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Abstract: Snakebite envenoming represents a major health problem in tropical and subtropical
countries. Considering the elevated number of accidents and high morbidity and mortality rates,
the World Health Organization reclassified this disease to category A of neglected diseases. In
Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose
pathophysiology is characterized by local and systemic inflammatory and degradative processes,
triggering prothrombotic and hemorrhagic events, which lead to various complications, organ
damage, tissue loss, amputations, and death. The activation of the multicellular blood system,
hemostatic alterations, and activation of the inflammatory response are all well-documented in
Bothrops envenomings. However, the interface between inflammation and coagulation is still a
neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in
some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism,
and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger
vaso-occlusion, ischemia–reperfusion processes, and, eventually, organic damage and necrosis. In
this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing
platelet and leukocyte activation, as well as the inflammatory production mediators and induction of
innate immune responses, among other mechanisms that are altered by Bothrops venoms.
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1. Introduction

Snakebite envenoming remains the main neglected disease in tropical and subtropical
countries due to morbidity and mortality high rates worldwide [1,2]. In Latin America and
the Caribbean, at least 137,000 snakebites and 3400 deaths occur annually [3], and Bothrops
represents the major snake genus that causes snakebite envenoming, sometimes resulting in
tissue loss/limb amputations and permanent disability in humans [4]. Currently, 36 species
of Bothrops have been cataloged, and the species display great variability, mainly regarding
their color and size patterns, as well as the compositions and biological activities of their
venoms [5–7]. Bothrops asper is a major snake that is responsible for human envenoming in
Central America, while in South America B. atrox, B. erythromelas, B. jararaca, B. jararacussu,
and B. moojeni are mainly responsible for snakebite envenoming in the region [8].

Bothrops venoms are mostly composed of zinc-dependent metalloproteases (SVMPs),
phospholipases A2 (PLA2s), and serine proteases (SVSPs), which in situations of human
envenoming, trigger a wide spectrum of pathophysiological manifestations [7,9–15], such
as pain, edema, blistering, myonecrosis, vascular injury, ischemia, necrosis, blood incoagu-
lability, oxidative stress, bleeding, among others [16–18]. Although the wide variability in
the venom proteome of Bothrops is recognized, this pattern of local and systemic clinical
manifestations is replicated among envenomed patients by species of this genus, which
suggests the presence of a shared mechanism of action, which can lead to complications
such as intracranial hemorrhage, acute kidney injury, compartment syndromes, and ampu-
tations [8,19–25].

The coagulation disorders observed in Bothrops snakebites are induced by hemostat-
ically active components, such as thrombin-like, anti-, and procoagulant toxins, which
generate a consumption coagulopathy, and result in bleeding and thrombotic events [26]. In
addition, thrombocytopenia is also observed among cases of Bothrops envenoming [27–29].
Although the toxins characterization from these venoms that act on platelets is wide, the
involvement of platelets in the pathogenesis of Bothrops envenoming has received less
attention, neglecting the role of these cells in other phenomena such as inflammation [30].

The in-depth knowledge of the differences between the coagulation cascade and multi-
cellular systems in Bothrops envenoming makes it feasible to understand the isolated role of
these systems in the pathology, as well as the complete pathophysiological scenario. While
the inflammation caused by Bothrops venoms is characterized by pain, edema formation,
erythema, and cellular infiltrate, the hemostasis, platelets, leukocytes, complement system,
and inflammation are tightly interlinked processes, and platelets are often the cell type that
binds these processes together [16,30,31]. In this context, the term “thromboinflammation”
has been used to describe the activation of the cascading blood systems, as well as the
activation of the multicellular blood system [32].

In the current study “thromboinflammation” in Bothrops envenoming was consid-
ered to be the activation of integrated processes, which includes classical coagulation,
clot formation, and immune responses elicited during Bothrops envenoming [30,33–35].
Thus, the thromboinflammation process was recognized as a broad-spectrum effect on
envenoming. Furthermore, we hope that this theme becomes an umbrella that considers
thrombus formation, coagulation system activation, and innate and adaptive immunity
as an integrated harmful process that contributes to the amplification of the pathophysio-
logical effects triggered by the Bothrops venoms. Moreover, studies on the mechanisms of
thromboinflammation in snakebites are crucial to better management of the victims.
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2. Overview of the Toxic Effects of Bothrops Venoms
2.1. Local Effects

The local effects of Bothrops envenoming are considered one of the most evidenced
events due to the tissue damage caused, and the peripherally limited antivenom response.
Among the mechanisms involved, the inflammatory response represents a major issue
that occurs during local pathophysiology [16,36,37]. The venom toxins are capable of
triggering inflammation by three primary mechanisms: (i) the direct recognition of venom
components (commonly known as a venom-associated molecular pattern—VAMPs) by
leukocyte receptors, such as Toll-like receptors, which induce activation and mediators
production; (ii) an indirect inflammatory response that is induced by damage-associated
molecular patterns (DAMPs), such as cellular and extracellular matrix degradation products
as a result of the venom toxin’s tissue damage; (iii) the direct activation of complement
system mediators by the toxins [38–40].

