in disease-relevant cohorts.

Table 3. Cardiovascular side effects related to Pim kinase inhibitor therapy.

Drug Disease Number of
Patients

Cardiovascular Side Effects
(% of Patients)

Clinical Trial
Number/Reference

AZD1208 Solid Tumour 67
Thrombocytopenia (5%)
Platelet count decreased (25.7%)
3% atrial fibrillation

NCT01588548 [17]

AZD1208 Acute myeloid
leukaemia 55 Hypotension (31.3%) NCT01489722 [17]

Pim447 Multiple
myeloma 13 Thrombocytopenia (76.9%)

Electrocardiogram QT prolonged (15.4%) NCT02160951 [18]

LGH447 (Pim447) Multiple
Myeloma 77

Thrombocytopenia (32.9%)
Congestive cardiomyopathy (2.7%)
Palpitations (1%)
Atrial fibrillation (2.5%)
Bradycardia (1%)
Sinus bradycardia (2.5%)
Tachycardia (53%)

NCT01456689 [19]

LGH447 (Pim447)
AML or High
risk
Myelodysplastic syndrome

70

Thrombocytopenia (32.4%)
Platelet count decreased (9%)
Disseminated intravascular coagulation (18%)
Tachycardia (9%)
Sinus bradycardia (9%)
Electrocardiogram Qt Prolonged (13.5%)
Hypertension (9%)
Hypotension (18.8%)

NCT02078609 [134]

SGI-1776
Relapsed/
Refractory
Leukaemia

14 Prolonged QtC time
Studies withdrawn with no results

NCT01239108
NCT00848601
[135]

TP3654 Advanced solid tumours 22 No reported cardiovascular side effects NCT03715504
[130]

TP3654 Myelofibrosis 8 No reported cardiovascular side effects NCT04176198
[136]

INCB053914 Advanced haematological
malignancies 8 Thrombocytopenia (15%) NCT02587598

[137]

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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3.4. Cardiac Dysfunction, Injury, and Recovery

Cardiomyocyte dysfunction, interstitial fibrosis, and an increase in cardiac size without
an increase in cellular number can lead to hypertrophy, decreased pump function, and
ultimately heart failure [138]. One of the main causes of heart failure may be also related
to myocardial cellular death post-myocardial infarction occurring from oxygen cessation
through coronary artery occlusion [139]. Myocardial infarcts primarily occur after the
occlusion of the coronary artery [140], principally through narrowing via atherosclerosis,
plaque rupture, or erosion, leading to platelet activation and thrombosis [141,142].

Cardiomyocytes

Pim-1 is expressed in the neonatal heart, but its expression diminishes during postnatal
development [143,144]. In neonatal mice, Pim-1 is primarily localised within the nucleus
of cardiomyocytes, where, via regulation of NFATc1, it mediates cardiac development
and relocates to the cytosol by 30 weeks [143]. In contrast to Pim-1, the levels of Pim-2
expression in mouse cardiomyocytes do not change as the mouse ages, whereas Pim-3 has
the opposite effect and increases with age [143].

Pim-1 has been demonstrated to play a wide range of roles within cardiomyocytes.
Overexpression of Pim-1 in c-kit positive cardiac cells promotes proliferation and sur-
vival, whilst decreasing senescence [145]. Furthermore, overexpression of Pim-1 within
transgenic hearts results in significantly increased calcium dynamics, due to increased
expression of sarcoendoplasmic reticulum Ca2+ATP-ase (SERCA) [143]. Pim-1 also has
roles in the protection of the mitochondria within the heart, such as prevention of mito-
chondrial fission [144,146] via the regulation of DRP1. Taken together, the protection of
the mitochondria, regulation of calcium transient measurements, and the promotion of
proliferation via Pim kinases have the potential to ‘rejuvenate’ cardiac stem cells and may
prevent damage after ischemic injury [145].

A role for Pim-1 has also been demonstrated in telomere lengthening. Overexpression
of Pim-1 in murine cardiomyocytes resulted in an increase in telomere length compared to
controls [147]. Decreased telomere length is a hallmark of heart failure due to cells entering
senescence [148]; therefore, Pim-1 plays a protective role in cardiomyocytes.

Pim-1 has been identified in the upregulation of c-Kit in haematopoietic stem cells [149].
This can also be observed in cardiomyocytes, where overexpression of Pim-1 increases
the level of c-Kit [150]. C-Kit already plays a role in cardioprotection [151], but it has
been demonstrated that Pim-1 has protective roles during hypoxia independently of c-Kit
activity [150], promoting survival.

In addition to its contribution to cardiac metabolism, Pim-1 is also responsible for
phosphorylating cardiac troponin I (cTnI) [152]. Reduced cTnI phosphorylation results
in lack of heart contractility and is a key contributor to diabetic cardiomyopathy. Indeed,
Pim-1 has also been shown to be downregulated in the cardiac tissue in diabetic mice [101].
Interestingly, cardiac-specific overexpression of Pim-1 and increased phosphorylated CTnI
have been shown to decrease infarct size and maintain heart contractility after myocardial
infarction [152].

