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Abstract: Endometrial cancer is one of the most common cancers in developing and developed
countries. Although the detection of this cancer is high at the early stages, there is still a lack
of markers to monitor the disease, its recurrence, and metastasis. MiRNAs are in charge of the
post-transcriptional regulation of genes responsible for the most important biological processes,
which is why they are increasingly used as biomarkers in many types of cancer. Many studies have
demonstrated the influence of miRNAs on the processes related to carcinogenesis. The characteristics
of miRNA expression profiles in endometrial cancer will allow their use as diagnostic and prognostic
biomarkers. This paper focuses on the discussion of selected miRNAs based on the literature and
their role in the development of endometrial cancer.
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1. Introduction
1.1. Endometrial Cancer

Endometrial cancer (EC) was diagnosed in 417,367 women worldwide in 2020, with
the highest burden of the disease recorded in North America and Western Europe. The
incidence of EC is rapidly increasing. As of 2020, uterine cancer is the fourth most common
female cancer in Europe, with an incidence of 12.9–20.2 per 100,000 women and a mortality
rate of 2.0–3.7 per 100,000 women [1]. The high incidence rate in North America and
Western Europe can be attributed to the high prevalence of lifestyle risk factors for EC,
such as high standard of living, aging population, and obesity, which are associated with
approximately 50% of EC cases [2].

In the historical morphological division (according to Bokhman’s dualistic theory),
EC was classified as type I, the so-called endometroid, which is associated with excessive
estrogen stimulation, develops on the basis of endometrial hyperplasia, is more common,
and has a favorable prognosis. Type II (non-endometrioid) unrelated to estrogen stimulation
has a poor prognosis. Type I includes stage I or II endometrioid adenocarcinoma, while type
II EC includes stage III endometrioid adenocarcinoma, serous, clear cell, undifferentiated,
and carcinoma [3]. The Cancer Genome Atlas (TCGA), introduced molecular profiling in
2013, which indicates a paradigm shift from morphological to molecular classification [4].
The TCGA studies identified four molecular subgroups characterized by the POLE mutation
(POLEmut group), microsatellite instability (MSI group), which arises from MMRD, high
somatic copy number changes (driven by the TP53 mutation, also called p53abn group),
and a low number of copies without a specific molecular profile (NSMP group), each
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with a separate prognosis [4]. POLEmut tumors, despite their aggressive appearance,
have an extremely favorable prognosis, while the group with a high copy number driven
by the TP53 mutation has an unfavorable prognosis. The prognosis of tumors with a
mismatch repair deficiency (MMRd) and those without a specific molecular profile (NSMP)
is relatively favorable [5,6].

The basic treatment of endometrial cancer is surgery and, possibly, subsequent
chemotherapy, radiotherapy, and chemoradiotherapy [5,7,8]. The risk of endometrial
cancer recurrence is also present in very low-risk cases and is 2.9% within the first 3 years
after the end of treatment [9]. Therefore, it is necessary to study the molecular mechanisms
in the pathogenesis of endometrial cancer in order to discover new therapeutic methods.

1.2. MicroRNAs

The non-coding molecules play a particular role in the regulation of gene expression.
The group of regulatory non-coding RNAs includes transport RNA (tRNA), ribosomal RNA
(rRNA), antisense RNA (asRNA), microRNA (miRNA), small nuclear RNA (snRNA), small
nucleolar RNA (snoRNA), competing endogenous RNA (ceRNA), and piwi-interactive
RNA (piRNA) [10].

MiRNAs are a particularly interesting group in terms of regulation of gene expres-
sion. They were discovered in 1993 and are non-coding, single-stranded, small RNA
molecules about 19–25 nucleotides long. The first ones to be described were small RNA
molecules encoded by the lin-4 gene, which regulates the expression of the lin-14 protein in
Caenorhabditis elegans by Lee et al. [11].

MiRNA formation begins in the cell nucleus where polymerase II (Pol II) transcribes
the pri-miRNA. Pri-miRNA is trimmed by the DROSHA complex and DGCR8 proteins to
pre-miRNA. Then, the pre-miRNA is exported by Exportin 5 to the cytoplasm [12]. In this
transport, Exportin 5 interacts with the Ran protein. In the cytoplasm, a miRNA duplex
is formed from the pre-miRNA, which then separates into two mature single-stranded
miRNAs. This process takes place with the participation of DICER and Argonaute 2
(AGO2) [13,14].

MiRNAs function as components of a ribonucleoprotein complex called miRISC
(microRNA-induced silencing complex) [15]. Mature miRNA molecules, embedded in
miRISC complexes, have the ability to bind to the 3′ untranslated regions (3′UTR) of the
mRNA of the target gene. As a result of full nucleotide complementarity, they can lead to
transcript degradation. In most cases, miRNAs are usually imperfectly complementary
to their target gene and modulate the effect on gene expression via translational repres-
sion [16]. The mechanism of action of miRNAs involves binding to a sequence within the
RNA-induced silencing complex (RISC), and then gene regulation through translational re-
pression, mRNA degradation, poly(A) tail shortening, and removal of the 5′7-methylguanyl
cap [17].

MiRNAs are involved in various cellular functions including proliferation, migration,
invasion, and the epithelial–mesenchymal transition (EMT) process. EMT is an important
process where epithelial cells lose cell–cell contact and undergo a gradual transformation
from an epithelial to a mesenchymal phenotype, which includes, i.e., cytoskeletal remodel-
ing and migratory activity [18]. MiRNAs affect genome instability, regulate metabolism,
and influence the apoptosis process of tumor cells; in addition, they also play a role in
angiogenesis and immune escape of cancer [19–23]. They may also regulate gene expression
within the cell or may be released outside the cell. This leads to the regulation of gene
expression in neighboring cells. Therefore, they are regulators of a complex network of
processes occurring in the tumor microenvironment [24]. For instance, the let-7 family acts
as a regulator of normal cell differentiation and proliferation and inhibits the growth of
cancer cells. Let-7 levels are crucial for development cells and act directly on RAS genes
via LIN28 [25]. Masood N. et al. have reported mutual inhibition of let-7 and LIN28, but
let-7 also inhibits IL-6 in embryonic cells, resulting in high levels of NFKB. NFKB together
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with c-Myc has a stimulating effect on the formation of higher levels of LIN28 in cells. This
increase in LIN28 then leads to a marked decrease in let-7 [26].