The major clinical local manifestations are associated with inflammation cardinal signs
(Figure 1). Edema is the most common inflammatory sign in Bothrops envenoming, which
can progress to a compartment syndrome that results in disabilities to the patient [19,21].
Edema is a consequence of the leukocyte infiltration and production of mediators that sig-
nal the inflammatory response and co-option of endogenous signaling pathways, which act
as positive feedback; this aggravates the inflammatory response, according to Bickler [41].
Blister formation and epithelial damage are manifestations observed in patients related to
severe envenomations, as they increase the chance of infection and necrosis [42,43]. This
event is caused by the action of SVMPs on extracellular matrix components and epithelial
tissue, inducing the separation of skin layers (dermis–epidermis) [44–46]. In all cases,
a rich source of damage-associated molecular patterns (DAMPs), immunomodulators,
matrix metalloproteinase-9 (MMP-9), platelet degranulation, and blood coagulation were
observed [42,44,47]. Pain is also commonly reported in Bothrops envenoming. Its presence is
mainly associated with the production of neurogenic and non-neurogenic compounds at the
bite site, which occurs through the direct and/or indirect action of Bothrops venom toxins, in
addition to the activation of non-neural cells that contribute to peripheral sensitization [16].
These compounds interact with their respective receptors, altering the nociceptive signal
transduction. Some of these components have already been identified, including substance
P, nitric oxide, cytokines, histamine, 5-hydroxytryptamine, bradykinin, lipid-derived medi-
ators (prostaglandins, leukotrienes, and PAF), as well as the participation of leukocyte cells
produced during the inflammatory response [16,48].

Another target of the action of bothropic venom toxins includes the body’s vascular
system. Arteries, veins, and other vessels of the circulatory system change in permeability
and integrity, mainly due to the action of SVMPs that act on the vascular basement mem-
brane, which consist mainly of type IV collagen, laminin, nidogen/entactin, and perlecan;
this results in the formation of hemorrhagic lesions (ecchymosis and petechiae) [45,46,49,50].
Another mechanism that seems to contribute to local hemorrhage in bothropic envenoming
is blood incoagulability. The venom toxins catalyze the activation of clotting factor zymo-
gens and integrin precursors or receptors, also leading to endogenous thrombin formation,
which can consequently result in disseminated intravascular coagulation followed by con-
sumption coagulopathy [51]. However, the relationship between this phenomenon and
local hemorrhage is not well understood and deserves attention. In B. atrox envenoming,
patients with only local and not systemic bleeding showed similar levels of hemostatic
factors [29].

Additionally, skeletal muscle tissue is another target of bothropic venom toxins action
that iinduces muscle degeneration and myonecrosis [36,52], which can lead to temporary
and chronic sequelae, and in more severe cases, amputation. However, severe rhabdomy-
olysis is not common in Bothrops envenoming as it is in Crotalus envenoming. Muscle
damage is caused by the action of myotoxins, which act by altering the influx of [Ca]2+ ions,
consequently inducing cell death [53,54]. SVMPS may also damage the local blood flow,
resulting in ischemia and secondary myonecrosis [49].
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Figure 1. Local clinical manifestations of Bothrops atrox snakebite envenoming. (A) Edema on the
right hand; (B) blisters on the right hand; (C) blisters on the right foot; (D) edema on the right leg;
(E) right wrist bleeding (bite site in the joint of the hand with the arm); (F) necrosis in the right hallux;
(G): ecchymosis on the entire left thigh, distant from the bite site; (H): right limb swelling. Photos
were taken by Lisele Brasileiro.

2.2. Systemic Effects

Bothrops envenoming could present systemic effects, such as coagulopathy or inco-
agulability, platelet consumption, a hemorrhage, which lead to death if it is not promptly
managed (Figure 2) [28,55–58]. Blood incoagulability is the most predominant systemic
effect in Bothrops envenoming [28]. Bothrops venoms induce a high tendency to bleeding at
the bite site, in the gums, and in vital organs) [28,55–58]. In addition, Bothrops envenoming
presents thrombocytopenia, probably caused by the action of toxins in inhibiting or activat-
ing platelets, as well as forming an active surface for the coagulation cascade, which leads
to increased bleeding [59].

Systemic myotoxicity is characterized by increases in serum myoglobin concentration
and creatine kinase (CK) activity, hyperkalemia, and also acute kidney injury; this is mainly
due to myoglobin toxicity in the renal tubules that can cause death [8,36]. The venom also
causes oxidative stress, triggering an increase in lipid peroxidation, catalase, and glutathione-
S-transferase activity in the liver, as well as plasma levels of aspartate aminotransferase
(AST) and alanine aminotransferase (ALT), indicating hepatotoxicity [54]. In addition,
pulmonary changes—respiratory failure/acute lung edema—have been reported as systemic
complications associated with death in cases of B. atrox snakebite envenoming [17,55].
However, renal alterations are the complication that causes greatest concern in snakebites,
among them acute glomerulonephritis, acute tubular necrosis, and acute renal injury (ARI).
the latter is related to cases of lethality from snakebite envenoming [60]. The pathogenesis
of ARI is still not fully understood. However, it is known that kidney injuries can be
produced by the isolated or combined action of different ischemic and/or nephrotoxic
mechanisms triggered by the biological activities of venoms in the body [8]. Studies
with isolated kidneys have shown that venoms from different Bothrops species alter renal
function parameters that vary according to the venom composition [8,61–63].
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hematemesis; (B) hemoptysis in a male patient; (C) macroscopic hematuria; (D) gum bleeding. Photos
were taken by Lisele Brasileiro.

3. Bothrops Snakebite as a Prothrombotic State

Current evidence about the prothrombotic state of Bothrops envenoming is mainly
based on experimental (animal studies), clinical, and laboratory data, as well as case re-
ports [26]. B. asper venom has a high procoagulant potential [64]; B. jararaca and B. atrox
venoms contain toxins with thrombin-like activity, which catalyze the interaction of fib-
rinogen with fibrin [65–67]. Bothrops venoms also have prothrombin activators; the first
known being berythractivase from B. erythromelas venom, a non-hemorrhagic class P-III
metalloproteinase [68].

