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Abstract: The COVID-19 pandemic has revealed a significant association between SARS-CoV-2
infection and diabetes, whereby individuals with diabetes are more susceptible to severe disease
and higher mortality rates. Interestingly, recent findings suggest a reciprocal relationship between
COVID-19 and diabetes, wherein COVID-19 may contribute to developing new-onset diabetes and
worsen existing metabolic abnormalities. This narrative review aims to shed light on the intricate
molecular mechanisms underlying the diabetogenic effects of COVID-19. Specifically, the review
explores the potential role of various factors, including direct damage to β-cells, insulin resistance
triggered by systemic inflammation, and disturbances in hormonal regulation, aiming to enhance
our understanding of the COVID-19 impact on the development and progression of diabetes. By
analysing these mechanisms, the aim is to enhance our understanding of the impact of COVID-
19 on the development and progression of diabetes. The binding of SARS-CoV-2 to angiotensin-
converting enzyme 2 (ACE2) receptors, which are present in key metabolic organs and tissues, may
interfere with glucometabolic pathways, leading to hyperglycaemia, and potentially contribute to the
development of new disease mechanisms. The virus’s impact on β-cells through direct invasion or
systemic inflammation may induce insulin resistance and disrupt glucose homeostasis. Furthermore,
glucocorticoids, commonly used to treat COVID-19, may exacerbate hyperglycaemia and insulin
resistance, potentially contributing to new-onset diabetes. The long-term effects of COVID-19 on
glucose metabolism are still unknown, necessitating further research into the possibility of developing
a novel type of diabetes. This article provides a comprehensive overview of the current understanding
of the interaction between COVID-19 and diabetes, highlighting potential areas for future research
and therapeutic interventions.
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1. Introduction

During the COVID-19 pandemic, it has been observed that individuals with dia-
betes have a significantly increased risk of developing a severe form of the illness and a
higher mortality rate following infection with SARS-CoV-2 [1]. This is consistent with the
long-established connection between diabetes and increased susceptibility and severity of
infections, which is attributed to hyperglycaemia. Hyperglycaemia leads to cytokine dysreg-
ulation and immune response alteration, resulting in a pro-inflammatory and procoagulant
state that promotes immune dysfunction through various pathways [2,3]. Individuals
with diabetes also exhibit increased rates of hospitalization and mortality resulting from
infections. The risk of infections escalates with worsening glycaemic control, with type 1
diabetes patients being at greater risk [4–6]. Individuals diagnosed with type 1 diabetes
mellitus (T1DM) or type 2 diabetes mellitus (T2DM) frequently present with comorbid
medical conditions, such as hypertension, obesity, and cardiovascular disease, which have
been linked to an increased risk of contracting COVID-19 as well as an increased risk of
infection-related mortality [7]. As the COVID-19 pandemic is constantly evolving, it has
become more apparent that individuals with COVID-19 may experience hyperglycaemia,
regardless of whether they have diabetes. This observation could imply a mutually in-
fluential relationship between COVID-19 and diabetes. Recent research suggests that a
combination of insulin resistance and possible issues with insulin secretion may be respon-
sible for the development of hyperglycaemia in COVID-19 patients who did not previously
have diabetes [8,9].

The SARS-CoV-2 virus has the ability to attach itself to receptors called angiotensin-
converting enzyme 2 (ACE2), which are present in various crucial metabolic organs and
tissues, such as pancreatic β-cells, adipose tissue, kidneys, and the small intestine. This sug-
gests that SARS-CoV-2 may potentially interfere with the glucometabolic pathways, leading
to complications and even contributing to the development of new disease mechanisms [1].
Various mechanisms have been suggested to explain the occurrence of diabetes in conjunc-
tion with COVID-19 infection, including direct invasion of β-cells by the virus, leading to
their impaired function, induction of insulin resistance through systemic inflammation, or
endocrine alterations inciting this response [10]. It is presently uncertain if the emergence of
SARS-CoV-2-induced diabetes is due to established mechanisms of type 1 diabetes mellitus
(T1DM) or type 2 diabetes mellitus (T2D) or if it constitutes an atypical diabetes form.
It is unknown whether COVID-19 patients are still vulnerable to developing new-onset
diabetes or diabetes-related complications even after virus clearance and recovery [2,3].
Furthermore, glucocorticoids, which are frequently prescribed for moderate to severe
COVID-19 cases, have been known to cause hyperglycaemia and insulin resistance, which
could contribute to the incidence of new-onset diabetes [11]. Some studies have found
that COVID-19 patients who develop new-onset diabetes tend to have worse outcomes
than those with no diabetes or with previous diabetes [11–14]. Although the underlying
mechanisms between COVID-19 and diabetes are still being investigated, it is obvious that
both conditions share stress-induced pathways that interact in a two-way direction. This
review aims to explore the available literature on SARS-CoV-2-related new-onset diabetes
and the underlying physiological mechanisms.