During carcinogenesis, the miRNA expression profile is significantly dysregulated.
This is the result of many changes, including amplification and deletion of genes or epi-
genetic abnormalities. Moreover, miRNA expression is deregulated in cancer as a result
of defects in their biogenesis machinery, including DICER and DROSHA [17,27]. Overex-
pressed miRNAs in cancers can function as oncogenes and promote cancer development
through downregulated tumor suppressor genes or genes that control cell differentiation
or apoptosis. Underexpressed miRNAs can function as cancer suppressor genes and can
inhibit cancers by regulating oncogenes or genes that control cell differentiation or apopto-
sis [28]. Such examples are miR-181a, miR-181b, and miR-181c, which are downregulated
in glioma [29], while miR-181a and miR-181b are overexpressed in patients with acute
lymphoblastic leukemia (ALL) [30].

In addition, they are involved in the regulation of cancer-related signaling pathways,
including the JAK/STAT3 transcription pathway [31], the NF-KB pathway [32], and the
MAPK/ERK pathway [33]. They may also affect other miRNAs and may be subject to
mutual regulation of miRNAs: miRNAs [34].

MiRNAs can be regulators of the above processes, but they can also be regulated by
such molecules as circular RNAs, long ncRNAs, or pseudogenes. CircRNA molecules act
as ”sponges” for miRNA and thus regulate the amount of free miRNA. They are post-
transcriptional regulators of gene expression regulation. A single circRNA molecule can
bind to several miRNAs [35,36].

Currently, miRNAs are attractive candidates for therapeutic targets in the treatment of
malignancies. Therefore, identifying their targets is essential for cancer research. They are
used to assess response to treatment. MiRNAs have also been found to induce chemore-
sistance in various cancers [37]. A relationship has also been found between miRNA
expression and response to treatment, for example, in breast cancer, miRNA-205 was upreg-
ulated in tamoxifen resistance cells MCF-7/TAMR-1 (M/T) and M/T cell-derived exosomes
(M/ T-Exo) [38]. In lung cancer, the relationship between miRNA levels and cisplatin re-
sistance has also been demonstrated, and miR33b-3p, miR-425-3p, miR-124, miR-295-5p
are overexpressed, while miR-98, miR-26a, miR-107 or miR-17 [39]. In advanced colorectal
cancer, resistance to FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) has been shown
to correlate with miR-19a overexpression [40]. A similar situation occurs when treating
patients with advanced CRC with anti-VEGF or anti-EGFR inhibitors, e.g., overexpression
of miR-126 has been correlated with resistance to bevacizumab [41].

The phenomenon of chemoresistance also occurs in endometrial cancer. MiR-222-3p
has been shown to increase raloxifene resistance by suppressing Erα expression in cancer
cells. MiR-222-3p may be a potential target for restoring ERα expression and response to
antiestrogen therapy in the EC. With the upregulation of miR-222-3p, RL95-2 cells were
less sensitive to raloxifene. In contrast, AN3CA cells were more sensitive after miR-222-3p
inhibition [42].

An interesting direction of research is resistance to cisplatin. Cisplatin has been used in
the treatment of various cancers as an effective chemotherapeutic agent for several decades.
Wang et al. showed that overexpression of miR-135a increased the survival of endometrial
cancer cells after cisplatin treatment. And the decrease in miR-135a expression reduced the
survival of endometrial cancer cells after cisplatin treatment. Researchers indicated that
miR-135a regulated cisplatin resistance in EC cells. The expression level of miR-135a was
associated with cisplatin-induced apoptosis in EC cells. These findings suggest that miR-
135a may affect the chemosensitivity of endometrial cancer cells to cisplatin treatment [43].

The most commonly used material for miRNA detection is tissue obtained during
surgery. They can also be detected in blood, serum, urine, and other body fluids [44,45].
The method of using blood collection instead of abrasion of the uterus is much easier and
carries a lower risk of complications, such as uterine infection. In the future, miRNA profile
analysis may be included in routine blood tests for endometrial cancer screening in the
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general population. This is of great importance, especially for patients living in places with
difficult access to health care.

2. MicroRNAs in Endometrial Cancer Patients
2.1. The Process of Carcinogenesis

The development of endometrial cancer is a complex process involving multiple
oncogenes and tumor suppressor genes, although the molecular mechanisms are not clear.
In recent years, many studies have been conducted on the expression and function of
miRNAs in endometrial cancer [46–49]. Cancer progression involves several key steps
(Figure 1), including primary tumor growth, migration, and local invasion, transendothelial
migration of cancer cells into vessels known as intravasation, survival in the circulatory
system, extravasation, and niche formation (pre-metastatic niche). This is followed by the
recruitment of tumor-promoting immune cells and metastasis. Each stage of carcinogenesis
is regulated by many miRs (Table 1).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 24 
 

 

profile analysis may be included in routine blood tests for endometrial cancer screening 
in the general population. This is of great importance, especially for patients living in 
places with difficult access to health care. 

2. MicroRNAs in Endometrial Cancer Patients 
2.1. The Process of Carcinogenesis 

The development of endometrial cancer is a complex process involving multiple on-
cogenes and tumor suppressor genes, although the molecular mechanisms are not clear. 
In recent years, many studies have been conducted on the expression and function of miR-
NAs in endometrial cancer [46–49]. Cancer progression involves several key steps (Figure 
1), including primary tumor growth, migration, and local invasion, transendothelial mi-
gration of cancer cells into vessels known as intravasation, survival in the circulatory sys-
tem, extravasation, and niche formation (pre-metastatic niche). This is followed by the 
recruitment of tumor-promoting immune cells and metastasis. Each stage of carcinogen-
esis is regulated by many miRs (Table 1). 