Procoagulant toxins from B. atrox venom activate factors II, X, and V, and increase
the procoagulant activity of factor VIII, which, as a result, leads to the generation of
intravascular thrombin that has also been reported [69–71]. Another clotting factor activated
by isolated components of B. atrox venom is FXIII [71]. In addition, the fibrinogenolytic
components of B. atrox venom, the poison may also contribute to fibrinogen degradation
and coagulopathies [72]. B. jararaca venom also fibrinogenolytic activity [66], whereas
B. atrox, B. jararaca, and B. neuwiedi venoms were able to degrade fibrin [73–75].

Snake venom thrombin-like enzymes (SVTLEs) belong to a class of serine proteases
that can cause blood clotting in vitro, a characteristic exhibited by several snake venoms.
Leucurobin from B. leucurus venom induces the release of fibrinopeptide A and traces of fib-
rinopeptide B [76]; SPBA from B. alternatus venom and BM-IIB34 kDa + BM-IIB32 kDa from
B. moojeni venom induce plasma coagulation, and have fibrinogenolytic activity [77], as well
as pictobin from B. pictus and barnettobin from B. barnetti venom, which coagulate plasma,
but also fibrinogen, releasing fibrinopeptide A [78,79]. Moojase from B. moojeni venom
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also induces clotting of platelet-poor plasma and fibrinogen solutions in a dose-dependent
manner, indicating thrombin-like properties due to proteolysis of human fibrinogen Aα

chains, followed by late degradation of Bβ chains [80].
However, some Bothrops venoms induce systemic multifocal thrombotic complications

that are triggered by a striking feature caused by B. caribbaeus and B. lanceolatus venoms;
the mechanisms involved in these vascular obstructions still need to be clarified [23,81,82].
Interestingly, thrombocytopenia, minimally reduced prothrombin with normal activated
partial thromboplastin time (APTT), and elevated fibrinogen concentration, are typical
findings of victims with thrombosis after a bite by B. caribbaeus and B. lanceolatus, indicating
the involvement of platelets and fibrinogen with this condition [23,81,82]. The victims of
snakebites by B. atrox with systemic hemorrhage show a reduction in the levels of factor V,
II, fibrinogen, plasminogen, and alpha 2-antiplasmin in plasma, while tissue factor and FDP
levels are elevated [28,29]. Consumption coagulopathy resulting from the action of B. atrox
venom may increase the risk of systemic bleeding seen in envenomation [28]. Moreover, in
B. jararaca envenoming, about 56% of the patients had incoagulable blood; of these, 70% had
systemic bleeding without systemic bleeding, and 18% had local bleeding alone (without
local bleeding) [57].

An important event that is associated with systemic thrombotic complications is the
occurrence of cerebral vessel occlusion. Although it is less common than hemorrhagic
stroke, ischemic stroke has been described following B. atrox, B. caribbaeus, and B. lanceolatus
snakebites [23,81–83]. The evidence of neurological symptoms occurred from 24 h up
to 4 days after the snakebites, and all patients received antivenom therapy; the authors
suggested that delayed time to treatment or the effectiveness of antivenom could be a
factor that resulted in vascular cerebral thrombus formation. These events were directly
associated with venom-induced coagulation disturbances (thrombocytopenia and clotting
parameters alterations). Inflammatory parameters such as leukocytes/neutrophils and
C-reactive protein were also elevated in some cases. Diagnosis of the cerebral infarction
evaluated by imaging exams showed that the cerebral artery (anterior, posterior, or middle
segments) and basilar artery were the main arteries with thrombosis, with infarcts occurring
in cortical and occipital territories. Death and permanent disabilities were observed as a
possible thrombotic stroke consequence in bitten patients [23,81,82].

As a consequence of the overall alterations in hemostasis, Bothrops venoms are responsible
for inducing thrombotic events (Figure 3). Thrombotic microangiopathy (TMA) is an impor-
tant complication observed in cases of Bothrops accidents and preclinical studies [24,84–86].
The TMA is characterized by erythrocyte destruction due to small-vessel damage and mi-
crothrombi deposition, resulting in thrombotic events that can lead to acute kidney injury
as the predominant end-organ damage. Clinical–laboratory evidence associates this with
microangiopathic hemolytic anemia, which is characterized by red blood cell fragments
(schistocytes) on the peripheral blood film, delayed thrombocytopenia, and increased levels
of bilirubin and lactate dehydrogenase [87]. Although there is an association of TMA with
the coagulopathy induced by experimental Bothrops envenomation [88–90], the etiology of
TMA remains unclear. Studies have claimed that the TMA observed in Bothrops accidents
is associated with hemolytic uremic syndrome, due to its tendency for renal end-organ
damage; however, there is no evidence that inflammatory mediators C3, C4, or ADAM13
were altered in the patients [24,84,85].
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that are affected by Bothrops toxins. Created with BioRender.com, accessed on 30 September 2022 by
Joeliton S. Cavalcante.

4. Complement System Mediators’ Activation by Bothrops Venoms

The complement activity is another important pathway of the pro-inflammatory cas-
cade that is responsible for vasodilation, chemotaxis, and leukocyte activation [91]. Bothrops
venoms can activate the complement cascade, generating large amounts of anaphylatoxins,
such as C3a, C4a, and C5a, which are considered to be the bridge between innate and
adaptive immunity. Alternative pathway activity is completely inhibited by the venoms of
B. atrox, B. cotiara, B. moojeni, B. itapeningae, B. paradoi, B. hyoprorus, B. insularis, B. bilienatus,
B. brazili, B. jararaca, and B. marajoensis. However, this effect is not observed for the ven-
oms of B. fonsecai, B. taeniata, B. alternatus, B. leucurus, B. erythromelas, B. jararacussu, and
B. neuwiedi, which do not affect the alternative pathway (Figure 4) [92].