2. Viruses and Diabetes Mellitus—What Do We Know So Far?

There is a great deal of speculation about viruses causing or triggering different
types of chronic diseases, such as diabetes mellitus. This association was examined in
studies with different viruses. For example, it was shown that enteroviruses can cause
induction or acceleration of the autoimmune response to the insulin-producing β-cells of
the pancreas [15–17]. Another example is the hepatitis C virus, which has been linked to an
increased possibility of developing diabetes in liver transplant and other patients [18–23].
Furthermore, there was a large TEDDY study with 7896 participants and two relatively
smaller studies—the MIDIA study with 885 participants and the BABYDIET study with
148 participants—that all confirmed an association between respiratory infection and
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diabetes development [24–26]. Al-Sayyar et al. focused on similarities between COVID-19-
associated diabetes and other respiratory infections associated with diabetes, demonstrating
common mechanisms among those groups of patients [27]. Because COVID-19 has been a
major cause of respiratory infections since its outbreak in the year 2019, and as a relatively
newly emerged disease, it presents an area of particular interest among scientists.

3. COVID-19 and Diabetes Mellitus

Clinical studies worldwide indicate that diabetes mellitus is among the most preva-
lent comorbidities observed in patients infected with SARS-CoV-2. At the onset of the
COVID-19 pandemic, this finding, in association with the established heightened risk of
infection with other pathogens, gave rise to the notion that individuals with diabetes are at
a greater primary risk of contracting COVID-19. However, most of the studies reporting
this finding pertain to patients receiving in-hospital care or those admitted to the intensive
care unit (ICU), who typically experience a more severe course of the disease [28]. Several
factors present in diabetes mellitus make individuals more susceptible and increase the
severity of COVID-19 infection, including older age, a pro-inflammatory and procoagu-
lable state, hyperglycaemia, and accompanying comorbidities like obesity, hypertension,
cardiovascular disease, and chronic kidney disease. The state of hyperglycaemia, insulin
resistance, and chronic low-grade inflammation leads to a dysfunction of the immune
system, resulting in reduced interleukin production, decreased chemotaxis and phagocyte
activity, and immobilization of polymorphonuclear leukocytes [28–30].

SARS-CoV-2 uses the ACE2 receptor to enter cells within the human body. People with
diabetes mellitus have a greater level of expression of ACE2, which is primarily found in the
lungs but also present in numerous other tissues, such as the endothelial cells of the heart
and kidneys, as well as β-cells of the pancreas. Research has indicated that SARS-CoV-2 can
replicate within the β-cells of the pancreas, causing harm to the pancreas and ultimately
leading to hyperglycaemia and diabetic ketoacidosis [31]. The aforementioned mechanism
could explain the increased susceptibility of patients with DM to illness caused by the
COVID-19 infection and the emergence of more severe forms of the disease [30,32]. Both the
viral spike protein binding to the ACE2 receptor and the degree of the immune response to
the virus can be affected by uncontrolled hyperglycaemia. Elevated levels of blood sugar
can directly increase the concentration of glucose in airway secretions [33]. Brufsky suggests
that uncontrolled hyperglycaemia may increase in ACE2 receptors that are highly and
aberrantly glycosylated in the lung, nasal airways, and oropharynx. This could lead to more
binding sites for the SARS-CoV-2 virus, increasing the likelihood of COVID-19 infection
and the severity of the disease [34]. This observation is suggestive of stress hyperglycaemia,
which exhibits worse outcomes in acute illness when compared to pre-existing diabetes [35].
Stress hyperglycaemia has been identified as an unfavourable prognostic factor and has
been associated with an elevated risk of respiratory failure and mortality in individuals
with SARS [36]. The viral and immune responses during critical stages of COVID-19
can also lead to hyperglycaemia and reduce insulin sensitivity, resulting in additional
metabolic complications [37]. Additionally, prolonged hyperglycaemia can impede the
innate and humoral immune responses, thereby blocking lymphocyte proliferation, natural
killer cell activity, and the function of monocytes/macrophages and neutrophils [38].
Correspondingly, numerous reports have demonstrated that elevated glucose levels upon
admission serve as independent risk factors for the critical progression of COVID-19 and
mortality [29,39,40].

