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Abstract: Alzheimer’s disease (AD) is characterized by progressive cognitive decline and is a leading
cause of death in the United States. Neuroinflammation has been implicated in the progression of AD,
and several recent studies suggest that peripheral immune dysfunction may influence the disease.
Continuing evidence indicates that intestinal dysbiosis is an attribute of AD, and inflammatory
bowel disease (IBD) has been shown to aggravate cognitive impairment. Previously, we separately
demonstrated that an IBD-like condition exacerbates AD-related changes in the brains of the AppNL-G-F

mouse model of AD, while probiotic intervention has an attenuating effect. In this study, we
investigated the combination of a dietary probiotic and an IBD-like condition for effects on the brains
of mice. Male C57BL/6 wild type (WT) and AppNL-G-F mice were randomly divided into four groups:
vehicle control, oral probiotic, dextran sulfate sodium (DSS), and DSS given with probiotics. As
anticipated, probiotic treatment attenuated the DSS-induced colitis disease activity index in WT and
AppNL-G-F mice. Although probiotic feeding significantly attenuated the DSS-mediated increase in
WT colonic lipocalin levels, it was less protective in the AppNL-G-F DSS-treated group. In parallel
with the intestinal changes, combined probiotic and DSS treatment increased microglial, neutrophil
elastase, and 5hmC immunoreactivity while decreasing c-Fos staining compared to DSS treatment
alone in the brains of WT mice. Although less abundant, probiotic combined with DSS treatment
demonstrated a few similar changes in AppNL-G-F brains with increased microglial and decreased
c-Fos immunoreactivity in addition to a slight increase in Aβ plaque staining. Both probiotic and
DSS treatment also altered the levels of several cytokines in WT and AppNL-G-F brains, with a unique
increase in the levels of TNFα and IL-2 being observed in only AppNL-G-F mice following combined
DSS and probiotic treatment. Our data indicate that, while dietary probiotic intervention provides
protection against the colitis-like condition, it also influences numerous glial, cytokine, and neuronal
changes in the brain that may regulate brain function and the progression of AD.

Keywords: Alzheimer’s; colitis; intestine; amyloid

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that gradually deteriorates
behavioral and cognitive functions such as memory, comprehension, language, attention,
reasoning, and judgment [1–3]. Approximately 57.4 million individuals worldwide had
dementia in 2019, and by 2050, that number is expected to rise to 152.8 million [4]. With an
estimated 6.5 million cases in the USA and an expected increase to 13.8 million cases by 2060,
AD is the seventh leading cause of death [2,5]. Its main pathological features are the deposit
of β-amyloid (Aβ) [6] peptides in the extracellular space and the formation of neurofibrillary
tangles [7–9] arising from the intraneuronal accumulation of hyperphosphorylated tau
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protein [10]. Unfortunately, the current treatments for Alzheimer’s disease provide only
marginal benefits [11,12]. Furthermore, many highly promising drugs have failed to
demonstrate clinical benefits in phase III trials [13]. Even recent results from anti-Aβ

immunotherapy are not entirely clear, suggesting that additional data are required to
confirm its efficacy [11,12,14]. Therefore, due to an increased need to better understand the
disease and its comorbidities, developing therapies that alter disease progression remains
a priority.

Recent studies, including experimental and clinical evidence, have suggested that gut
dysbiosis and gut microbiota–host interactions play an important role in neurodegenera-
tion [15–20]. The combination of a gut-derived inflammatory response, aging, and a poor
diet in the elderly may all contribute to the pathophysiology of AD. Alteration of the gut mi-
crobiota composition through food-based therapy or probiotic supplementations may open
new preventive and therapeutic avenues in AD. There is also promising evidence that the
intestinal microbiota influences brain–gut interactions at various ages and at various levels
in the intestine [21]. For example, animal studies using germ-free mice show that gut micro-
biota play an important role in early brain development and adult neurogenesis [19,21,22].
The impact of microbiota on the brain through the so-called brain–gut-microbiota axis is
mediated by neural, immune, endocrine, and metabolic signaling [22].

Irritable bowel disease, IBD, primarily consists of ulcerative colitis (UC) and Crohn’s
disease (CD) and is a chronic inflammatory condition marked by alternating periods of
disease activity and latency [23–25]. It is characterized by inflammation, which can cause
abdominal pain, diarrhea, and bloody stool [26]. Interestingly, the link between chronic
inflammation and cognitive decline has been reported in several studies [27–29]. Systemic
inflammation may drive neuroinflammatory changes and chronic activation of microglia,
leading to oxidative stress and the deposition of misfolded proteins in Alzheimer’s de-
mentia [30]. In addition, there is promising evidence of gut-derived products serving as
a pathogenic link between immune activation and AD [31]. Thus, there is a convincing
biological possibility for a predisposition of AD in IBD patients [31–34].

Previously, we demonstrated that an IBD-like condition induced by DSS exacerbates
AD-related changes in the brains of AppNL-G-F mice [35]. In this study, we investigated
whether dietary intervention with a probiotic could attenuate IBD-potentiated changes in
the brains of these mice. We employed a commercially available probiotic cocktail com-
posed of eight strains of lactic acid-producing bacteria: Lactobacillus plantarum, Lactobacillus
delbrueckii subsp. Bulgaricus, Lactobacillus paracasei, Lactobacillus acidophilus, Bifidobacterium
breve, Bifidobacterium longum, Bifidobacterium infantis, and Streptococcus salivarius subsp.
Thermophilus [36].