 
Figure 1. Stages of cancer progression: 1. Primary tumor growth. 2. Migration and local invasion. 3. 
Transendothelial migration of cancer cells into vessels 4. Survival in the circulatory system. 5. Ex-
travasation. 6. Pre-metastatic niche formation. 

Table 1. miRNAs of significance for the individual stage of carcinogenesis. 

Primary Tumor Growth 
miR-15/16 ↓ The miR-15/16 family is a highly expressed tumor suppressor group that targets a large network of 

genes in T cells to limit their cell cycle, memory formation, and survival. Once activated, miR-15/16 
T cells are downregulated, allowing rapid expansion of differentiated effector T cells to mediate a 
sustained immune response. MiR-15/16 deficiency alters Treg expression of critical functional pro-
teins, including FOXP3, IL2Rα/CD25, CTLA4, PD-1, and IL7Rα/CD127, and results in the accumula-
tion of functionally impaired FOXP3loCD25loCD127hi Tregs [50]. 

miR-17/91 ↑ Involved in immune regulation, three clusters of the miR-17/92 family collectively suppressed IL-12 
production in macrophages, and miR-17/92 acts through PTEN to inhibit IL-12 expression by modu-
lating the PI3K-Akt-GSK3 pathway [51]. 

miR-34 ↓ It is involved in the regulation of the cell cycle and apoptosis through p53 signaling [52]. It acts as a 
tumor suppressor through DNA methylation in both epithelial and hematological malignancies [53]. 

miR-181a ↑ It can interact with H3F3B, ATM, CCDC6, TAM15, RAS, and PLAG1 to promote cell proliferation 
[54]. 

miR-200 ↓ Targets ZEB1 and blocks the epithelial–mesenchymal transition [55]. 
miR-211 ↑ Targets mRNAs: POU3F2, ZCCHC24, PRLR, ITPR1, and CHRDL1 [56]. 

Figure 1. Stages of cancer progression: 1. Primary tumor growth. 2. Migration and local invasion.
3. Transendothelial migration of cancer cells into vessels 4. Survival in the circulatory system.
5. Extravasation. 6. Pre-metastatic niche formation.

Table 1. miRNAs of significance for the individual stage of carcinogenesis.

Primary Tumor Growth

miR-15/16 ↓

The miR-15/16 family is a highly expressed tumor suppressor group that targets a
large network of genes in T cells to limit their cell cycle, memory formation, and
survival. Once activated, miR-15/16 T cells are downregulated, allowing rapid
expansion of differentiated effector T cells to mediate a sustained immune response.
MiR-15/16 deficiency alters Treg expression of critical functional proteins, including
FOXP3, IL2Rα/CD25, CTLA4, PD-1, and IL7Rα/CD127, and results in the
accumulation of functionally impaired FOXP3loCD25loCD127hi Tregs [50].

miR-17/91 ↑
Involved in immune regulation, three clusters of the miR-17/92 family collectively
suppressed IL-12 production in macrophages, and miR-17/92 acts through PTEN to
inhibit IL-12 expression by modulating the PI3K-Akt-GSK3 pathway [51].

miR-34 ↓
It is involved in the regulation of the cell cycle and apoptosis through p53
signaling [52]. It acts as a tumor suppressor through DNA methylation in both
epithelial and hematological malignancies [53].

miR-181a ↑ It can interact with H3F3B, ATM, CCDC6, TAM15, RAS, and PLAG1 to promote cell
proliferation [54].

miR-200 ↓ Targets ZEB1 and blocks the epithelial–mesenchymal transition [55].
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Table 1. Cont.

miR-211 ↑ Targets mRNAs: POU3F2, ZCCHC24, PRLR, ITPR1, and CHRDL1 [56].

miR-222 ↑ Targets tumor suppressors PTEN and TIMP3. Targets MMP-2 i MMP-9 [42,57].

Let7 ↓

Acting through Lin28, it targets RAS genes. Overexpression of let-7 leads to a decrease
in RAS production, accelerating the cell cycle, angiogenesis, and cell adhesion.
Therefore, under normal conditions, miR let-7 acts as a tumor suppressor gene and
inhibits the activation of oncogenes that can lead to the formation of cancer
cells [26,58].

Migration and local invasion

miR-9 ↑

MiR-9, which is upregulated in breast cancer cells, targets CDH1, the mRNA encoding
E-cadherin, leading to increased cell motility and invasiveness. The miR-9-mediated
downregulation of E-cadherin causes activation of β-catenin signaling, which
contributes to the upregulation of growth factor gene expression [59].

miR-10b ↑ It increases invasion, migration, and proliferation and inhibits apoptosis in the EC [60].
It targets HOXB3 [61].

miR-21 ↑ Overexpression of miR-21-5p promoted epithelial to mesenchymal transition. It works
through SOX17 [62].

miR-29c ↓ It affects the expression of HBP1, ITGB1, MCL1, MDM2 and SGK1 [63].
Overexpression of miR-29c reduces COL4A1 production in endometrial cells [64].

miR-34a ↓

Inverse correlation between miR-34a and L1CAM protein expression. A decrease in
miR-34a and an increase in L1CAM are associated with poor [65]. MiR-34a is
downregulated in endometrial cancer tissues and is negatively correlated with Notch1
expression [66].

miR-103 ↑
Overexpression of miR-103 promotes EC cell proliferation. It works through ZO-1 and
triggers its downward adjustments. There is an inverse correlation between ZO-1 and
miR-103 [67].

miR-107 ↑ MiR-107-5p downregulated Erα mRNA and protein expression [68].

miR-135a ↑

MiR-135a can regulate the epithelial-to-mesenchymal transition (EMT) by altering the
expression of E-cadherin and N-cadherin. MiR-135a promotes endometrial cancer cell
proliferation by regulating PTEN. Expression levels of PTEN and p-AKT in
endometrial cancer cells decreased after miR-135a overexpression [43].