SARS-CoV-2 directly affects the vascular system by targeting endothelial cells, result-
ing in severe endothelial damage and inflammation [41]. Additionally, COVID-19 causes
an overproduction of pro-inflammatory cytokines, which further promotes endothelial
dysfunction, which is already compromised by diabetes [42]. Three post-mortem histologi-
cal analyses of patients have shown evidence of endotheliitis during COVID-19 infection,
highlighting the potential for more severe clinical presentation in patients with a history
of endothelial dysfunction [43]. Further evidence suggests that persistent endothelial
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dysfunction increases the susceptibility to severe COVID-19 disease. This is because hyper-
glycaemia and insulin resistance result in endothelial dysfunction and glycocalyx damage
in individuals with type 2 diabetes mellitus, which then leads to leukocyte adhesion and
promotes a procoagulant and antifibrinolytic state [44]. The combination of glucotoxicity
and the inflammatory cytokine cascade characteristic of COVID-19, as well as immune
dysregulation and endothelial damage, can result in additional metabolic complications in
people with diabetes, including heightened susceptibility to thromboembolic events and
multiorgan damage [45].

Thrombotic complications play a substantial role in the reduced survival rates ob-
served in COVID -19 patients. Various studies have reported that the incidence of symp-
tomatic venous thromboembolic events in individuals with COVID-19 ranges from 20% to
3% [46]. In contrast, the incidence of arterial thrombosis appears to be significantly lower
than that of venous thromboembolism, with reported rates between 2.8% and 3.8% in small
series [47]. Numerous studies indicate that COVID-19 infection can cause both arterial and
venous thrombosis. Two distinct patterns of thrombotic manifestations have been identified,
with one resembling classical thromboembolic disease and the other being diffuse micro-
thrombotic [48]. Violi et al.’s research revealed that hospitalised COVID-19 patients are
vulnerable to both venous and arterial ischemic events, which are indicators of a poor prog-
nosis. This study contradicts previous findings by showing that COVID-19 is associated
with a comparable venous and arterial thrombosis incidence. Nearly half of the 75 patients
with ischemic events were affected by arterial thrombosis, altering coronary, cerebral, and
peripheral circulations [49]. This thrombotic state is caused by the interaction between
the inflammatory and hemostatic systems, including infected endothelial cells, leukocytes,
platelets, complement activation, and the virus-induced hypoxic environment [48].

The association between COVID-19 and lipid metabolism has been observed, with
liver damage being suggested as a potential etiological factor. Approximately half of
COVID-19 patients exhibit mild to moderate elevations in transaminase levels, indicat-
ing impaired liver function and a potential link to hypolipidemia. However, the exact
mechanism by which SARS-CoV-2-induced liver damage affects the biosynthesis of LDL-C
remains to be established. Recent evidence from COVID-19 patients indicates a significant
increase in IL-6 levels in 96% of those investigated, suggesting that proinflammatory cy-
tokines and acute inflammation may play a crucial role in the disturbed lipid metabolism
observed in COVID-19 patients [50]. Viral-induced inflammation can lead to dyslipidemia,
specifically decreased LDL-C levels. The reduced LDL-C levels are likely not primarily
caused by liver damage but rather influenced by acute inflammation and elevated levels
of proinflammatory cytokines such as IL-6. These results demonstrate the importance
of inflammation in altering lipid metabolism in COVID-19 infection. Upon admission to
the hospital, COVID-19 patients experience a reduction in LDL-C levels, which persists
throughout the course of treatment. However, upon discharge, LDL-C levels gradually
return to their pre-infection levels. Total cholesterol follows a similar pattern, while HDL-C
levels decrease initially and remain low even after recovery. Non-surviving COVID-19
patients experience a continuous decline in LDL-C, HDL-C, and total cholesterol levels
until death. Critically ill patients also exhibit reduced HDL-C levels, while even mildly
symptomatic patients can develop hypolipidemia that corresponds to disease severity [51].
LDL-C cholesterol shows promise as a potential prognostic indicator for poor outcomes
in COVID-19 [52]. Infection with SARS-CoV-2 can also affect thyroid function, with mild
reductions in TSH and FT4 levels observed in some COVID-19 patients [53]. The thyroid
gland expresses higher levels of ACE2 and TMPRSS2 than the respiratory system, which
may contribute to a variety of immune responses and manifestations. Moreover, the cy-
tokine storm associated with COVID-19 may indirectly cause prolonged inflammation in
the thyroid gland [50].