2. Results
2.1. Probiotic Ameliorated the DSS-Induced Colitis-like Condition in the Intestine

Male AppNL-G-F and WT mice were fed probiotic ad libitum for three weeks prior
to treatment with 2% DSS for two bouts of three days each with a fourteen-day interval
in between to model two episodes of colonic inflammation. Mice remained on probiotic
feeding throughout the entire experimental period. The symptomatic parameters of colitis,
disease activity index (DAI), colonic lipocalin levels, and claudin 4 immunoreactivity were
assessed after the second round of DSS treatment. The DAI includes an assessment of stool
consistency, occult fecal blood, and percent body weight loss and is associated with colonic
inflammation and the presence of gut lesions. Each parameter was rated on a scale of 0–4
and then scored out of 12, indicating the maximum DAI for each condition. This method
of scoring is similar to the clinical presentation of IBD symptoms in humans. During the
second administration of DSS, both WT and AppNL-G-F mice displayed significantly greater
disease activity scores compared to their respective untreated groups (Figure 1A). This
increase was reduced in both genotypes at day four by probiotic feeding (Figure 1A). To
examine the more long-term recovery benefits of probiotic feeding, the mice remained on
the probiotic diet until the eighth week of the experiment. Fecal lipocalin-2 is a stable,
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highly sensitive, and non-invasive marker that determines the extent of intestinal inflamma-
tion [37]. Colonic lipocalin levels were significantly increased even at 9 weeks in response to
DSS treatment in AppNL-G-F and WT mice compared to their controls (Figure 1B). However,
the probiotic feeding reduced lipocalin levels in the WT mice, indicating a recovery benefit
that was not observed in AppNL-G-F mice (Figure 1B). Increasing evidence from studies
involving IBD patients and animal models suggests that the downregulation or redistribu-
tion of claudins is strongly involved in the pathogenesis of IBD, including colitis [38–41].
Among these, it has been reported that the sealing tight junction protein claudin-4 functions
as a paracellular sodium barrier and that the downregulation of claudin-4 expression could
decrease transepithelial electrical resistance (TER) [42]. To assess the colonic epithelial
integrity, immunohistochemistry staining for claudin-4 was performed. The DSS-treated
groups in both WT and AppNL-G-F mice showed reduced staining for claudin-4, which
remained low with probiotic feeding, in alignment with the maintained inflammation
demonstrated by the lipocalin ELISA results (Figure 1C). Interestingly probiotic feeding
itself appeared to reduce claudin-4 immunoreactivity (Figure 1C).
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Figure 1. Probiotic treatment had minimal effects on DSS-induced colitis disease activity in-
dex (DAI), lipocalin levels, and claudin-4 immunoreactivity in C57BL/6J wild type (WT) and
AppNL-G-F mice. Male C57BL/6J wild type and AppNL-G-F mice were given diluted MediGel in
water (1:1) ad libitum or the probiotic resuspended in diluted MediGel starting at week 0 and until
week 8. At weeks 3 and 5, DSS was provided in the diluted MediGel (2% final concentration) for
three days per cycle. Mice were allowed to recover until week 8 with or without maintained exposure
to the probiotic. (A) A colitis-like disease (DAI) was assessed in vehicle, probiotic (Pro), DSS, and
DSS/Pro treatment groups in male wild type and AppNL-G-F mice. The DAI was monitored on the
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second 3-day cycle of 2% DSS exposure and 2 days afterwards (day 0–day 5) in all treatment groups.
(B) Upon completion of the probiotic feeding paradigm at 8 weeks, the wild type and AppNL-G-F mice
were collected before colon lipocalin levels were quantified by ELISA. (C) Claudin 4 immunoreactivity
was examined in colons of both wild type and AppNL-G-F colons using Vector VIP as the chromogen.
Representative images are shown (scale bar 50 µm). Non-parametric one-way ANOVA (Kruskal–
Wallis test) followed by Dunn’s multiple comparisons test was used to determine statistical differences.
Results are presented as mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

2.2. DSS-Induced Colitis and Probiotic Administration Increased Neutrophil Elastase
Immunoreactivity in the Brain

In colitis, it has been established that there is an infiltration of neutrophils, and their
activation results in the excessive release of neutrophil elastase, which is implicated in colon
inflammation and severe colitis [43]. To assess the possible gut–brain communication of the
colitis-associated immune changes, we elected to examine the possible infiltration of the
brain by neutrophils by performing immunohistochemical analysis for neutrophil elastase.
Interestingly, when quantifying overall hemibrain coronal section immunoreactivity, both
probiotic and DSS treatment increased elastase immunoreactivity in WT brains compared
to the vehicle controls, while only probiotic increased immunoreactivity in AppNL-G-F brains
(Figure 2). Greater inspection of the immunohistochemical changes demonstrated a few ar-
eas with particularly robust elastase immunoreactivity. For example, staining was observed
in the substantia innominata in both WT and AppNL-G-F brains (Figure 2). The substantia in-
nominata contains the nucleus basalis of Meynert, a brain region responsible for producing
the acetylcholine that is used by the cortex and amygdala [44]. The degeneration of these
neurons contributes to the cholinergic deficit observed in AD [45]. The substantia innom-
inata also has a role in the regulation of aggressive behaviors due to its association with
the amygdala and midbrain [46]. Interestingly, all groups in the WT and AppNL-G-F mice
also demonstrated a netted “web-like” neutrophil elastase immunoreactivity pattern in
the hypothalamus (Figure 2), suggesting the possibility of neutrophils undergoing netosis
within this region [47].

2.3. Probiotic and DSS-Mediated Alterations in Brain Cytokines

To further assess the neuroinflammatory status induced by DSS treatment with or
without the probiotic intervention, a slide-based cytokine array was performed on lysates
from the temporal cortices of WT and AppNL-G-F mice. As shown in Figure 3, compared
to vehicle controls, all the three treatments significantly elevated IL-13 levels in the WT
brain cortices. In addition to IL-13, probiotic feeding significantly upregulated the cortical
levels of IL-6 and TGF-β1 in the WT mice. Interestingly, combined DSS+Pro treatment
significantly attenuated the cortical levels of probiotic-induced pro-inflammatory mediators
IL-1β, IL-2, IL-6, IL-21, and IFN-γ, and the regulatory TGF-β1 in the brains of the WT mice
(Figure 3). Furthermore, combined DSS+Pro treatment in WT mice resulted in a significant
reduction in cortical IL-17 levels compared to vehicle controls (Figure 3). We observed a
strikingly different cortical cytokine profile in the vehicle and treatment groups of AppNL-G-F

mice. Interestingly, all the three treatments induced Th2 family cytokines, IL-4 and IL-13,
compared to the vehicle controls (Figure 4). In addition to IL-4 and IL-13, probiotic
feeding significantly upregulated the cortical levels of TGF-β1 in AppNL-G-F mice (Figure 4).
The influence of DSS treatment on cortical cytokines was readily noticeable in AppNL-G-F