miR-135b ↑ Upregulation of miR-135b significantly reduced FOXO1 protein and mRNA
expression, promoting EC proliferation [69].

miR-145 ↓
MiR-145 expression is lower in EC tissues than in neighboring tissues. MiR-145
inhibits SOX11. MiR-145 targets site 3 (3615) of SOX11 3’UTR to affect SOX11
expression [70].

miR-148b ↓
Downregulation of miR-148b induced endometrial EMT of the tumor cell as a result of
alleviating DNMT1 suppression [71].MiR-148b regulates the expression of
endoplasmic reticulum metalloprotease 1 (ERMP1) [72].

miR-155 ↑
It impairs the functioning of dendritic cells in endometrial cancer which play an
important role in the activation of anticancer immune responses. It acts via the
p38MAPK14 pathway [73].

miR-214-3p ↓

MiR-214-3p is downregulated and TWIST1 is upregulated in EC tissues and cells.
Overexpression of miR-214-3p suppressed migration, invasion, and EMT in EC cells
[74].A decrease in miR-214-3p is associated with an increase in NEAT1, HMGA1, and
β-catenin [75].

miR-223 ↑ MiR-223 modulates the inflammatory response by directly targeting genes mediating
signal transduction, including those present in the canonical NF-kB pathway [76].

miR-340 ↓
MiR-340-5p is downregulated in the EC compared to adjacent normal tissues. In vitro,
miR-340-5p inhibited the migratory capacity of EC cells by downregulating MMP-3
and MMP-9 and prevented TGF-α1-induced EMT by p-eIF4E [77].
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Transendothelial migration of cancer cells into vessels

miR-21 ↑ It inhibits the suppressive effect of FBXO11 (a member of the F-box subfamily lacking
a clear unifying domain) [78].

miR-105 ↑

It targets the ZO-1 protein. In endothelial monolayers, exosome-mediated transfer of
tumor-secreted miR-105 effectively disrupts the tight junctions and integrity of these
natural barriers to metastasis. Overexpression of miR-105 in non-metastatic cancer
cells induces metastasis and vascular permeability in distant organs [79].

miR-126 ↓

It is a tumor suppressor and its growth can downregulate VEGF to inhibit EC cell
invasion and migration [80].Its decrease correlates with high levels of Lnc-ATB, which
induced accelerated tumor growth by regulating the miR-126 PIK3R2 target gene and
Sox2-related apoptosis.In the tested RL95 and HEC1A cell lines, the downregulation
of Lnc-ATB resulted in the upregulation of miR-126. There was an impairment of cell
viability, an increase in caspase-3-related tumor apoptosis, and G1/S arrest [81].

Survival in the circulatory system

miR-26a ↓
Increased peritumoral lymphoid endothelial hyaluronan receptor-1 (LYVE-1) density
in LNM patients was negatively associated with the level of miR-26a-5p in primary
lesions, indicating that down-expression of miR-26a-5p can induce LNM EC [82].

miR-141 ↑ PPP1R12A and PPP1R12B are targeted and degraded. Both are members of the
myosin phosphatase (MYPT) targeting protein family [83].

miR-145-3p ↑ MiR-145 participates in M2 macrophage polarization by targeting IL-16 and
upregulating IL-10 [84].

miR-181-a ↑

MiR-181a and miR-181b increased the expression of PECAM-1 mRNA and protein
and VE-cadherin accompanying the differentiation of human embryonic stem cells
into vascular endothelial cells [85]. By acting on VE-cadherin, it disrupts the barrier in
endothelial cells [86].

miR-424 ↓

MiR-424 has a protective role in various types of cancer including endometrial cancer,
upregulation of miR-424 inactivated PI3K/AKT signaling mediated by G-1
protein-coupled estrogen receptor (GPER) in endometrial cancer. Moreover, the
luciferase report confirmed the targeting reaction between miR-424 and GPER [87].

Extravasation

miR-7 ↓ Through the downregulation of the PI3K and MAPK pathways, its dominant role is to
inhibit proliferation and survival, stimulate apoptosis, and inhibit migration [88].

miR-21 ↑ It inhibits the expression of the SOX17 protein and promotes
epithelial-to-mesenchymal transition (EMT) [62].

miR-31 ↓

MiR-31 acts as an oncogene in endometrial cancer by suppressing the hippopotamus
pathway. MiR-31 significantly suppressed mRNA luciferase activity in conjunction
with the LATS2 3′-UTR and consequently promoted the translocation of YAP1, a key
molecule in the Hippo pathway, into the nucleus [89]. MiR-31 is a master regulator of
integrins as it targets multiple partners of the α subunits (α2, α5, and αV) of β1
integrins as well as β3 integrins, inhibiting cell proliferation in a ligand-dependent
manner [90].

miR-155 ↓ Targets are MLH1, MSH2, and MSH6 [91].

miR-182 ↑ Promotes cancer cell migration and invasion by inhibiting MBNL2 expression [92].

miR-214 ↑

Targets are PTEN/AKT, β-catenin, and tyrosine kinase receptor pathways. MiR-214
also regulates the levels of key modulators of gene expression: the epigenetic
repressor Ezh2, p53 ”genome guardian”, the transcription factors TFAP2 and another
miRNA, miR-148b. Thus, miR-214 seems to play an important role in coordinating
tumor proliferation, stem, angiogenesis, invasiveness, extravasation, metastasis,
chemoresistance, and microenvironment [93].
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Pre-metastatic niche formation

miR-19a ↑

Member of the highly conservative miR-17-92 cluster [94]. The miR-17/miR-20a seed
family is responsible for this anti-aging activity [95]. MiR-19a activates the
mammalian protein kinase B (AKT) rapamycin (mTOR) pathway, thereby functionally
antagonizing PTEN to promote cell survival [96].

miR-126 ↑ The target is VEGF. It increases the rate of migration and invasion of EC cells [80].

miR-133a ↓
MiR-133a is a suppressor. The miR-1/133a cluster directly regulates PDE7A in EC
cells. PDEs are enzymes that regulate the cellular levels of cAMP and cGMP second
messengers by controlling their rate of degradation [97].

miR-503 ↓ It plays a tumor suppressor role by targeting CCND1 [98].