Delafonatine et al. [93] found that the B. lanceolatus venom, a Martinique native species,
potentially activates the complement system and dose-dependently reduces the lytic ac-
tivity of the alternative pathway. Bothrops venom also activates the classical complement
pathway by cleaving the C1 inhibitor by proteases of this venom, interrupting the control of
complement system activation [92]. The classical, lectin, and alternative pathways converge
when an additional C3b protein associates with C2bC4b or C3bBb, which creates a C5
convertase that converts C5 to C5a and C5b. B. lanceolatus venom induces a significant
production of C5a that is capable of inducing an influx of calcium in leukocytes. However,
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inhibition occurred in the presence of 1,10-phenanthroline, suggesting that C5 cleavage and
consequent C5a release occur by the action of metalloproteases present in the venom [93].
C5b recruits C6 followed by C7, C8, and various C9 proteins to insert into the target cell
membrane to form the MAC complex, also called the terminal complement complex, a
pore in the membrane to induce cell lysis [94,95]. In addition to the formation of the MAC
complex, the complement system has other functionalities, including opsonization, NETose,
and the production of the so-called anaphylatoxins (C3a and C5a) [94,96,97].
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Figure 4. Mechanisms of activation of the complement system by Bothrops venoms. Bothrops venoms
activate the complement system via classical pathways, some also via lectins or the alternative
pathway. All Bothrops venoms cleave C3 and C4, resulting in the synthesis of anaphylotoxins C3a,
C4a, and C5a, and the terminal complement complex causing activation of chemotaxis. * Components
of the complement system that are affected by Bothrops venoms. Created with BioRender.com,
accessed on 30 September 2022 by Joeliton S. Cavalcante.

5. Role of Neutrophils

Neutrophils are the first line of defense of the innate immune system [98], of which the
ability of Bothrops venoms to stimulate these cells is a striking feature of great relevance in
the context of inflammation. Neutrophils are present in myonecrotic and hemorrhagic areas,
or even in the inflammatory infiltrate [31]; once activated, they produce pro-inflammatory
cytokines, phagocytose, and release extracellular neutrophil traps (NETs), acting on the
repair process, or potentially causing tissue damage [99–105]. The effects of Bothrops venoms
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on neutrophils have been explored, generating a large volume of information over the
decades [31]. In vivo studies have shown that in inflammatory events, venoms can induce the
migration of polymorphonuclear neutrophils to the envenoming sites of B. alternatus [106,107],
B. asper [108,109], B. atrox [110], B. erythromelas [106], B. jararaca [109,111], B. jararacussu [112],
B. lanceolatus [113], B. taeniata, and B. bilineata [114].

Neutrophilia and high concentrations of NETs in circulating blood, and thrombocy-
topenia, are described as an indicator of severity and a poor clinical outcome in throm-
boinflammatory diseases [115,116]; thus, they may be indicators for thromboinflammation
and predictors of a poor clinical outcome during envenoming. It is known that patients
with severe tissue damage caused by B. atrox venom have an immunological profile that
is polarized to the Th1 response, and present a more intense local immune response with
high levels of IL-1β, IL-6, TNF-α, MIP-1 (CXCL-1), and MIP-2 (CXCL-2) [43,110]. However,
the Th1 response caused by B. atrox venom is regulated by neutrophils and the myeloid
differentiation factor 88 (MyD88) pathway [40]. In addition, neutrophilia and thrombo-
cytopenia of varying intensities have been reported in Bothrops snakebite envenoming,
but more intense changes have been reported in cases that had tissue loss and/or limb
amputations [19,21,22].

6. Cytokines and Their Role in Inflammation: An Overview

The cytokine storm is a systemic inflammatory syndrome characterized by the emer-
gence of multiple disorders in the regulation of the immune response [117–120]. During
the NETosis process, neutrophils can amplify the production of cytokines, while activated
macrophages secrete large amounts of cytokines, which can cause organ damage. On the
other hand, NK cells have their cytolytic function attenuated during the cytokine storm,
hindering the process of inflammation [121].

Although diverse, only some subtypes of T cells are also implicated in and/or influ-
enced by the cytokine storm. Thus, the ability of cytotoxic T lymphocytes (CTLs) to kill
damaged and/or infected cells is impaired, which causes prolonged T cell activation that
culminates in cascades of tissue damage at the site of inflammation [122]. A complex and
interconnected network of cell types, signaling pathways, and cytokines is involved in
cytokine storm disorders. Important crosstalk refers to the participation of plasma proteins,
such as complement proteins and other inflammatory mediators, which contribute to the
genesis and amplification of cellular responses, and provide feedback on cytokine signaling.
In this way, cytokines can induce an increase in the production of complement proteins,
which in turn can increase or inhibit the production of cytokines, which can cause collateral
damage if excessive.