mice. Compared to vehicle controls, treatment with DSS alone also significantly increased
the cortical levels of IL-10, IL-12p70, IL-22, IL-28, and MIP-3α (Figure 4). Interestingly,
combined DSS and probiotic treatment showed both alleviating and intensifying effects
on probiotic-induced cortical cytokine levels in AppNL-G-F mice. Our data show that, while
DSS and probiotic treatment significantly attenuated the cortical levels of probiotic-induced
IL-1β, IL-22, and TGF-β1 (Figure 4), an opposite effect was apparent, with a significant
increase in the probiotic-induced cortical levels of IL-5, IL-10, IL-17F, IL21, IL-23, MIP-3α,
and TNF-α (Figure 4). Interestingly, combined DSS and probiotic treatment uniquely
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increased IL-2 and TNF-α from vehicle controls, demonstrating an additional effect of the
dietary intervention (Figure 4).
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Figure 2. DSS and probiotic increased brain neutrophil elastase immunoreactivity in wild type
but not AppNL-G-F mice. After the 8 weeks of probiotic feeding, brains of (A) wild type and
(B) AppNL-G-F mice were fixed and serial sectioned (40 µm) for anti-neutrophil elastase immunohisto-
chemistry. Representative neutrophil elastase immunohistochemical staining images (20×) of the
substantia innominata and hypothalamus are shown (scale bar: 100 µm). Elastase positive cell counts
were quantified from an entire hemibrain coronal section from 3 to 10 sections per brain in each group.
The positive counts were then measured as a percentage of the annotated area. One-way ANOVA
followed by uncorrected Fisher’s LSD test was used to determine statistical differences. Results are
presented as mean values + SEM, * p < 0.05, ** p < 0.01, and **** p < 0.0001.
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Figure 3. DSS and probiotic altered numerous cytokine levels in the cortices of wild type mice.
After completing the probiotic feeding paradigm at 8 weeks, C57BL/6J wild type mice were collected,
and temporal cortex cytokine levels were quantified by commercial slide array. One-way ANOVA
followed by uncorrected Fisher’s LSD test was used to determine statistical differences. Results are
presented as mean ± SEM, * p < 0.05, ** p < 0.01, and **** p < 0.0001.

2.4. DSS- and Probiotic-Mediated Alterations in Hippocampal Aβ Accumulation

Since Aβ plaque accumulation is a key pathological finding in AD brains [2], we
subsequently elected to explore whether probiotic and/or DSS treatment altered brain Aβ

plaque load in AppNL-G-F mice. Surprisingly, Aβ immunohistochemistry demonstrated
a slight increase in AppNL-G-F brain plaque load following combined DSS and probiotic
treatment compared to the vehicle controls (Figure 5). This Aβ immunoreactivity was
further validated by performing ELISAs on hippocampal lysates to quantify soluble and
insoluble Aβ 1-40 and Aβ 1-42. Interestingly, DSS increased soluble Aβ 1-40 concentra-
tions compared to vehicle controls, although neither treatment alone produced significant
differences compared to the vehicle group for either peptide (Figure 5).

2.5. DSS- and Probiotic-Associated Alterations in Hippocampal Gliosis

Astrocytes are the most abundant glial subtype in the CNS; they play a crucial role in
the regulation of neuroinflammation, and there are several reports that suggest they are as-
sociated with the senile plaques in the brains of AD patients [48–51]. To investigate whether
probiotic and/or DSS treatment altered astrogliosis, brain sections were immunostained
for the glial acidic fibrillary protein (GFAP). In WT mice, a basal level of GFAP staining
was detected, which was not altered by either the DSS or probiotic treatment (Figure 6).
In AppNL-G-F mice, probiotic treatment alone reduced GFAP immunoreactivity compared
to the vehicle control group, although there was no effect in the other treatment groups
(Figure 6).
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After completing the probiotic feeding paradigm at 8 weeks, AppNL-G-F mice were collected, and
temporal cortex cytokine levels were quantified by commercial slide array. One-way ANOVA
followed by uncorrected Fisher’s LSD test was used to determine statistical differences. Results are
presented as mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

Microglial activation is also hypothesized to have a role in AD pathophysiology [52–55].
To examine the effect of DSS-induced colitis and the probiotic treatments on microglial
reactivity, mouse brain sections were immunostained for the ionized calcium-binding
adapter molecule 1 (Iba1) protein. The basal level of immunoreactivity observed in WT
mice was not altered by either probiotic or DSS treatment (Figure 7). However, combined
probiotic and DSS treatment actually significantly increased Iba1 immunoreactivity in WT
mice compared to the vehicle control group, suggesting a combined effect in the brain
(Figure 7). AppNL-G-F mice displayed the characteristically robust Iba1 immunostaining
associated with Aβ plaque accumulation (Figure 7). Just like in WT mice, combined DSS
and probiotic treatments elevated Iba-1 immunoreactivity compared to AppNL-G-F vehicle
controls (Figure 7).

2.6. DSS- and Probiotic-Associated Alterations in c-Fos Immunoreactivity

The transcription factor c-Fos is a well characterized immediate early gene in neu-
rons, and its expression can be used as a surrogate of neuronal activity or phenotype
changes [56,57]. Based upon the changes in glial reactivity, which were examined fol-
lowing DSS and probiotic treatment, we subsequently examined the changes in neuronal
activation by quantifying c-Fos immunoreactivity in the brain sections of the mice. DSS
treatment attenuated overall c-Fos staining in WT and AppNL-G-F brains compared to their
respective vehicle controls in all three treatment groups, suggesting altered transcription
in all conditions (Figure 8). Combined DSS and probiotic treatment further reduced c-Fos
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immunoreactivity compared to the groups treated with DSS or probiotic alone in WT mice
(Figure 8).