↑ Upregulation; ↓ Downregulation.

2.2. Risk Factors and Prognostic Factors

Risk factors for EC include genetic predisposition to Lynch syndrome and Cowden
syndrome, polycystic ovary syndrome (PCOS), use of tamoxifen, infertility, diabetes, and
obesity [99–101]. On the other hand, prognostic factors for EC include the patient’s age,
stage of endometrial cancer, involvement of lymph nodes, and lymphatic space (LVSI) [102].

2.2.1. Polycystic Ovary Syndrome (PCOS)

PCOS is the most common endocrine disorder among young women of reproductive
age. It is characterized by rare or absent ovulation and hyperandrogenism. In patients with
PCOS, other factors of endometrial cancer are often diagnosed, such as diabetes, obesity,
and nulliparous status [103]. MiRNAs have been studied in patients with polycystic ovary
syndrome (PCOS) [104]. This is a large group of mostly young women. The worldwide
prevalence of PCOS ranges from 4–21% [105]. Obesity with or without concomitant diabetes
often coexists in these women [106]. Many abnormalities and overexpression of many
miRNAs have been found in them. It has been discovered that changes in their expression
occurring in PCOS are also often associated with metabolic syndrome, which includes
hypertension, dyslipidemia, central obesity, and impaired glucose tolerance [107].

PCOS increases the risk of developing endometrial cancer 2.7 times. It has been shown
that women with PCOS also change the level of miRNAs, e.g., miR-27a-5p, the level of
which is increased in serum-derived exosomes. MiR-27a-5p plays a role in EC cell migration
and invasion by regulating SMAD4 [108].

2.2.2. Obesity and Diabetes

Altered expression patterns of miRNAs are not only associated with cancer develop-
ment but also with comorbidities that are common in patients with EC. These diseases
include obesity, type 2 diabetes, and cardiovascular diseases [109]. They are risk factors
for many cancers, including endometrial cancer. Another important risk factor in EC
carcinogenesis is excessive estrogenic stimulation of the endometrium with a simultaneous
lack of progesterone effect. This is the case with polycyclic ovary syndrome (PCOS), obesity,
functional tumors, and iatrogenic use of estrogens [103,110,111]. Serum miRNA levels were
abnormal in obese women or women with type 2 diabetes, data are summarized in Table 2.

Table 2. MiRNA changes in obese women.

Upregulation

miR-17 [112]
miR-152 [112]
miR-205 [113]
miR-376a [114]
miR-548ag [115]
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Downregulation

miR-15b [116]
miR-17 [117]
miR-138 [112]
miR-150 [118]
miR-593 [112]

2.2.3. Aging of the Body

Aging is a natural and multifactorial phenomenon characterized by the accumulation
of degenerative processes, which in turn are underpinned by multiple changes and damages
in molecular pathways [119,120]. Despite many theories that have been proposed to explain
the phenomenon of aging, none has been able to fully explain the mechanisms that drive
the underlying process so far [120]. MiRNA expression also changes with the age of
patients [121]. Some of these were downregulated in long-lived individuals, such as let-7,
miR-17, and miR-34 (known as longevity miRNAs). They are conserved in humans and
probably promote life extension. Conversely, they are upregulated in age-related diseases
such as cancer [122]. MiR-151a-3p, miR-181a-5p, and miR-1248 are downregulated with
age [120,123]. In contrast, miR-21 and miR-23a expression increases in middle-aged humans
and decreases in advanced age [124].

2.2.4. Involvement of the Lymph Nodes Metastasis

One of the most important prognostic factors used to determine the stage of EC
and possible adjuvant treatment is the presence of neoplastic cells in the lymph nodes.
Lymphadenectomy is associated with significant surgical and postoperative risks. The
use of sentinel lymph node mapping (SLNM) has emerged as an alternative method for
total lymphadenectomy in the EC [125]. However, controversy remains over the use
of SLNM in high-risk diseases and its false-negative rate (3%) [126]. Reliable SLNM
mapping requires surgeons and institutions to be equipped with appropriate knowledge
and skills. In addition, SLNM mapping is performed during the operation. It is also worth
remembering that the involvement of lymph nodes may also engage paraaortic nodes.
Isolated involvement of the paraaortic nodes in patients without pelvic nodal metastases
was only 1% [127]. Therefore, finding pre-operative methods that can accurately identify
LNM (lymph node metastasis) would be of great clinical value. MiRNA mapping may
prove to be such a way. A correlation of miRNAs depending on the presence of relapses in
lymph nodes has been demonstrated. Table 3 summarizes the above data.

Table 3. MicroRNAs changes in metastatic lymph nodes.

Upregulation

miR-21 [128]
miR-107-5p [68]
miR-429 [129,130]
miR-501 [131]
miR-576-5p [132]

Downregulation

miR-24b-5p [133]
miR-26a-5p [82]
miR-34a [65,66]
miR-34b-5p [134]
miR-34c-3p [134]
miR-34c-5p [134]
miR-148b [71]
miR-204-5p [126]
miR-505 [135]
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2.2.5. The Impact of miRNA Changes on Survival and Recurrence in Patients with
Endometrial Cancer

Mortality related to endometrial cancer continues to increase [136]. Although most
patients with endometrial cancer have a tumor confined to the uterus that is treated by
hysterectomy with or without adjuvant therapy, the advanced disease has a poor progno-
sis [137]. Although early-stage endometrial cancer is associated with a favorable 5-year
relative survival rate (96%), the rate is only 18% in patients with distant metastases [138].
Patients with an increase in the recurrence-free period were examined and changes in
microRNA levels were also found here (Table 4).

Table 4. MicroRNA changes occurring in patients with good prognosis, with long PFS (progression-
free survival).