The inflammatory process caused by Bothrops venoms involves leukocytes infiltration,
mainly polymorphonuclear and/or mononuclear cells at the site of injury, and the involve-
ment of other resident cells that produce and release cytokines in response to Bothrops
snake venom (Table 1) [123]. Bothrops venom toxins are also capable of inducing cytokine
synthesis. Cytokine release in the kidney increased by the action of Asp-49 PLA2 (IL-10)
and Lys-49 PLA2 (TNF-α, IL-1β, IL-10) from B. pauloensis venom [62], while levels of TNF-α,
IL-1β, and IL-10 increased in isolated kidneys perfused with B. alternatus venom [124].
BJ-PLA2-I, a PLA2 Asp49 from B. jararaca venom, was found to induce increases in IL-6 and
IL-1β in the inflammatory exudate of mice [125]. The injection of myotoxic PLA2s (Lys-49
and Asp-49) and B. asper venom SVMP also promoted increases in the concentrations of
IL-1, IL-6, and TNF-α in the peritoneal exudate of mice [126,127]; however, intramuscularly,
these toxins induced increases in IL-6 and IL-1β in muscle tissue, but not in TNF-α [118].
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Table 1. Some examples of the effects of Bothrops snake venoms in the synthesis and release of
cytokines in different experimental models.

Venom Model Cytokines Reference

B. alternatus mice peritoneal macrophages TNFα, IL1, IL12 and IL6 [107]
B. alternatus Raw 264.7 cells TNFα, IL1, IL12 and IL6 [107]

B. asper peritoneal cavity of mice IL-6 and TNF-a [126]
BaP1 from B. asper venom macrophages in vitro TNF-a [128]

B. atrox peritoneal cavity of mice TNF-a, IL-6, IL-12p70, IL-10 and CCL-2 [129]
B. erythromelas mice splenocytes IFN-γ, IL-6, IL-10 and NO [130]
B. jararacussu footpad samples TNF-α and IL-1β [112]
B. lanceolatus human keratinocytes—HaCaT IL-8, MCP-1, RANTES [131]
B. lanceolatus endothelial vascular cells—EAhy926 IL-8, MCP-1, RANTES e IL-6 [131]

B. moojeni spinal cord IL-10 [132]
B. moojeni footpad samples IL-6, IL-10 and TNF-α [132]

Furthermore, soluble levels of chemokines (CXCL-8, CCL-5, CXCL-10, and CCL-2)
and cytokines (IL-6, IL-1,0, and IL-2) are higher in victims of B. atrox bites, with some tissue
complication, and can more significant based on the severity of the damage. In addition,
patients with more severe complications were found to present a profile of individuals with
a high production of the molecules CXCL-9, IL-6, and IL-10, while the group with severe
complications presented the profile of a high production of molecules CXCL-8, CXCL-9,
CCL-2, CXCL-10, IL-6, IL-1β, IL-10 and IL-2, a profile that is opposite to that observed
in healthy individuals [43]. The Bothrops snakebite inflammatory response was shown to
be responsible for modulating early adverse reactions (EARs) associated with antivenom
therapy. Soares and colleagues [133] observed that patients who presented increased levels
of CXCL-8 and IL-2 were less susceptible to developing EARs, suggesting the involvement
of both chemokines/cytokines during the onset of antivenom adverse reactions. Patients
with a cytokine storm have high-degree fevers in severe cases. Fever can be induced by
interleukin-1, interleukin-6, or TNF, through different mechanisms; more severe cases can
develop kidney failure, liver damage, and other outcomes (Figure 5). The specific markers
are restricted to the dosage of circulating cytokines, and the laboratory findings from
cytokine storms are variable and influenced by the cause, although nonspecific markers of
inflammation, such as C-reactive protein (CRP), show an increase that is correlated with
severity [122,134,135].
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Figure 5. Thromboinflammatory pathways in Bothrops envenomation. The direct action of toxins on components of the hemostatic and complement system leads to
hemostatic and inflammatory changes in Bothrops envenomation, which can result in clinical complications responsible for cases of tissue loss and death. Bothrops
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venoms act directly on clotting factors, causing the activation of the cascade that culminates in the formation of fibrin. During fibrin formation, clotting factors are
consumed, resulting in disseminated intravascular coagulation. The generated fibrin induces the formation of intravascular thrombin, and plays a critical role in
thrombotic microangiopathy through the lysis of erythrocytes that collide with it, which can lead to acute renal failure. The activation of the complement system
modulated by the cleavage of key factors by the action of venoms amplifies the toxicity of the venom through chemotaxis and the activation of leukocytes, especially
neutrophils. Neutrophils can form NETs that damage local tissue which has already been affected by the venom entering the body. In addition, the activation
of the complement system culminates in the formation of the membrane attack complex that potentiates local tissue damage. Endothelial activation by platelets,
leukocytes, and ischemia–reperfusion events result in the expression of adhesion molecules, including P-selectin, which recruits leukocytes and, in turn, red blood
cells to blood vessel walls. The recruitment of leukocytes, platelets, and red blood cells to the vascular wall, together with the clotting processes, extracellular
neutrophil trap components, and the formation of heterocellular aggregates between platelets, leukocytes, and red blood cells, with the subsequent entrapment of
red blood cells; this results in the cerebral vaso-occlusive processes. In other cases, due to thrombocytopenia, cerebral hemorrhage occurs. Exclamation points
represent targets of toxins. Skulls represent clinical complications associated with the effects of venom. Loupes indicate the need to study the consequences of
clinical complications that are poorly understood. Created with BioRender.com, accessed on 4 June 2023 by Joeliton S. Cavalcante.
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7. Platelets and Bothrops Venoms

Platelets are enucleated cells that are essential for hemostasis and predominant cellular
elements in the thromboinflammation process [136]. After an injury, platelets perform
a wide variety of functions, which include adhesion to endothelial and subendothelial
structures, followed by activation and aggregation, constituting the initial hemostasis re-
sponse [137]. Once platelets become aggregated, the coagulation cascade is triggered by
either intrinsic or extrinsic pathways, leading to the activation of prothrombin to thrombin
which converts fibrinogen molecules to fibrin [137]. Thrombin is considered to be a central
mediator of thromboinflammation; it activates platelets by cleaving protease-activated re-
ceptors (PARs), leading to thrombus formation [138]. This mediator affects the components
of the vasculature through the cleavage of components of the coagulation, complement,
and fibrinolytic systems, as well as the activation of endothelial cells, leukocyte migration,
macrophage activation, expression of vascular endothelial growth factor in smooth muscle
cells and others (reviewed in [139]). In addition to PARS, a wide variety of receptors
are found on the platelet surface (classified as integrins, selectins, and receptors of the
immunoglobulin type) that allow platelet multifunctionality in hemostasis, inflammation,
thromboinflammation, and resolution [140–143]. The engagement of platelet receptors
allows platelets to act as contact elements between complement, coagulation, and contact
systems [144]. In addition, these functionally multifaceted cells also have the ability to
establish interactions with leukocytes in inflammation [136,142].