2.7. DSS- and Probiotic-Associated Alterations in 5hmC Immunoreactivity

As another indicator of possible changes in cellular phenotypes due to either DSS
treatment or probiotic intervention, we subsequently immunostained the brain sections
of the mice to detect the DNA modification 5-hydroxymethylcytosine (5hmC). 5hmC is
generated from the oxidation of 5-methylcytosine (5mC) and is highly expressed in neurons
in the brain [58,59]. Moreover, increased 5hmC is a useful indicator of gene demethylation
and possible expression changes in neurons [60]. Probiotic and DSS and probiotic treatment
groups increased overall hemibrain 5hmC immunoreactivity in WT brains compared
to vehicle controls (Figure 9). Surprisingly, no changes in 5hmC immunoreactivity were
observed in any treatment group of AppNL-G-F mice, suggesting a resistance to this functional
demethylation (Figure 9).
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the probiotic feeding paradigm at 8 weeks, wild type and AppNL-G-F mice were collected. (A) Left
hemispheres of AppNL-G-F mice were fixed and serial sectioned (40 µm) for anti-Aβ immunohisto-
chemistry. Percent Aβ positive super pixels in the hippocampus were determined from three sections
per mouse in each condition. One-way ANOVA followed by uncorrected Fisher’s LSD test was used
to determine statistical differences. Representative 5× images are shown (scale bar 500 µm). Results
are presented as mean ± SEM, * p < 0.05, ** p < 0.01 (n = 10). (B) Hippocampal levels of human-soluble
and insoluble Aβ 1-40 and 1-42 were quantified by ELISA from AppNL-G-F lysates. One-way ANOVA
followed by uncorrected Fisher’s LSD test was used to determine statistical differences. Results are
presented as mean ± SEM, * p < 0.05 and ** p < 0.01.
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Figure 6. Probiotic treatment reduced astrogliosis in the hippocampus of AppNL-G-F mice. After 8
weeks of probiotic feeding, the brains of the AppNL-G-F mice and wild type mice were fixed and serial
sectioned (40 µm) for anti-GFAP immunohistochemistry. The percentage of GFAP-positive super
pixels in the hippocampus were determined from three sections per mouse in each condition. One-
way ANOVA followed by uncorrected Fisher’s LSD test was used to determine statistical differences.
Results are presented as mean ± SEM; **** p < 0.0001. Representative 5X images are shown (scale bar:
500 µm).
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2.6. DSS- and Probiotic-Associated Alterations in c-Fos Immunoreactivity 
The transcription factor c-Fos is a well characterized immediate early gene in neu-

rons, and its expression can be used as a surrogate of neuronal activity or phenotype 
changes [56,57]. Based upon the changes in glial reactivity, which were examined follow-
ing DSS and probiotic treatment, we subsequently examined the changes in neuronal ac-
tivation by quantifying c-Fos immunoreactivity in the brain sections of the mice. DSS treat-
ment attenuated overall c-Fos staining in WT and AppNL-G-F brains compared to their re-
spective vehicle controls in all three treatment groups, suggesting altered transcription in 
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Figure 7. Combined DSS and probiotic treatment increased microgliosis in the hippocampus of
wild type and AppNL-G-F mice. After the 8 weeks of probiotic feeding, the brains of AppNL-G-F and
wild type mice were fixed and serial sectioned (40 µm) for anti-Iba-1 immunohistochemistry. The
percentage of Iba-1-positive super pixels in the hippocampus were determined from three sections per
mouse in each condition. One-way ANOVA followed by uncorrected Fisher’s LSD test was used to
determine statistical differences. Results are presented as mean ± SEM, ** p < 0.01, and *** p < 0.001.
Representative 5× images are shown (scale bar: 500 µm).
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and serial sectioned (40 µm) for anti-c-Fos immunohistochemistry. Representative images (20X) 
from the parietal cortex are shown (scale bar: 100 µm). c-Fos-positive cell counts were quantified 
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Figure 8. DSS and probiotic attenuated c-Fos staining in the brains of wild type and AppNL-G-F

mice. After 8 weeks of probiotic feeding, brains of (A) wild type and (B) AppNL-G-F mice were fixed
and serial sectioned (40 µm) for anti-c-Fos immunohistochemistry. Representative images (20×) from
the parietal cortex are shown (scale bar: 100 µm). c-Fos-positive cell counts were quantified from an
entire hemibrain coronal section from 3 to 10 sections per brain in each group. The positive counts
were then measured as a percentage of the annotated area. Values are presented as mean ± SEM. One-
way ANOVA followed by uncorrected Fisher’s LSD test was used to determine statistical differences;
* p < 0.5, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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Figure 9. Probiotic and DSS increased 5hmC staining only in the brains of wild type mice. After
8 weeks of probiotic feeding, brains of (A) wild type and (B) AppNL-G-F mice were fixed and serial
sectioned (40 µm) for anti-5hmC immunohistochemistry. Representative images (20×) from the
parietal cortex are shown (scale bar 100 µm). 5hmC positive cell counts were quantified from an entire
hemibrain coronal section from 3 to 10 sections per brain in each group. The positive counts were
then measured as a percentage of the annotated area. Values are presented as mean ± SEM. One-way
ANOVA followed by uncorrected Fisher’s LSD test was used to determine statistical differences;
** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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2.8. DSS- and Probiotic-Associated Alterations in Synaptic Proteins

As a final assessment of colitis- and probiotic-mediated changes in the brain, we
examined the protein levels of post synaptic density protein 95, (PSD95) and synaptophysin
to quantify postsynaptic and presynaptic compartment integrity, respectively. Although no
overall dramatic changes were induced by DSS treatment in either WT or AppNL-G-F mice, a
slight decrease in PSD95 levels was noted compared to the vehicle control group following
probiotic feeding in both lines (Figure 10). Probiotic feeding increased synaptophysin levels
in AppNL-G-F but not in WT mice (Figure 10).
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Figure 10. DSS and probiotic effects on presynaptic or postsynaptic protein levels in the brains of
wild type and AppNL-G-F mice. After 8 weeks of probiotic feeding, the temporal cortices of (A) wild
type and (B) AppNL-G-F mice treated with or without DSS were lysed, and the proteins were resolved
by SDS-PAGE for Western blot analysis using antibodies against PSD95, synaptophysin, and GAPDH
(loading control). Data from Western blots are graphed as mean ± SEM of PSD95 or synaptophysin
values normalized to their respective GAPDH. One-way ANOVA followed by uncorrected Fisher’s
LSD test was used to determine statistical differences; * p < 0.05 and ** p < 0.001.

3. Discussion

In this study, we investigated the effect of probiotics on the exacerbation of Alzheimer’s
disease induced by chronic colitis. We have previously reported that colonic inflammation
correlates with brain Aβ plaque deposition starting at 3 months of age in AppNL-G-F mice
and increased pro-inflammatory markers and macrophages in the ileums of AppNL-G-F and
APP/PS1 mice compared to controls and chronic intestinal disruption induced by two
cycles of DSS exposure resulted in moderate colitis-like symptoms in WT and AppNL-G-F

animals [35]. In this study, we again used a DSS-induced colitis model, which is char-
acterized by intense intestinal inflammation leading to diarrhea, weight loss, and gross
rectal bleeding, closely modeling the pathological characteristics associated with clinical
ulcerative colitis. This model is simple, rapid, easily reproducible, and mimics clinical
colitis conditions effectively.