Upregulation

miR-29b [139]
miR-126 [81]
miR-148b [71,72]
miR-152 [140,141]
miR-199a-5p [133]
miR-214-3p [74]
miR-340-5p [77]
miR-455-5p [133]
miR-505 [135]

Downregulation miR-429 [129]

On the other hand, the factors associated with shortening the recurrence-free period
are a high expression of miR-21 [128] or miR-205 [142].

Changes in miRNA expression levels are clearly visible in tumor tissue but can also be
seen in plasma/serum. In patients with endometrial cancer, two groups—increased and de-
creased expression—were distinguished. Disorders of miRNA expression in plasma/serum
are summarized in Table 5. Such studies are particularly important due to the ease of
obtaining material for research.

Table 5. Serum miRNA changes in patients with endometrial cancer.

Upregulation miR-15a-5p [143]
miR-20b-5p [144]
miR-27a [145]
miR-106b-5p [143]
miR-107 [143]
miR-143 [44,144]
miR-143-3p [144]
miR-150-5p [145]
miR-186 [146,147]
miR-195-5p [144]
miR-200a [146]
miR-203 [146]
miR-204 [146]
miR-204-5p [144]
miR-222 [146,147]
miR-223 [146,147]
miR-423-3p [144]
miR-449 [146]
miR-484 [144]
miR-887-5p [148]
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Table 5. Cont.

Downregulation miR-16 [44]
miR-99b [44]
miR-125 [44]
miR-145 [44]
miR-204 [147]

3. Overview of Selected microRNAs
3.1. MiR-205

Multiple studies have shown that miR-205 is overexpressed in the EC compared
to normal endometrial tissues. It was previously reported that miR-205 upregulation
was significantly correlated with advanced disease stage, relapse incidence, and poor EC
survival rates [142,149]. MiR-205 is involved in regulating the expression of PTEN, which
is the most common mutated tumor suppressor gene [150,151]. This mutation is also found
in endometrial cancer and accounts for 25–83% of cases [152]. PTEN performs an important
inhibitory function by promoting apoptosis and proliferation. Its deletion or mutation leads
to carcinogenesis. Zhang et al. observed that miR-205 was significantly upregulated in the
Ishikawa cell line compared to normal endometrium [153]. MiR-205 interacted directly
with the 3′-UTR region of the PTEN gene. Overexpression of miR-205 decreased PTEN
mRNA and protein levels in Ishikawa cells. Zhang et al. further reported that miR-205
blocked PTEN translation and activated the AKT pathway. Constitutive activation of AKT
contributes to tumor progression and regulates several downstream targets (e.g., TP53
and BCL-2). Downregulation of miR-205 expression is followed by decreased levels of
p53 protein and increased levels of BCL-2 protein. Since the TP53 and BCL-2 genes are
involved in cell growth, apoptosis, and proliferation, these results provide the basis for
further research into the role of miR-205 in EC cells. Also, the rate of cell apoptosis can be
inhibited by miR-205. MiR-205 acts as an oncogene and inhibits cellular apoptosis in the
EC by targeting the PTEN/AKT pathway [153].

It should also be noted that miR-205 plays an important role in the migration and
invasion of endometrial cancer. This mechanism is based on the targeting of miR-205 to the
AKT pathway.

Inhibition of E-cadherin expression and promotion of Snail expression by activat-
ing AKT and downregulation of glycogen synthesizing kinase 3β were associated with
overexpression of miR-205. The molecular mechanism of action of miR-205 regulating
the epithelial–mesenchymal transition (EMT) by activating AKT signaling in endometrial
cancer cells in the HEC-50B and HEC-1-A cell lines was described by Jin C. et al. [154].

In addition, several studies have reported that miR-205 inhibits the tumor suppressor
gene JPH4, promoting tumorigenesis and progression [46].

3.2. MiR-34

The miR-34 family has three members, i.e., miR-34a, miR-34b, and miR-34c. MiR-34a, b,
and c are encoded by two different transcription units. MiR-34a is located on chromosome
1p36.22 and has a unique transcript, while miR-34b and miR-34c share one transcript that
is located on chromosome 11q23.1 [155].

MiR-34 is a direct target of the tumor protein p53 (TP53), a tumor suppressor gene that
causes cell cycle arrest and apoptosis when activated under cellular stress. Inactivation of
p53 can result in a cellular environment that contributes to oncogenesis [52].

It was shown that miR-34c acted as a tumor suppressor in human endometrial carci-
noma 1b (HEC-1b) with the E2F3 transcription factor being one of its targets [156].

Reduced miR-34 expression is a negative prognostic factor for serous endometrial
cancer and is strongly associated with LVSI. These data reinforce knowledge about the
miR-34 family (miR-34a, b, and c), which appears to act as a tumor suppressor [157].

The miR-34 family acts as a negative regulator of cancer-related EMT and plays a large
role in suppressing carcinogenesis and delaying tumor progression. As an excellent tumor
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suppressor, miR-34a is a cancer therapy agent. Many studies have been conducted on
miR-34a and verified its suppressive role in cancer. However, some challenges have arisen
with the use of miR-34a therapy. One of them is the aforementioned miRNA degradation.
RNase is rich in serum and easily denatures miR-34a, as a result of which miR-34 cannot
penetrate the capillary endothelium and does not reach its target cells [158].

3.3. MiR-21

MiR-21 is overexpressed in almost all human cancers. It acts as an oncogene and may
be a useful clinical biomarker and therapeutic target. Its level also increases in endometrial
cancer [128].

Researchers have demonstrated different mechanisms of action of miR-21. Yan et al.
studied its oncogenic role by inhibiting the tumor suppressor gene FBXO11 (a member of
the F-box subfamily lacking a distinct unifying domain), subsequently inhibiting apoptosis
and stopping protein degradation [78]. In another study (Tu et al.), the opposite effect of
miR-21 and GAS5 (growth arrest-specific transcript 5) was observed. Reduced expression of
GAS5 in tumor-associated macrophages (TAMs) in endometrial cancer has been observed.
Its anticancer role consists in promoting phagocytosis, presenting antigens, and activating
cytotoxic T lymphocytes. MiR-21 as an oncogene inhibits the suppressive effect of GAS5 in
endometrial cancer cells [159].