Drugs commonly used to treat COVID-19, such as corticosteroids or antiviral agents,
can worsen hyperglycaemia, leading to lipodystrophy and insulin resistance [37]. An
observational study revealed that hospitalized patients with COVID-19 who had hypergly-
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caemia demonstrated elevated levels of IL-6 and D-dimer, two markers associated with
inflammation and a procoagulant state. Effective glucose control significantly decreased
these levels, suggesting that hyperglycaemia contributes to heightened inflammation and a
procoagulant state independently of viral factors. Therefore, both type 1 and type 2 dia-
betes mellitus (T1DM and T2DM), particularly when accompanied by inadequate glycemic
control, present high-risk pre-existing conditions for various bacterial and viral infections,
including SARS-CoV-2 [3,54]. The available research had mainly focused on patients with
type 2 diabetes (T2DM) or lacked information on diabetes type, leaving uncertainty re-
garding the elevated risk of severe COVID-19 in type 1 diabetes (T1DM) patients. Recent
evidence suggests, however, that individuals with type 1 diabetes mellitus (T1DM) are at
an increased risk of experiencing severe outcomes related to COVID-19, such as mortality,
ICU admission, and hospitalisation. Compared to non-diabetic individuals, T1DM patients
experience a 3.5-fold increase in in-hospital deaths due to COVID-19, according to a study
of the entire English population [55]. Individuals with T1DM and COVID-19 who had an
HbA1c level greater than 10.0% (86 mmol/mol) were found to have significantly higher
odds of mortality compared to those with an HbA1c level of 6.5–7.0% (48–53 mmol/mol).
Similarly, a nationwide population-based study in Scotland showed that T1DM patients
faced higher risks of COVID-19-related mortality and ICU admission compared to T2DM
patients [56]. Finally, a recent prospective cohort study conducted in the USA confirmed
these findings and further showed that T1DM patients had a higher risk of hospitalization
for COVID-19 than T2DM patients [57]. It should not be neglected that SARS-CoV-2 patients
with diabetes are more prone to the development of severe clinical presentation [58,59],
as well as the complicated course of the disease, especially when they are not regulated
properly. A large prospective cohort study that included 9058 patients in Romania showed
that patients with T2DM were associated with higher intensive care unit mortality [60].
Those results are also supported by meta-analysis, including data from 6,653,207 patients
associating diabetes mellitus with both hospital and community-based mortality and risk
for developing severe clinical presentation and need for hospitalization [61]. Furthermore,
SARS-CoV-2 has been identified as a plausible culprit for the onset of diabetes mellitus in
previously healthy individuals [62,63]. Moreover, there is a correlation between COVID-19
and notable impairment in metabolic function in both new-onset and pre-existing dia-
betes cases, potentially leading to severe conditions like diabetic ketoacidosis (DKA) and
hyperglycaemic hyperosmolar state (HHS) [8,64–66].

4. COVID-19-Induced Diabetes

The association between diabetes and COVID-19 is probably bidirectional. Diabetes is
known as a serious disease and comorbidity associated with a more severe clinical presen-
tation and worse prognosis in many infectious and other diseases [67,67–73]. New-onset
hyperglycaemia has been increasingly observed in adults with no history of diabetes in as-
sociation with COVID-19, accompanied with significant morbidity and mortality. Although
infection-induced inflammation and cytokine activation leading to insulin resistance may
cause stress hyperglycaemia, it is unknown to what extent the direct destruction of islet
cells by the virus, resulting in decreased insulin production and release, contributes [9].
Interestingly, COVID-19 infection has been linked to the development of diabetes, evident
through sudden onset hyperglycaemia in non-diabetic individuals, diabetic ketoacidosis in
pre-existing diabetic patients with COVID-19, and the emergence of diabetes in patients
with COVID-19 [13,74–76], shown in Table 1.
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Table 1. Studies that have described new-onset diabetes in COVID-19 patients.