It has also been demonstrated that Pim-1 expression in cardiomyocytes is upregulated
in vivo, with increased Pim-1 expression observed in heart tissue sampled from patients
with heart failure [143]. Mohsin et al. propose this to be an attempt to rejuvenate and protect
the heart from failure [145], as Pim-1 is induced in response to cardioprotective agents such
as insulin-like growth factor (IGF-1), dexamethasone, and phorbol 12-myristate 13-acetate
(PMA) in vitro, demonstrating protective and reparative properties of the kinase [143].
Furthermore, transgenic expression of Pim-1 in the myocardium protected mice from
infarction injury, and inhibited cardiomyocyte apoptosis and hypertrophy [143,153].

Interestingly, in contrast to findings identifying Pim-1 as a key mediator of cardiomy-
ocyte function and survival, genetic deletion of Pim-1 in mice does not appear to lead to
cardiomyopathy in basal conditions. The haemodynamics of Pim-1 deficient mice hearts
are comparable to wild-type controls, despite an increase in apoptotic myocytes [143]. This
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suggests potential redundancy between the isoforms, with Pim-2 and -3 compensating
for the loss of Pim-1 in basal conditions to prevent cardiomyopathy, with loss of cardiac
Pim-1 associated with increased expression of Pim-2. This indicates that under healthy
conditions, either Pim-2 or Pim-3 activity can compensate for Pim-1, or that Pim-1 does
not play a role in cardiomyocyte function. Interestingly, loss of Pim-1 is considered to be
detrimental when murine hearts are challenged through injuries such as MI or transaor-
tic constriction (TAC), with Pim-1-deficient mice displaying decreased contractility and
increased apoptotic death, despite a corresponding upregulation in Pim-3 [143,153]. This
suggests that under conditions of cardiac stress, Pim-1 is cardioprotective, but Pim-2 and
-3 are not and are unable to compensate for the loss of Pim-1. Further evidence for this is
Pim triple knockout mice experiencing premature cardiac ageing and progression towards
heart failure at 6 months [144], highlighting the drawbacks of complete deletion or total
inhibition of Pim kinase function. These observations will also have ramifications for drugs
affecting upstream regulators of Pim kinase.

These in vivo findings in mice are further supported by reports made in the first
Pim kinase inhibitor Phase I clinical trial for SGI-1776 (NCT01239108) (a Pim kinase and
FLT3-D3 inhibitor), which was terminated early and withdrawn due to QTc prolonga-
tion [135], which may be related to linked abnormal calcium handling via Pim regulation of
SERCA [143]. However, it should be noted that SGI-1776 is described as an inhibitor of both
FLT3 and Pim kinase. Phase I trials for other Pim kinase inhibitors have yielded conflicting
results (Table 3). Trials for AZD1208 do not report prolonged QTc time [17], whilst results
regarding myocardial side effects are conflicting with PIM447 [18,19]. These differences in
observations could be a side effect of disease severity and patient demographics and should
be investigated further due to different levels of Pim kinase inhibition. These observations
in preclinical studies and clinical trials indicate that Pim kinase expression and function are
important for cardioprotection. Further dosing studies are required to determine whether a
reduction in Pim kinase activity, rather than total ablation of kinase expression and activity,
can be tolerated by patients and whether this inhibition can be balanced with the role of
the Pim kinases in cardiac repair post-ischaemia.

4. Conclusions

Within the cardiovascular system, the Pim kinase family members play divergent roles,
mediating various cell types that are summarised in Figure 5. Expression of Pim kinases is
upregulated in response to cardiac and cardiovascular damage, mediating proliferation,
inflammatory responses, migration, and survival of the cells under pathological conditions,
providing protective effects. Whilst proliferative and survival signals are required for cell
repair and basal protection, particularly in cardiomyocytes, deregulated growth mediated
by Pim kinase and activation of VSMCs, endothelial cells, and platelets contribute to
atherosclerosis and hypertension through narrowing of the blood vessels, macrophage
activation, increased plaque formation, endothelial activation, and thrombosis.

Drug therapy targeting Pim kinases and reducing Pim kinase isoform activity has the
potential to offer a multifaceted, multi-cellular approach to combat cardiovascular disease.
However, current clinical trials have raised some concerns regarding the cardio-safety of
current Pim kinase therapies (Table 3) that require further investigation. Future develop-
ment must focus on fully elucidating the individual roles of the three Pim kinase isoforms
within the cardiovascular system, alongside developing isoform-specific targeting strate-
gies to ensure that the positive anti-atherosclerotic, anti-hypertensive, and anti-thrombotic
properties of Pim kinase inhibitors can be appropriately balanced to prevent the cardiac
side effects observed with total Pim kinase removal and observed with some existing Pim
kinase inhibitors.
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