Our data for disease activity index, colonic lipocalin-2 levels, and claudin-4 immunore-
activity showed an effective colitis-like pathophysiology in both the wild type and AppNL-G-F

mice. There are multiple clinical and animal studies demonstrating the beneficial effects
of using probiotics to treat ulcerative colitis [61–66], and our data showed that probiotic
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feeding significantly reduced colitis pathophysiology, as indicated by reduced disease
activity index. However, the probiotic was unable to attenuate lipocalin levels in AppNL-G-F

mice, and claudin-4, a tight junction protein associated with the colonic epithelial integrity,
showed reduced immunoreactivity with probiotic feeding. This suggested that the probi-
otic therapeutic intervention was less effective in AppNL-G-F mice and that it possibly even
promotes gut leakiness. Clearly, intestinal permeability quantitation will be needed in
future work to fully characterize the effects of probiotic treatment alone or in concert with
DSS. Interestingly, in the presence of an already DSS-compromised epithelial barrier, it has
been reported that probiotic intervention is less able to attenuate inflammatory change,
supporting the reduced ameliorative ability we observed [67]. In fact, our prior work
has already demonstrated increased intestinal permeability in AD transgenic mouse lines,
suggesting that this may be the reason for attenuated efficacy in the AppNL-G-F mice [68].
Our results suggest that it may be necessary to rely on prolonged prophylactic rather than
therapeutic probiotic intervention to obtain ideal protective benefits. In addition, varied
dosing strategies might be necessary to improve the benefits of probiotic intervention.

Several reports have suggested that the gut–brain axis and gut microbial composi-
tion act as significant influencing factors in age-related neurological disorders such as
Alzheimer’s disease [18,69–71], particularly through their influences on associated neuroin-
flammatory pathways [72,73]. We observed an unexpected immune-related change in the
brain following both DSS and probiotic treatment in wild type mice, which manifested
increased neutrophil elastase immunoreactivity. Neutrophils are the most abundant leuko-
cytes in the circulatory system, playing a crucial role in various inflammatory responses.
They are unique as they have short half-lives of 6–8 h, respond rapidly, and have the ability
to capture pathogens with their neutrophil extracellular traps (NETs), which are protruding
structures consisting of decondensed chromatin and antimicrobial/granular proteins that
enable them to capture and neutralize foreign bodies [74]. The role of neutrophils in the
brains of AD patients is still emerging, and recent findings demonstrate that these cells may
regulate neuroinflammation associated with AD, possibly contributing to disease [74–76].
We observed not only distinct cell staining but also found NET-like structures in the sub-
stantia innominate and hypothalamus, suggesting the occurrence of netosis, particularly
in the hypothalamus. To our knowledge, this pattern of immunoreactivity is novel and
may indicate an unrecognized role for neutrophils in these brain regions in mediating cell
death and inflammation, perhaps in response to bacterial products communicating to this
region of the brain. It has been shown that the intestinal absorption of the bacterial cell wall
component peptidoglycan results in enhanced targeting to the brain [77], fully supporting
the notion that gut-derived bacterial products from probiotic-treated AppNL-G-F or colitic
mice may contribute to inflammatory changes in the brain. For example, the substantia in-
nominata contains the nucleus basalis of Meynert, a brain region responsible for producing
the acetylcholine (Ach) that is used by the cortex and amygdala [78]. The degeneration of
these neurons is an aspect of cell loss observed in AD [46,75]. In the central nervous system
(CNS), Ach produced by cholinergic neurons acts on α7 nicotinic Ach receptors expressed
on microglia and astrocytes, providing a basal reduction in glial activation [79–81]. Al-
though further work is required, it is intriguing to consider that the neutrophil-dependent
impairment of cholinergic neurons reduces the basal immunomodulatory activity of ACh
in the brain, leading to an overall increase in neuroinflammatory phenotype. Indeed, this
cholinergic inflammatory reflex is well described for the vagus nerve and central to periph-
eral immune cell regulation, suggesting that a similar mechanism occurs in the brain [82].
Surprisingly, DSS-induced colitis and probiotic feeding did not produce any significant
changes in neutrophil elastase immunoreactivity in the AppNL-G-F mice, suggesting that the
AD-associated changes were already maximal, with no additional increase possible due to
probiotic intervention or DSS treatment. Further research is needed to determine if bacteria
or bacterial products truly increase in the brain during colitis or probiotic intervention in
both wild type and AppNL-G-F mice.



Int. J. Mol. Sci. 2023, 24, 11551 14 of 24

Our Aβ plaque and gliosis results were similarly unexpected. DSS-induced colitis
combined with probiotic intervention produced a slight increase in plaque immunoreactiv-
ity. Consistent with the increase in plaque load, the combined DSS and probiotic treatments
elevated microglial reactivity, suggesting that the combination may exacerbate some histo-
logic aspects of disease in mice. Intestinal and neural inflammation in AD mouse models
has been previously correlated with an increase in Aβ plaque load in hippocampi during
colitis [35,83], perhaps making our results not too surprising. It is known that microglia
acquire a reactive phenotype at the site of any trauma during an inflammatory response
in the brain, such as those that might occur in the vicinity of Aβ deposits. Many reports
regarding both animal models of AD [84–88] and human cases of the disease [89–94] have
suggested that activated microglia around Aβ plaques demonstrate a tangible interaction
with Aβ [95,96]. Reactive gliosis associated with elevated Aβ levels leads to increased
levels of pro-inflammatory cytokines such as TNF-α and IFN-γ, which can aggravate an
inflammatory response and promote neuronal loss [84,86,97–110]. Therefore, the probiotic
intervention was not only seemingly unable to attenuate disease-related changes in the
brain but also may have contributed to it. Once again, a possible reason for this effect is
that the probiotic bacteria/bacterial products travel from the intestine into the blood before
reaching the brain, where they drive a proinflammatory stimulus. As already mentioned,
future works that evaluate intestinal permeability as well as the translocation of bacterial
products into the brain will help to explain the probiotic potentiation of DSS effects.