Authors Type of Study Country Number of Cases Results

Sathish et al. [62] Meta-analysis China, Italy, US 3711 patients 14.4% of the population had
new-onset diabetes

Sathish et al. [63] Retrospective study India 102 patients 20.6% of the population had
new-onset diabetes

Li et al. [11] Retrospective study China 453 patients 20.8% of the population had
new-onset diabetes

Unsworth et al. [65] Retrospective study UK 30 children 80% increase in new-onset
T1DM

Tittel et al. [77] Prospective study Germany
Children from
216 paediatric diabetes
centres

T1DM incidence increased
from 16.4 per 100,000 to 22.2
per 100,000

Salmi et al. [78] Retrospective study Finland

Children admitted to
PICU due to new-onset
diabetes compared with
the pre-pandemic period

The number of children
admitted to PICU due to
new-onset diabetes increased
from 6.25 in 2016 to 20 in 2020.

Montefusco et al. [75] Retrospective study Italy 551 patients 46% were hyperglycaemic

Kamrath et al. [66] Prospective study Germany 532 newly diagnosed
T1DM

The frequency of diabetic
ketoacidosis was 44.7%

Fadini et al. [13] Retrospective study Italy 413 patients 5% had new-onset diabetes

Ghosh et al. [76] Retrospective study India 555 patients with
new-onset diabetes

Patients with new-onset
diabetes had worse glycaemic
parameters

Shrestha et al. [79] Meta-analysis US, China, France,
India, Italy

1943 patients across
seven studies

The mortality rate in
COVID-19-associated diabetes
patients was 25%

Like other viruses, SARS-CoV-2 infections can trigger a stress response that may
decrease insulin secretion, activate the release of cortisol and adrenaline, and stimulate
excessive gluconeogenesis, leading to temporary hyperglycaemia. These mechanisms
do not inevitably result in diabetes [80]. COVID-19 infection has been associated with
a distinctive range of newly developed diabetes variations, including some that appear
to be unique to the disease. While most large-scale studies have categorized new-onset
diabetes as either type 1 or type 2, recent case reports have suggested that COVID-induced
diabetes can take on different forms. Omotosho et al. presented a case study of a woman
who developed latent autoimmune diabetes of adulthood (LADA) following a COVID-19
infection [81]. Positive tests for islet cell and glutamic acid decarboxylase (GAD) antibodies
confirmed the patient’s type 1 diabetes diagnosis. Marchand et al. also reported a case of
LADA in a patient infected with COVID-19 [82].

A random effects meta-analysis determined that the overall incidence of new-onset
diabetes among COVID-19 patients was 14.4% [62]. Additionally, a systematic review
and meta-analysis of eight cohort studies, which included over forty-seven million indi-
viduals, demonstrated that COVID-19 was associated with a 66% increase in the risk of
diabetes compared to those who did not contract COVID-19. The risk was not influenced
by variables such as age, gender, or study quality [83]. Patients with newly diagnosed
diabetes as a result of COVID-19 have a greater risk of hospitalization and death com-
pared to those who are normoglycaemic or have only temporary hyperglycaemia. These
patients with pre-existing or new-onset diabetes associated with COVID-19 also have more
severe complications, such as acute respiratory distress syndrome, acute renal failure,
shock, and low albumin levels, compared to those with normal or temporarily elevated
blood sugar levels [11]. Furthermore, patients with COVID-19 are also more prone to
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ketoacidosis [84–86], which could indicate the diabetogenic potential of SARS-CoV-2. The
mechanisms mentioned were proposed by Sathish et al. [87] and some other authors [88,89].
Some studies showed that diabetes is related to prolonged hospitalization of patients with
COVID-19 [90] and with worse disease outcomes [27,28,79,91–96]. It is also concluded
that patients with diabetes mellitus are more prone to developing severe symptoms of
COVID-19 [28,93,94,96]. Moreover, newly diagnosed diabetes during SARS-CoV-2 infection
has been linked to an even worse prognosis than pre-existing, probably due to insufficient
diabetes regulation [62,92,93,97].