Platelet–complement interaction is mediated by several complement factors, including
a form of C3 and other complement receptors such as C3aR and C5aR, and complement
binding evokes an activation response in platelets. When activated, platelets can also
activate the complement cascade, resulting in its amplification [142,145]. In addition,
platelets, through the lectin pathway, affect the coagulation system by activating MASP-1,
which can exert thrombin-like activity [146,147]. However, this interaction represents highly
complex and multifactorial crosstalk, which is beyond the role of C3, C3aR, and C5aR. To
illustrate, P-selectin is a platelet activator of the alternative complement pathway [148], of
receptors binding to complement components such as C1q [149], the activation of C4 [150],
the deposition of C3b and C5b-9 on activated platelets, of complement activation by
platelets without thrombin production, and reduced platelet C3 activation in the absence
of C1 or Factor B [150], representing other examples by which platelets can trigger the
complement system.

Platelet–leukocyte interaction is mediated by P-selectin expressed on the surface of
activated platelets, which can interact with the PSGL-1 selectin receptor expressed on
leukocytes. At the site of inflammation, platelets aid leukocyte emigration by capturing
leukocytes at specific extravasation sites, thus facilitating tissue infiltration in a PSGL-
1/P-selectin-dependent manner [151]. Neutrophils actively search for activated platelets
to engage in a PSGL-1-mediated signaling event [152]. In addition, activated platelets
express the integrin GpIIb/IIIa, enabling binding to fibrinogen, leading to crosslinking
with neutrophils mediated by their surface integrin receptor Mac-1 that can directly interact
with the platelet receptor GpIbα, and thus regulating thrombosis [153]. Other platelet–
leukocyte interactions are also known to modulate prothrombotic and proinflammatory
pathways [142].

The role of platelets in inflammatory responses modulated by Bothrops venoms has
been reported [30,154]. Despite toxins from Bothrops venom that exist with the ability
to disrupt platelet activation, the entire ability of the venom to induce this process has
been seldom explored. B. jararaca venom activates platelets, causing platelet sequestration
and pulmonary thrombin development composed of platelet aggregates and dense fibrin
sheaths, in addition to fibrin in the kidneys. Within this framework, it is important to
highlight that the combination of pro-inflammatory and thrombotic scenarios can lead to
organ failure due to excessive platelet activation, coagulation, and fibrin deposition in the
microvasculature [155]. PLA2 isolated from Bothrops venoms has already been cataloged
with the potential to inhibit platelet aggregation. BmooTX-I [156] and BmooPLA2 [157]
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isolated from B. moojeni venom, BthA-I-PLA2 from B. jararacussu [158], BJ-PLA2 from
B. jararaca [159], BE-I-PLA2 from B. erythromelas [68], and BpPLA2-TXI of B. pauloensis [160]
represent some examples. However, also noteworthy is the ability of bothrotropstoxin-
II (BthTX-II), an Asp49 PLA2 isolated from B. jararacussu venom [161], to induce platelet
aggregation. When approaching Bothrops SVMPs, an interesting case to present is jararhagin.
Jararhagin is a P-III SVMPS from B. jararaca venom that inhibits platelet aggregation
induced by ristocetin and collagen [56]. In addition, jararhagin dramatically reduces α2β1
integrin on the surface of platelets [162]. Alternagin from B. alternatus [163] also inhibits
collagen-induced platelet aggregation, and barnettlysin-I from B. barnetti venom causes
platelet inhibition induced by ristocetin and collagen [164]. In addition to PLA2 and SVMPs,
other toxins from Bothrops venoms have already been isolated, and their roles on platelets
have already been explored (Table 2).

Table 2. Effects of toxins in Bothrops snake venoms on platelets.

Protein Family Protein Name Species Inhibition (−)/Activation (+)
of Aggregation References

PLA2 Bothropstoxin-II B. jararacussu + [161]
BmooPLA2 B. moojeni − [157]

BJ-PLA2 B. jararaca − [136]
BthA-I- PLA2 B. jararacussu − [158]

BE-I-PLA2 B. erythromelas − [68]
BpPLA2-TXI B. pauloensis − [160]

BmooTX-I B. moojeni − [156]
Braziliase-I and II B. brazili − [165]

BJ-PLA2-I B. jararaca − [125]
BaltPLA2 B. alternatus − [166]

SVSP BpirSP27 B. pirajai + [167]
BpirSP41 B B. pirajai + [167]

TLBm B. marajoensis + [168]
PA-BJ B. jararaca + [169]

Thrombocytin B. jararaca + [169]
Cerastotin B. jararaca + [170]

Bothrombin B. jararaca + [171]
Moojase B. moojeni + [80]

SVMP BmooMPα-II B. moojeni − [172]
Jararhagina B. jararaca − [173]
BmooPAi B. moojeni − [174]