As mentioned earlier, miRNAs bind to target mRNAs through sequence complemen-
tarity and lead to inhibition of translation and mRNA destabilization. It is known that this
process can be influenced by lncRNAs, through lncRNA:miRNA interactions. An example
of a lncRNA is MEG3, which changes the expression of miR-21 [160,161].

Another mechanism of miR-21 involvement was investigated by Li Xiao et al. and is
related to tumor cell hypoxia [162].

Under hypoxic conditions, cancer cells produced significantly more exosomes than
cells in normoxic conditions. Hypoxia increased miR-21 expression in exosomes. Monocytes
were also transformed into M2-like polarizing macrophages by delivery of exomal miRNA-
21, which may be a mechanism for the immune escape of tumor cells. MiR-21 may induce
a potential mechanism for creating an immune microenvironment in endometrial cancer
progression [162]. Hypoxia is, therefore, an aggressive feature of endometrial cancer and an
increase in miR-21 levels. This increase results in the downregulation of PTEN and a strong
increase in L1CAM gene expression to promote cancer cell invasion and metastasis [162].

Overexpression of miR-21-5p has also been reported to promote epithelial-to-mesenchymal
transition (EMT). In contrast, miR-21-5p silencing reversed EMT in endometrial cancer cell
lines. This mechanism is related to the SRY-box 17 (SOX17). Overexpression of miR-21-5p
significantly inhibits SOX17 protein expression in endometrial cancer cell lines. SOX17 has
a suppressive effect and its overexpression promoted mesenchymal to epithelial transition,
while SOX17 silencing induced EMT in endometrial cancer cell lines [62].

MiRNAs also have their regulators. Such a regulator for miR-21 is circRNA, i.e.,
circFAT1. Wu et al. investigated this relationship and described CircFAT1, which was
upregulated in EC and positively correlated with miR-21 in EC tissues. In RL95-2 and
HEC-1-A cells, circFAT1 overexpression increased miR-21 expression and decreased miR-21
gene methylation, while miR-21 overexpression did not alter circFAT1 expression. Through
stem cell analysis, it was shown that overexpression of circFAT1 and miR-21 had an effect
on the number of stem cells that increased. In contrast, miR-21 inhibition resulted in a
reduction in the number of stem cells. In addition, the miR-21 inhibitor suppressed the role
of circFAT1. In conclusion, circFAT1 is upregulated in the EC and can increase the number
of tumor cells by upregulating miR-21 [163].

3.4. MiR-182

It promotes cell proliferation by targeting the tumor suppressor gene TCEAL7 (tran-
scription elongation factor 7-like), which interacts with the E-box sequences of the Myc
cyclin D1 target gene. By affecting the regulation of Myc activity and the expression of
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cyclin D1, it causes cell proliferation and malignant transformation. Downregulation of
TCEAL7 is associated with larger tumor size, higher tumor stage, and poor prognosis [164].

According to Donkers, miR-182 can potentially be used to distinguish high-grade
disease from low-grade disease [46].

Devor et al. studied the association of miR-182 and the altered expression of cullin-
5(CUL5), a member of the ubiquitin ligase family cullin-RING E3. They showed that there
were two miR-182 binding sites in the 3′-UTR of the CUL5 gene and that miR-182 was
overexpressed in two EC model cell lines of Ishikawa H and Hec50co. They showed that
CUL5 was the target of miR-182 in EC. Upregulation of miR-182 results in downregulation
of CUL5, which promotes EC proliferation [165].

Myatt et al. studied changes in the levels of some miRNAs and the tumor suppressor
FOXO1. They showed that FOXO1 was downregulated in endometrial cancer compared
to normal endometrium. Whereas, the miRNA including miR-182 was upregulated. The
target of miR-182 was probably the 3′-untranslated region of FOXO1 transcripts [166].

3.5. MiR-200

It is a whole family consisting of miR-200a, miR-200b, miR-200c, miR-429, and miR-141.
It negatively regulates two transcription factors, ZEB1 (Zinc finger E-box-binding homeobox
1) and ZEB2, which are well-known suppressors of E-cadherin transcription [55,167]. E-
cadherin is a calcium-dependent transmembrane epithelial adhesive molecule involved
in cell cohesion. Reduced expression of E-cadherin has been linked to reduced cell–cell
adhesion, metastasis potential, tumor differentiation, and deep myometrial invasion in
endometrial and other cancers. In endometrial cancer, loss of E-cadherin is strongly
associated with histological subtypes where loss is more prevalent in EEC grade 3 compared
to serous carcinoma [46].

By targeting E-cadherin transcriptional repressors ZEB1 and ZEB2, the miR-200 fam-
ily can regulate the epithelial-to-mesenchymal transition and protect cancer cells from
apoptosis [168].

MMP2 is an enzyme that degrades type 4 collagen, the main structural component
of basement membranes. This enzyme plays a role in the menstrual breakdown of the
endometrium, regulation of vascularity, and tumor metastasis. The natural MMP2 inhibitor
is TIMP2 (tissue metalloproteinase 2 inhibitor), it is a metastasis suppressor. MiR-200b
suppresses TIMP2 expression and increases the activity of matrix metallopeptidase 2
(MMP2) [168].

MMP2 expression in endometrial cancer correlates with the histological grade of the
tumor, its invasion, or metastases. Increased MMP2 expression and low TIMP2 expression
are the strongest markers of endometrial malignancies with a high risk of local and distant
metastases [168].

Both miR-200a and miR-200b belong to the miR-200 family, but they have different
target genes, which is related to the difference in the seed regions [168].

MiR-200b is overexpressed in endometrial adenocarcinomas. It specifically inhibits
TIMP2 expression and increases MMP2 activity in HEC-1A cells. Both MiR-200b and TIMP2
and MMP2 probably play an important role in the initiation and further development of
endometrial adenocarcinoma [168].