A previous study that involved more than 180,000 veterans showed that individu-
als who had recovered from COVID-19 were 40% more likely to develop diabetes than
those who had not previously been diagnosed with COVID-19. As mentioned, another
study revealed that as much as 14% of individuals who were hospitalized for COVID-19
were subsequently diagnosed with diabetes [83]. Another meta-analysis that included
4,270,747 SARS-CoV-2 positive patients surviving the disease and 43,203,759 control pa-
tients demonstrated a higher risk of diagnosing diabetes in recovered COVID-19 patients
than in the control group [83]. Those data could be in favour of the diabetogenic potential
of SARS-CoV-2 or could have a connection with corticosteroid treatment, which can worsen
hyperglycaemia, resulting in a negative impact on patients’ physiological processes [28,98].
However, the SARS-CoV-2 pandemic influenced diabetic patients in other ways, such as
health availability and support, which were mostly insufficient, at least at the beginning of
the pandemic [99–102].

4.1. Type 1 Diabetes Mellitus (T1DM)

Although type 1 diabetes is autoimmune in nature, its onset usually necessitates an
environmental trigger, such as an infection [103]. In the case of SARS-CoV-2, it is sug-
gested that direct infection, coupled with the inflammatory response and interactions
with the renin–angiotensin system, can lead to damage to pancreatic cells and the de-
velopment of new-onset diabetes. Case reports of individuals with recent SARS-CoV-2
infection presenting with new-onset T1DM and DKA suggest that SARS-CoV-2 infection
may expedite the development of T1DM or elevate the susceptibility to its metabolic compli-
cations [66,77,78,104]. There is much speculation surrounding the suggestion that exposure
to SARS-CoV-2 could have triggered the onset of T1DM, which may have contributed to
the rise in DKA. However, there is insufficient evidence to confirm whether this new-onset
diabetes represents classic T1DM or a distinct form of diabetes. It remains unclear whether
the severe COVID-19-induced hyperglycaemia observed in some individuals would resolve
over time, as was observed with SARS-CoV-1-induced diabetes [1]. The precise mechanisms
by which SARS-CoV-2 increases the risk of T1DM are still being investigated. However,
it is known that the destruction of β-cells can initiate the spread of epitopes, leading to
the activation of CD-8 T cells and the production of a broader spectrum of autoantibodies
that target various islet cells, such as insulin, glutamic acid decarboxylase, and protein
tyrosine phosphatase. This autoimmune response depletes functional β-cells, resulting in
hyperglycemia and the clinical manifestation of type 1 diabetes [105].

4.2. Type 2 Diabetes Mellitus (T2DM)

Studies have indicated that acute COVID-19 more often may exacerbate pre-existing
prediabetes or T2DM [106]. Individuals who are hospitalized for acute COVID-19 infections
may have undetected diabetes mellitus. The pandemic-related changes in lifestyle, such as
decreased physical activity due to measures like lockdowns, may have played a role in the
increased weight gain and glyco-metabolic syndrome observed in people with prediabetes.
Such changes may also raise the risk of developing new-onset diabetes in the post-infectious
stage [79]. COVID-19 can elevate stress hormones, such as adrenaline and cortisol, which
may trigger the production of glucose, resulting in hyperglycaemia [107]. Also, direct
cytotoxic injury to pancreatic cells caused by SARS-CoV-2 infection may result in reduced
insulin production [108]. COVID-19 may exacerbate pre-existing T2DM or prediabetes.
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Certain studies suggest that these conditions are transient and may resolve with time, but
this hypothesis requires ongoing investigation in the future [106].