Based upon the observations of plaque load, gliosis, and cytokines, we fully expected
to see changes in cellular phenotype and elected to use both c-Fos and 5hmC staining to
assess this. It is well known that c-Fos is a transcription factor and an immediate early gene
that serves as a marker for stimuli-induced changes in brain activity. The expression of
c-Fos has a clear correlation with neuron activity [111], as well as glial phenotypes [112,113].
Accordingly, decreases in c-Fos expression correlate with cognitive decline in AD [114,115].
Prior work has demonstrated that manipulating the intestinal microbiome in mice with
oral antibiotic reduces brain c-Fos mRNA, which is recovered with probiotic feeding [116].
In fact, in our prior work, we fed probiotics to female AppNL-G-F mice, and this resulted in
increased hippocampal c-Fos immunoreactivity [36]. Therefore, we expected to observe
differences in c-Fos immunoreactivity with treatment, but it was unanticipated that a robust
decrease in both wild type and AppNL-G-F mice would occur due to combined DSS and
probiotic treatment. Although we elected to quantify overall brain immunoreactivity in this
study, it is possible that a more thorough investigation into selective changes in the brain
region or the stereologic quantitation of c-Fos immunoreactivity and overall molecular
phenotypes would reveal neuronal differences between treatments. For example, it is not
unreasonable to expect that there may be both increases and decreases in staining across
brain regions with respect to the same treatment.

Similar to the changes in c-Fos immunoreactivity, analysis of 5hmC staining also
revealed interesting changes across treatment groups. DNA methylation is a dynamic
process in which methyltransferases (DNMTs) utilize normal DNA cytosine (Cyt) to add
a methyl group at the 5-position to generate 5-methylcytosine (5mC), which can oxidize
to 5-hydroxymethylcytosine (5hmC) [117]. 5hmC is highly expressed in the brain, and
its expression level is especially upregulated during embryonic neurogenesis and also
in postnatal life, where it is associated with neural gene expression and activity [118]. It
has been reported that 5hmC levels are significantly increased in AD mouse brains when
compared with corresponding controls [119]. In our study, 5hmC expression was elevated
by probiotic feeding in the wild type group only and increased when combined with DSS,
suggesting that epigenetic changes were induced by probiotic feeding. This was entirely
consistent with prior reports on the ability of probiotic interventions to induce epigenetic
change in the brains of rodents and Zebrafish [120,121]. Interestingly, we also observed
changes that resulted from DSS treatment alone in WT mice and no changes at all in the
AppNL-G-F mice. One possibility for the lack 5hmC changes in the AppNL-G-F mouse brains is
simply that there is a basally elevated amount compared to wild type brains and that it is
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already at the maximal response. This may indicate the increased expression of numerous
genes in the AppNL-G-F mice compared to the wild type mice. Therefore, a more careful
analysis of the selective changes in the brain may still reveal the differences among various
treatments methods.

4. Materials and Methods
4.1. Animal Model

AppNL-G-F mice (KI:RBRC06344) were obtained from Dr. Takashi Saito and Dr. Takaomi
C. Saido, RIKEN BioResource Center, Japan. These mice carry the humanized Aβ region,
including Swedish (NL), Arctic (G), and Beyreuther/Iberian (F) mutations, which promotes
Aβ production, enhances Aβ aggregation through facilitating oligomerization and reducing
proteolytic degradation, and increases the Aβ42/40 ratio, respectively [122]. This transgenic
mouse model of AD develops cortical Aβ amyloidosis as early as 2 months. Wild type
(WT) C57BL/6 mice were originally purchased from the Jackson Laboratory (Bar Harbor,
Maine), and the AppNL-G-F transgenic mice were maintained, as a colony, under standard
housing conditions, including a 12 h light/12 h dark cycle and 22 ± 1 ◦C temperature
with access to food and water ad libitum at the University of North Dakota Center for
Biomedical Research. Male C57BL/6 control WT and AppNL-G-F mice at 6–10 months of
age (n = 7–11 per treatment group) were used. Although sex differences are important
to consider, particularly in the context of AD, for this study, we used only males due
to their susceptibility to inflammation induced by DSS [123]. The mice were randomly
divided into vehicle and DSS-treated groups for 8 weeks of investigation. The mice were
euthanized followed by cardiac perfusion, and the brains and colons were collected to
quantify the histologic and biochemical changes within. All procedures involving animals
were reviewed and approved by the UND Institutional Animal Care and Use Committee
(UND IACUC). The investigation conformed to the National Research Council of the
National Academies Guide for the Care and Use of Laboratory Animals (11th edition).

4.2. DSS Exposure and Probiotic Treatment

AppNL-G-F and WT mice were randomly divided into 4 experimental groups, vehicle
(1:1 MediGel and water), 2% DSS, probiotic (Pro), and 2% DSS + probiotic (DSS/Pro). A
commercial probiotic, distributed as VSL#3® circa 2016, was procured by the authors and re-
ferred to in this study as probiotic; it was comprised of eight strains of lactic acid-producing
bacteria: Lactobacillus plantarum, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus para-
casei, Lactobacillus acidophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium
infantis, and Streptococcus salivarius subsp. thermophilus. The authors understand that this
formulation is now available as Visbiome®. The probiotic was resuspended in MediGel®

(Clear H2O, Portland, ME, USA), and the mice were given either MediGel only or probiotic
in MediGel. Probiotic treatment started on day one and lasted for eight weeks. The dose of
probiotic (0.32 × 109 CFU bacteria/25 g mice) was calculated based on the body surface
area normalization method from the recommended human dose of the probiotic [124].
According to the manufacturer, human colonization takes place over two-three weeks,
so the mice were pretreated for three weeks before the DSS treatment [125]. Mice were
provided MediGel in water control (vehicle) or MediGel in water containing probiotic
ad libitum for the entire experimental period, and freshly prepared probiotic or vehicle
control was provided every third day. After the probiotic pretreatment period, for the DSS
treatment groups, colitis-like disease was induced in two groups by dissolving DSS (2%,
w/v, MW = 36–50 kDa, MP Biomedicals, LLC, Santa Ana, CA, USA) in MediGel in water. A
final concentration of 2% DSS was resuspended in diluted MediGel for two cycles, 3 days
each, with 14 days of recovery between each exposure as previously described [126]. To
calculate the disease activity index, the mice were weighed individually on day 0, every
day during the second cycle of the DSS treatment, and 2 days after exposure for the second
cycle of DSS administration.
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4.3. Assessment of the Severity of Colitis-like Symptoms