Bar-I B. barnetti − [164]
Batroxrhagin B. atrox − [74]

BaltDC B. alternatus − [175]
Moojenactivase B. moojeni + [176]
Atroxlysin-III B. atrox − [177]

r-colombistatins 2,3,4 B. colombiensis − [178]
LAAOs BpirLAAO-I B. pirajai + [179]

Bp-LAAO B. pauloensis + [180]
BmooLAAO-I B. moojeni + [181]

Bl-LAAO B. leucurus − [182]
CTL Botrocetin B. jararaca + [183]

Baltetin B. alternatus − [184]

The platelet counts of patients in less severe cases appear to rapidly normalize after
administration of the antivenom. The increase in platelet count after antivenom treatment
may be related to the production of interleukin-6, a potent promoter of thrombopoiesis
and megakaryocytopoiesis [27,185–187]. This has already been reported in experimental
models using the venom of B. asper, B. jararaca [188], and in human envenomations by
Bothrops from Costa Rica and Brazil [189,190].

Victims of B. atrox, before antivenom therapy, have a platelet count that correlates
poorly with tissue factor, factor II, factor V, D-dimer, plasminogen activity, and a moderate
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correlation with fibrinogen and FDP. In addition, platelet counts are lower in patients with
systemic bleeding [28,29]. Thus, the combination of thrombocytopenia and changes in
clotting factor levels increases the risk of bleeding, suggesting crosstalk between these
systems. Thrombocytopenia of varying intensity is found in victims of B. jararaca bites,
but whether or not thrombocytopenia is associated with spontaneous systemic bleeding
depends on the venom involved [27]. Victims of B. atrox, prior to antivenom therapy,
have a platelet count that correlates poorly with tissue factor, factor II, factor V, D-dimer,
plasminogen activity, and a moderate correlation with fibrinogen and FDP. In addition,
platelet counts are lower in patients with systemic bleeding [29]. Thus, the combination
of thrombocytopenia and changes in clotting factor levels increases the risk of bleeding,
suggesting crosstalk between these systems.

8. Snake Venom-Induced Coagulation/Inflammation Cross-Talk and Participation of
Tissue Factor

It is well known that both inflammation and the hemostatic system are highly inte-
grated, and the unbalance of these events is responsible for several pathological conditions.
An inflammatory response can trigger coagulation (and vice versa) [191]. The indepen-
dent mechanisms of the inflammatory response and coagulation disturbance induced
by Bothrops venoms are well known; however, their association still is a growing issue
in the toxinology field. A recent study on B. atrox snakebite patients from the Brazilian
Amazon has evaluated the inflammation/coagulation cross-talk [192]. By comparing in-
flammatory mediators’ profiles and fibrinogen consumption, the authors reported that the
cytokines/chemokines CXCL-8, CXCL-9, CCL-2, and IL-6 are directly affected by fibrino-
gen levels, and increased levels of CCL-5 and decreased levels of IFN-γ were observed
in patients with hypofibrinogenemia. The study was the first report on the inflammatory
response and coagulation mutual relationship involving B. atrox snakebite patients, leading
the way for other studies [192].

The interface of the immune response and hemostasis consists of a wide range of
reactions characterized by the involvement of cellular events and blood mediators. Among
the molecules, tissue factor (coagulation factor III) is considered to be a hallmark in the
inflammation/coagulation cross-talk. Tissue factor (TF) is a transmembrane protein con-
stitutively expressed in perivascular cells where it forms a hemostatic barrier. However,
upon inflammatory stimulus, TF is expressed mostly by endothelial cells and monocytes
within the intravascular compartment, and interacts with circulating factor VII to generate
the extrinsic tenase complex, thus activating FX and triggering blood clotting [193,194].
Considering snake venoms, pre-clinical and clinical studies have shown the involvement
of Bothrops venoms and toxins are capable to induce the expression of TF. The only clinical
study showing the involvement of TF was conducted with patients following B. atrox
snakebites [29]. The study showed an increase in plasma levels of TF antigen, which
presented correlations with hemostatic components such as coagulation factors, platelets,
and the fibrinolysis system. The authors also demonstrated that patients with systemic
bleeding presented higher levels of TF compared to those without bleeding, and that TF
levels also significantly increased in patients with moderate/severe edema when compared
to those with mild edema. These data suggest the expression of intravascular TF, as well as
extravascular TF released by local trauma and damage caused by envenomation [29]. Simi-
lar findings were also observed by Yamashita and colleagues [195], using an experimental
approach, showing that both local (subcutaneous) and systemic (intravenous) administra-
tion of B. jararaca venom in mice increased plasma TF activity, which was confirmed by
increased skin (local) and lung (systemic) TF expression [195].

In mechanisms of venom-induced TF participation, SVMPs have been found to play
an important role. Yamashita and colleagues [195] observed that SVMPs are the major
class of toxins within B. jararaca to induce TF activity in mice. In vitro, berythractivase and
moojenactivase, both PIII SVMPs isolated from B. erythromelas and B. moojeni, respectively,
were capable to induce TF expression on vascular cells. Berythractivase, a prothrombin ac-



Int. J. Mol. Sci. 2023, 24, 11508 16 of 26

tivator, induced TF activity and gene expression in endothelial cells [196]. Moojenactivase,
a prothrombin and factor X activator, was capable of inducing TF expression of peripheral
blood mononuclear cells (PBMC), in both in vivo and in vitro, which led these cells to adopt
pro-coagulant behavior [89,176]. Concerning the inflammation/coagulation interface, bery-
thractivase was also found to up-regulate endothelial ICAM-1 gene expression, as well as
nitric oxide (NO) generation, prostaglandin I2 (PGI2) and interleukin-8 (IL-8) release [197].
As for moojenactivase, the toxin was capable of inducing TF production/activity along
with inflammatory mediators TNF-α, CXCL-8, and CCL-2 in PBMC in vitro, and leukocyte,
IL-6, and TNF-α in mice [89,176]. Aside from SVMPs, Cezarette and colleagues [197]
demonstrated that BjcuL, a galactoside-binding lectin, induced TF production/activity
mediated by its pro-inflammatory activity. BjcuL was capable of interacting and activating
Toll-like receptor 4 (TLR4) to induce IL-1β, TNF- α, and IL-6 expression, as well as TF in
monocytes in vitro. When the cells were preincubated with galactose, TLR4, and NFκB
antagonist/inhibitor, not only were inflammatory mediators mitigated, but also TF [198].