4.3. COVID-19-Vaccine-Induced Diabetes Mellitus

There are speculations about the impact of COVID-19 vaccines on diabetes mellitus
development. For now, there are mostly case reports for such events; patients are usu-
ally presenting with ketoacidosis [109–111], hyperglycaemia [112–114], or hyperosmolar
state [113]. There were some observations that vaccines could precipitate hyperglycaemia
and other complications in patients that already have diabetes [115], but a study conducted
on 350,936 cases did not find such a link [116], as well as a study completed in paediatric
patients [117]. Furthermore, there are reports about more frequent adverse reactions to
the vaccines with diabetic patients [118,119], but other researchers did not find such a
relation [58]. There were concerns that, since diabetes mellitus is a procoagulatory state,
vaccines could precipitate thromboembolic incidents, but a study investigating coagulation
pathways in T1DM and T2DM patients after vaccination did not find significant differences
compared to healthy individuals [59]. Vaccines not only reduce the chance of severe clinical
presentation and hospital admission in diabetic patients [120] but could also have a pro-
tective effect and reduce the possibility of developing diabetes mellitus after COVID-19 in
healthy individuals [108,121]. Nevertheless, patients with diabetes mellitus have decreased
antibody and memory β-cell response to the vaccine [58,122,123], and there are reports that
vaccines could be less effective in those individuals [124,125].

5. Underlying Pathophysiological Mechanism of COVID-19-Induced
Diabetes Mellitus

The pathogenesis of SARS-CoV-2-induced new-onset diabetes is complex and not yet
fully understood. As previously described, it may involve direct β-cell damage, systemic-
inflammation-induced insulin resistance, and hormonal dysregulation. Additionally, treat-
ment with glucocorticoids for COVID-19 may increase the risk of new-onset diabetes due to
their association with hyperglycaemia and insulin resistance [126,127], shown in Figure 1.

5.1. Direct and Indirect β-Cell Damage

The onset of acute hyperglycaemia during coronavirus infection has been linked to
the binding of the virus to the ACE2 receptor located in pancreatic islet cells [128]. The
SARS-CoV-2 virus infects cells by attaching to receptors such as ACE2, TMPRSS2, and
DPP-4, which are present not only in alveolar cells but also in cells of the pancreas, heart,
and small intestine. The expression of ACE2 has been found to be more prominent in the
pancreas than in the lungs and has been detected in both the exocrine glands and islets
of the pancreas, including β-cells [129]. Autopsies of COVID-19 patients have confirmed
the presence of the virus in β-cells and the potential for replication within the endocrine
pancreas. The virus infects pancreatic β-cells and causes transdifferentiation, leading to
decreased insulin secretion and increased production of glucagon and trypsin 1 [130]. The
findings of Muller et al. indicate that SARS-CoV-2 infection of β-cells can result in hormone-
negative cells, supporting the theory that the disruption of glucose regulation observed in
COVID-19 patients may play a role in the development of new-onset diabetes [131]. The
pro-inflammatory cytokines and acute-phase reactants triggered by COVID-19 may directly
induce inflammation and harm pancreatic β-cells [132]. Individuals with acute SARS-CoV-
2 infection may experience a cytokine storm, an intensely inflammatory state affecting
various organs in the body, including the pancreas. This can give rise to acute pancreatitis
and degeneration of the pancreatic islet cells, potentially resulting in hyperglycaemia and
diabetes if the damage is extensive [133].
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Figure 1. Potential pathophysiological mechanisms of COVID-19-induced diabetes.

5.1.1. Indirect β-Cell Damage: Autoimmunity and Inflammation

COVID-19 has been linked to the development of various autoimmune disorders,
including systemic lupus erythematosus (SLE), Guillain–Barré syndrome, and Grave’s
disease. The autoimmunity of β-cells could be explained by molecular mimicry [134].
Molecular mimicry refers to a phenomenon where a viral epitope shares similarities with a
host islet protein, potentially triggering an autoimmune response against the host tissue
in susceptible individuals. However, studies conducted to investigate molecular mimicry
have produced inconclusive findings. It is likely that molecular mimicry does not initiate
the autoimmune process independently but rather accelerates it once it has already been
initiated [135]. Prolonged infection of β-cells leads to the continual overexpression of MHC-1,
which in turn leads to the persistent presentation of β-cells epitopes to the immune system.
This sustained presentation of antigens contributes to the promotion of autoimmunity [64].
Excessive formation of neutrophil extracellular traps (NETs) during COVID-19 infection
may also play a role in autoimmunity. NETs are complex structures composed of DNA,
histones, microbicidal proteins, and oxidant enzymes that neutrophils release to contain
infections. While neutrophil extracellular traps (NETs) play a crucial role in preventing
the invasion of pathogens, their uncontrolled formation can have detrimental effects,
including the development of autoimmune inflammation and tissue damage [136]. The
ACE2 receptor plays a pivotal role in anti-inflammatory pathways by producing angiotensin
1–7, which has vasodilatory and antifibrotic effects, by converting angiotensin II into
inactive angiotensin 1–7. In SARS-CoV-2 infection, ACE2 expression is reduced, resulting
in reduced levels of angiotensin 1–7 and increased inflammation and coagulability [137].
Chee et al. have proposed a hypothesis stating that reduced levels of ACE2 and the
detrimental effects of angiotensin II cause diminished blood flow to pancreatic β-cells,
leading to β-cell dysfunction and glycaemic dysregulation. Angiotensin II also has a pro-
inflammatory effect, increasing macrophage and monocyte infiltration, further exacerbating
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the disruption of β-cell function. These mechanisms are likely to cause β-cell function
disruptions, resulting in glycaemic dysregulation [104,138].