The disease activity index (DAI) assessment was used to assess colitis severity. It
is a compilation of multiple assessments, including the percentage of body weight loss,
stool consistency, and fecal blood. A Hemoccult test kit (Beckman Coulter Inc., Brea, CA,
USA) was used to determine occult blood in the stool samples according to manufacturer
instructions. DAI assessment was conducted in a blinded fashion, starting 1 day prior to
DSS treatment (day 0), occurring throughout the second cycle of 2% DSS administration,
and continuing until 2 days after DSS exposure, meaning that the assessment ran for a
total of 5 days, as previously described [127–131]. Each measurement was scored on a scale
ranging from 0 to 4, which was then summed for a DAI score per mouse. A maximum
severity score of 12 was possible. To normalize the findings, the daily DAI score per
mouse was subtracted from its respective day 0 score. On the 8th week, the animals were
euthanized, and their brains and colons were collected for further analysis.

4.4. Immunohistochemistry

For all brains, the left hemispheres were fixed in 4% paraformaldehyde for 5 days,
followed by cryoprotection through two incubations in 30% sucrose. The hemispheres
were then embedded in 15% gelatin and serially sectioned (40 µm) using a sliding micro-
tome [132]. The distal colons were fixed in 4% paraformaldehyde and sectioned (10 µm)
onto subbed slides via cryostat. The colon sections were immunostained using antibodies
against claudin-4 (1:500, rabbit, ZMD.306; Thermo Fisher Scientific Inc., Waltham, MA,
USA). The brain sections were immunostained using antibodies against neutrophil elastase
(1:200 dilution, rabbit, ab68672; Abcam, Cambridge, MA, USA), Aβ (1:500 dilution, rabbit,
D54D2; Cell Signaling Technology, Inc., Danvers, MA, USA), GFAP (1:1000 dilution, rabbit,
D1F4Q; Cell Signaling Technology, Inc., Danvers, MA, USA), Iba-1 (1:1000 dilution, rab-
bit, 019–19741; Wako Chemicals USA, Inc., Richmond, VA, USA), c-Fos (1:2000 dilution,
rabbit, ab222699; Abcam, Cambridge, MA, USA), 5hmC (1:2000, rabbit, ab214728; Abcam,
Cambridge, MA, USA) to detect neutrophil elastase, Aβ plaques, astrocytes, microglia,
and neuronal activity/phenotype changes, respectively. For elastase, 5hmC, c-Fos, and
Aβ, antigen retrieval was required. Neutrophil elastase and 5hmC antigen retrieval were
performed using pH 6 sodium citrate at 95 ◦C for 10 min. c-Fos antigen retrieval was
performed using pH 9 tris-EDTA at 95 ◦C for 10 min. For Aβ antigen retrieval, sections
were incubated in 25% formic acid for 25 min at room temperature before blocking. After
antigen retrieval, slides (colon) or free-floating sections (brains) were incubated in 0.3%
H2O2 to quench endogenous peroxidases before being rinsed in phosphate-buffered saline
(PBS) and blocked in PBS containing 0.5% bovine serum albumin (BSA, Equitech-Bio, Inc.,
Kerrville, TX, USA), 0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA), 5% normal
goat serum (NGS, Equitech-Bio, Inc., Kerrville, TX, USA), and 0.02% sodium azide for at
least 30 min. Slides or free-floating tissue were incubated in primary antibody solution
for 24 h at 4 ◦C before being transferred into biotinylated secondary antibodies, where
they were incubated for 2 h at room temperature. After the secondary antibody incubation,
a VECTASTAIN Avidin-Biotin Complex (ABC) kit was used followed by the Vector VIP
Peroxidase (HRP) Substrate kit (SK-4600) to visualize antibody binding (Vector laborato-
ries, Inc., Burlingame, CA, USA). The colon slides were dehydrated, and the coverslipped
and brain sections were mounted onto subbed slides, dehydrated, and coverslipped. The
brain slides were imaged and viewed in the Hamamatsu NanoZoomer 2.0HT Brightfield
Scanning System.

4.4.1. Quantification of Aβ, GFAP, and Iba-1 Staining

The quantification of Aβ, GFAP, and Iba-1 staining was from 3 serial sections/mouse
and was conducted using an open-source digitalized image analysis platform, QuPath
(v.0.4.3) [133]. The hippocampus regions of all brain sections were annotated using either the
brush tool or wand tool. Staining quantitation was performed as previously described [134].
For each tissue section, QuPath grouped adjacent and similar pixels into a superpixel of
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25 mm2. Pixel similarity was determined by red-green-blue (RGB) values. After grouping
into superpixels, QuPath software was used to apply an arbitrary intensity value for each
superpixel to identify whether they were either positive or negative [134]. The % Aβ, GFAP,
or Iba-1 positive superpixels calculated by Qupath were averaged and graphed as mean
values +/− SEM.

4.4.2. Quantification of Elastase, c-Fos, and 5hmC Staining

Whole slide images of the IHC-stained sections were acquired using Hamamatsu
NanoZoomer 2.0-HT slide scanner (Hamamatsu Photonics, Hamamatsu City, Japan) at
×20 magnification. The quantification of neutrophil elastase, 5hmC, and c-Fos from 3 to
10 hemibrain coronal serial sections/mouse was also performed using QuPath (v.0.4.3) [133].
The QuPath workflow for quantification included: creating a project, adding images, setting
the image type to DAB, pre-processing using estimate stain vectors, simple tissue detection
to detect all tissues on the whole slide, splitting into single annotation, positive cell detec-
tion based on optical density, adjusting parameters (maximum area, intensity threshold,
cell expansion, selecting cell/nucleus compartments for scoring intensity threshold), the
automated counting of positive cells (detections) within a small region, manual verification
of positive detections, creating a script from the workflow, running the groovy script for
automated quantification across entire brain regions and across all the tissues in the project,
and exporting the annotation measurements to Microsoft Excel [133,135–138]. The % pos-
itive cells calculated in QuPath {% Positive = [(Total no. of detections—No. of negative
detections)/Total no. of detections] × 100)} was used for data analysis and comparison.