Considering the studies described above, the inflammatory response induced by
Bothrops venoms is also responsible for triggering procoagulant behavior. Aside from
the direct activation of hemostatic events by venom toxins, the inflammation acts as a
potentiating factor to improve coagulation disturbances during snakebites.

9. Thromboinflammation and Snakebite

Thromboinflammation has been used to refer to the activation of the cascade systems
present in the blood, as well as the activation of its multicellular system [32]. However,
thromboinflammatory pathways can exacerbate inflammation and cellular interactions,
which can lead to vaso-occlusion, ischemia/reperfusion, and eventually irreversible organ
damage [199]. The cascade and multicellular blood systems are involved in the immediate
response to snake venoms, and although classically seen as independent systems, their
interrelationship has been associated with the amplification of venom toxicity [33–35]. The
characterization of Bothrops envenoming as a prothrombotic, inflammatory state with mul-
tiple blood cell activation is supported by extensive experimental, clinical, and laboratory
data, as well as case reports. From an experimental point of view, several components of
the hemostatic system have already been characterized as direct and/or indirect targets
of Bothrops venoms and/or their toxins. The same can be said for the complement system,
whose different venoms can cleave key effectors that cause complement activation via the
classical, alternative, or lectin pathways. Although there are some inconsistencies between
the results, possibly reflecting differences in the composition of the venoms or, for example,
issues related to the method, processing, and analysis of samples, it can be safely stated
that Bothrops envenoming is a condition in which the hemostasis-complement-blood cells
are affected.

However, the complex interaction between hemostasis and activation of innate im-
munity makes it difficult to precisely define the relative contribution of each of these
two processes to the pathogenesis of different complications, possibly explaining the ab-
sence of a direct association between the classic biomarkers of hemostasis activation and the
risk or severity of some of these clinical manifestations [200]. Therefore, the crossing of in-
flammation and thrombosis is very well exemplified during snakebite envenoming, due to
the presence of a wide variety of characterized proteins that can activate the innate immune
system and/or hemostasis. Evidence supports the cross-referencing of inflammation with
hemostasis: (i) studies in animal models report disturbances of hemostasis; despite some
heterogeneity within the model and within the venom, a less effective hemostatic system is
associated with an increase in hemorrhagic manifestations; (ii) it has been demonstrated
that components of the coagulation system, such as platelets, also signal via immunological
pathways; (iii) there are examples of toxins and venoms whose mechanisms disturb the
local hemostatic balance and induce inflammation; and (iv) studies show that leukocytes
are not only found at the site of envenomation, but also in arterial and venous thrombi.
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Complement activation and primary hemostasis can be linked to the moment of initia-
tion, as a direct interaction of vWF and C1q was recently described [201]. The formation
of platelet–leukocyte aggregates is highly relevant to cardiopulmonary bypass, which is
mediated by C5a [202,203]. The formation of platelet–leukocyte aggregates, which is con-
sidered an important event in several contexts of thromboinflammation, is mediated by the
alternative complement pathway and, specifically, by its regulator properdin; this suggests
that the complement system may play a role in thrombocytopenia [204,205]. The reproduc-
tion of this phenomenon by the venom of other species, the mechanisms by which Bothrops
venoms induce thrombocytopenia, and the possible relationship of the complement system
on platelets, need elucidation. Focusing on the pathophysiological and translational rele-
vance of a complement–platelet interaction hypothesis, it is noteworthy that complement
activation is relevant in several inflammatory conditions associated with injury. Moreover,
although platelets have been suggested as a key mediator of thromboinflammation in
envenomation, complement activation can also be considered of equal relevance, mainly
because of the evidence that has shown platelet activation by the complement system, as
well as the ability of the complement pathway to be modulated by platelets.

10. Conclusions

The inflammatory response and coagulation disorders are considered hallmark mech-
anisms associated with local and systemic effects during Bothrops snakebite. However, the
association of both events still is a recent issue in toxinology, although this is well estab-
lished in other diseases. The crosstalk is responsible for potentiating both inflammatory and
hemostatic alterations, enhancing prothrombotic conditions associated with thrombotic
microangiopathy and tissue ischemia. Therefore, studies on the crosstalk between hemosta-
sis/inflammation and thromboinflammatory events should be encouraged, seeking to
highlight new mechanisms to understand their role in the pathophysiology of envenoma-
tion. The search for thromboinflammatory markers with predictive or prognostic roles
can provide support to improve the clinical condition. Additionally, the progress made
in better understanding the coagulation/inflammation interface enlightens the prospects
to novel therapeutical approaches associated with antivenom therapy. Finally, we believe
that this new aspect may elucidate previously unexplored paths in the complex pathology
triggered by snake venoms and toxins, and may allow the discovery of new therapeutic
targets and procedures to address the mortality and morbidity of envenomation.
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