5.1.2. Insulin Resistance

Patients with COVID-19 often experience a decreased sensitivity to insulin due to the
damage to their β-cells and may require an increase in insulin dosage, especially during
feverish episodes [139]. According to research by He et al., COVID-19 was found to cause
new-onset insulin resistance in patients without a prior history of metabolic disease [140].
The research demonstrated a reduction in the activity of the REST transcription factor,
which is connected to alterations in the expression of essential genes involved in glucose
and lipid metabolism. Additionally, an increase in propionic and isobutyric acids was
noted, and previous animal studies have established a link between these acids and insulin
resistance. Interestingly, the BMI range for subjects with COVID-19 in this study was
between 20.5 and 24.6, suggesting that lean individuals may also develop insulin resistance,
independent of traditional risk factors such as high BMI. This study also showed that
insulin resistance persists even after SARS-CoV-2 has been eliminated, suggesting potential
long-term consequences for COVID-19 patients [140].

The induction of the integrated stress response (ISR) due to stressors can activate a
group of four serine/threonine kinases, including RNA-dependent protein kinases that
may phosphorylate insulin receptor substrates (IRS) at serine, which can suppress the
insulin signalling pathway. In the case of SARS-CoV-2 infection, viral RNA fragments
may activate kinase and induce insulin resistance [137]. Additionally, cytokine storm, a
condition characterized by high levels of pro-inflammatory cytokines, is known to ac-
tivate the serine/threonine kinase family associated with the ISR, resulting in insulin
resistance [141,142]. In a study by Šestan et al., viral-infection-induced production of in-
terferon gamma (IFN) reduced insulin receptors in skeletal muscle, resulting in insulin
resistance. This mechanism could contribute to the insulin resistance observed in patients
with COVID-19-induced diabetes, both adults and children [143–145]. Cellular stress dur-
ing acute inflammation may stimulate accelerated lipolysis, leading to increased levels
of free fatty acids in circulation and relative insulin deficiency [132]. Once more, the po-
tential impact of glucocorticoid therapy on precipitating insulin resistance should not be
overlooked.

6. Future Directions and Conclusions

The study of COVID-19’s impact on glucose regulation is a pressing area of research.
The underlying cause of glucose imbalance in COVID-19 patients is complex and multi-
dimensional, encompassing insulin resistance and β-cell dysfunction. Clinical data have
shown that COVID-19 patients require increased insulin doses to maintain glucose control
and exhibit significant fluctuations in glucose levels. Scientists are exploring SARS-CoV-
2’s mechanisms of β-cell destruction through its known receptors, such as ACE2, and
other potential entry points that require further investigation. Additionally, the connection
between the β-cells and the endothelium, which is crucial for intact β-cell function, may
also contribute to β-cell dysfunction indirectly. Timely recognition and management of
patients with new-onset diabetes post-COVID-19 is of paramount importance as it has
been linked to unfavourable outcomes. Further research is imperative to fully understand
this novel type of diabetes and to establish effective management strategies. The long-
term effects of COVID-19 on glucose metabolism are still unclear, including whether these
disruptions are permanent or if the virus can cause a novel form of diabetes. Further
research is imperative to fully elucidate this novel type of diabetes and to establish effective
management strategies and potential treatment options.
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