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

On the collection day, the right hemispheres and middle parts of the colons were
isolated and flash frozen. The hippocampi, temporal cortices, and middle colons were
lysed in RIPA buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM Na3VO4, 10 mM NaF, 1 mM
EDTA, 1 mM EGTA, 0.2 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 0.1% SDS,
and 0.5% deoxycholate), lysis buffer 17 (R&D Systems, a Bio-techne brand, Minneapolis,
MN, USA), and 1% Triton X-100 in PBS, respectively, with a protease inhibitor cocktail
(P8340, Sigma-Aldrich, St. Louis, MO, USA). The tissues were centrifuged (12,000 rpm, 4 ◦C,
10 min), and the supernatants were collected. The hippocampi supernatants were used to
perform soluble Aβ 1-40/42 ELISAs (human Amyloid β 1-40/42 Brain EZBRAIN40/42
ELISA, EMD Millipore, Billerica, MA, USA). The hippocampi pellets were re-suspended in
5M guanidine HCL/50mM Tris HCL, pH 8.0, and centrifuged (12,000 rpm, 4 ◦C, 10 min),
and the supernatants were removed to quantify insoluble Aβ1–40/42 levels by using the
same ELISA kit according to the manufacturer’s protocol. Temporal cortex lysates were
used for cytokine analysis. The colon supernatants were used to perform lipocalin-2 ELISAs
(Mouse Lipocalin-2/NGAL DuoSet ELISA, R&D Systems, a Bio-Techne brand, Minneapolis,
MN, USA) according to the manufacturer’s protocol. The BCA kit (ThermoFisher Scientific,
Rockford, IL, USA) was used to quantify protein concentrations.

4.6. Western Blotting

Temporal cortices were lysed in RIPA buffer and spun, and the supernatants were
quantified via BCA assay, and five µg of protein per temporal cortex lysate was resolved
by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to polyvinylidene difluoride membranes (PVDF) for Western blotting. Membranes
were blocked for 1h in Intercept (TBS) Protein-Free Blocking Buffer (LI-COR Bioscience,
Lincoln, NE, USA) followed by incubation with anti-PSD95 (1:000, ab 238135; Abcam,
Cambridge, MA, USA) and synaptophysin (1:000, ab52636; Abcam, Cambridge, MA, USA)
antibodies overnight at 4 ◦C. Near-infrared-labeled secondary antibodies were used to
detect antibody binding using IRDye®, 680RD-, or 800CW-labelled secondary antibod-
ies 1:15,000 (LI-COR Bioscience, Lincoln, NE, USA). Blots were scanned using a LI-COR
Odyssey imaging system (LI-COR Bioscience, Lincoln, NE, USA). Band intensity values
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were normalized to their respective loading control, glyceraldehyde-3-phospate dehydroge-
nase (GAPDH) (sc32233; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Band intensities
were quantified using ImageJ software. A band size was selected that fit the entirety of each
band on the blot. The software was used to measure band intensity in each lane, which
was normalized to its relevant loading control, GAPDH values, from the same membrane.

4.7. Th1/Th2/Th17 Cytokine Assessment

RayBiotech Quantibody® Mouse Th1/Th2/Th17 Q1 arrays (QAM-TH17-1-1, Ray-
Biotech, Norcross, GA) were employed to assay brain cytokine levels from temporal cortex
lysates following the manufacturer’s protocol. Eighteen cytokines were evaluated: IL-1β,
IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-17, IL-17F, IL-21, IL-22, IL-23, IL28, IFN-γ,
MIP-3α, TGF-β, and TNF-α. Completed arrays were sent to RayBiotech, where a GenePix
4400 scanner was used to scan the slide arrays using GenePix Pro software. The results
were analyzed using the RayBiotech Analysis Tool. Using a standard curve, concentrations
of each cytokine were determined.

4.8. Statistical Analysis

Results are presented as mean values ± standard error mean (SEM). Statistical analysis
was performed by one-way ANOVA followed by uncorrected Fisher’s LSD test to determine
statistical differences, and DAI, Lipocalin-2 ELISA, and %BW changes were analyzed
via two-way ANOVA multiple comparisons followed by uncorrected Fisher’s LSD test
or non-parametric one-way ANOVA (Kruskal–Wallis test) followed by Dunn’s multiple
comparison test. GraphPad Prism 8 software (GraphPad Prism Inc., La Jolla, CA, USA)
was used, with p < 0.05 considered statistically significant.

5. Conclusions

The probiotic intervention was capable of attenuating the disease activity index as-
sociated with the colitis-like condition induced by DSS exposure in both wild type and
AppNL-G-F mice. In wild type brains, although the colitis-like condition had minimal effects
on glial immunoreactivities or cytokine changes, it did increase neutrophil elastase im-
munoreactivity and decrease c-Fos staining, suggesting some communication of intestinal
inflammation to the brain in these mice. In AppNL-G-F mice, the colitis-like condition did not
change neutrophil elastase, glial, or c-Fos staining, although it did alter levels of numerous
cytokines in the brain and elevated levels of soluble Aβ 1-40, suggesting that, once again,
some aspect of the intestinal inflammation was propagating to the brain. Perhaps the
most surprising observation was the effect of probiotic feeding alone on both genotypes
of mice. Probiotic treatment alone increased neutrophil elastase staining, decreased c-Fos
immunoreactivity, and attenuated PSD95 levels in both wild type and AppNL-G-F mice,
demonstrating effects on the brain independent of any concomitant AD or colitis-like
phenotype. Moreover, combined probiotic and DSS treatment had a few robust AD-related
effects on the AppNL-G-F mice compared to DSS treatment alone, including additional in-
creases or decreases in brain cytokines, potentiation of Aβ plaque immunoreactivity, and
increased microgliosis. Collectively, our findings indicate that the effects of DSS-induced
colitis, a probiotic diet, and combined probiotic/DSS produce unique and varied effects
on the brains of both wild type and AppNL-G-F mice in contrast to fairly congruent effects
in the intestine. This variability highlights the complexity of planning a dietary probiotic
approach with the intent to mediate specific target changes in the brain. Future works com-
paring probiotic interventions to more common pharmacologic therapeutics may be useful
in determining whether variations in the gut-to-brain communication of inflammatory
changes during colitis are reduced.
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