3.6. MiR-103

MiR-103 has an oncogenic effect. Overexpression of miR-103 increases EC cell pro-
liferation, while downregulation has the opposite effect. ZO-1 is directly suppressed by
miR-103. Silencing ZO-1 significantly promotes EC cell proliferation [67].

A possible therapeutic target for miR-103 is TIMP-3 (tissue inhibitor of metallopro-
teinase 3 expression). Yu et al. studied the effect of miR-103 on TIMP using a TIMP-3
inhibitor. They showed that miR-103 after transcription downregulated the expression of
the tumor suppressor TIMP-3 and stimulated growth and invasion in endometrial cancer
cell lines [169].
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An important pathway in the pathogenesis of endometrial cancer is the GAS5-miR-
103-PTEN pathway. GAS5 is a tumor suppressor gene important in stopping cancer
formation. It works by inhibiting the expression of the miR-103 oncogene, which increases
the expression of PTEN and promotes the apoptosis of cancer cells. Guo et al. conducted a
study in which they studied the GAS5-miR-103-PTEN pathway and found that it may be a
new therapeutic target in the treatment of endometrial cancer [170].

3.7. MiR-105

The miR-105 family, which consists of three members (miR-105-1, miR-105-2, and
miR-767). It is located on the human Xq28 chromosome. MiR-105 may play an oncogenic
or suppressor role in various cancers [171]. In endometrial cancer, it serves as a tumor
inhibitor. It is weakly expressed in tumor tissues and endometrial cancer cell lines. Further
upregulation of miR-105 inhibits the proliferation and metastatic potential of endometrial
cancer cells. A potential target of miR-105 is SOX9. It has been validated as an miR-
105 target transcript. MiR-105 likely inhibits the epithelial–mesenchymal transition and
gastric cancer metastasis by targeting SOX9. SOX9 is well established as a redundant
transcription factor regulating many developmental signaling pathways and its aberrant
expression has been associated with tumor initiation, proliferation, metastasis, and stem
cell maintenance. This is also true for endometrial cancer, as SOX9 has been reported as an
independent risk factor for endometrial hyperplasia in the uterine epithelium, which is a
precursor to endometrial cancer. In addition, overexpression of SOX9 was found to cause
proliferation of endometrial cancer cells. Other molecules can also act through miR-105,
such as Circ_0109046, which acts as an oncogene in endometrial cancer. This affects the
development of cancer and its metastases [172].

In other cancers, its function in promoting tumor metastasis has been demonstrated
by destroying the vascular endothelial barrier. This mechanism is based on the ZO1 protein
and has been described in breast cancer [79].

3.8. MiR-136

MiR-136 has also been studied in various cancers. MiR-136 has been identified as a
tumor suppressor gene in various adenocarcinomas such as breast cancer, colon cancer,
and lung cancer [173–175].

MiR-136 acts as spongeRNA for circ_PUM1. Circ_PUM1 plays a key role in the
development and progression of endometrial cancer, mainly through the uptake of miR-136
via a ”sponge” effect, thereby promoting the expression of the NOTCH3 target gene [176].

Zong et al. revealed that miR-136 was an anti-proliferative and anti-metastatic miR in
the EC [176].

MiR-136 acts as a spongeRNA also for another circRNA, i.e., circ_0109046. Shi Y. et al.
studied the mechanism of action of circ_0109046 sponged miR-136 to regulate HMGA2 via
the ceRNA mechanism [177]. Shi Y et al. showed that miR-136 directly targeted HMGA2.
HMGA2 is a common oncogenic factor and is involved in various cellular processes
including cell proliferation, apoptosis, and differentiation. Meanwhile, HMGA2 accelerates
tumor progression in gynecological cancers, including cervical cancer, breast cancer, and
ovarian cancer. Ma et al. suggested that miR-302a-5p/367-3p-mediated HMGA2 promoted
EC cell malignancy [178]. In a study by Shi Y. et al., HMGA2 was identified as a target for
miR-136. Importantly, HMGA2 augmentation abolished miR-136 mimic inhibition in EC
development [177].

Li et al. studied miR-136 levels in EC stem cells. They showed that it was significantly
reduced in EC tissues and its expression correlated with different FIGO stages and grades.
By means of a survival analysis, it was shown that patients with low miR-136 expression had
a worse prognosis. It was also shown that the expression of miR-136 in endometrial cancer
stem cells (ECSC) was significantly lower than in non-stem cells [179]. Overexpression
of miR-136 can inhibit EC cell proliferation, migration, and invasion. Overexpression of
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miR-136 may also promote cell apoptosis and G0/G1 cell cycle arrest. They also inhibit the
ability of EC cells to form a ball [179].

3.9. MiR-155

MiR-155 negatively regulates p38 protein levels by directly binding to the 3′UTR region
of the target mRNA. MiR-155 has a negative effect on the functioning of DCs (dendritic
cells, antigen-presenting cells), which plays an important role in the activation of anticancer
immune responses. It acts by silencing p38, via the p38 MAPK14 pathway [73].

Yamamoto and Imai studied microsatellite instability (MSI), which is a hallmark of
Lynch syndrome [180]. This is an important direction of research because the probability
of developing EC as the first tumor in this syndrome is 40–60% [181]. They showed that
overexpression of miR-155 or miR-21 downregulated MMR gene expression. MSI-induced
frameshift mutation gene targets are involved in essential cellular functions including, for
example, DNA repair (MSH3 and MSH6), cell signaling (TGFBR2 and ACVR2A), apoptosis
(BAX), epigenetic regulation (HDAC2 and ARID1A) and processing miRNAs (TARBP2 and
XPO5), and the MSI + CRC subset reportedly shows a mutant phenotype of the miRNA
machine [180].

Another study observed reduced levels of IGF1 (insulin-like growth factor 1), MYLK
(myosin chain kinase), and overexpression of SOD2 (superoxide dismutase 2) associated
with dysregulation of proliferative processes in the EC. MiR-155 was possibly involved in
the regulation of MYLK activity in the EC. Its overexpression may promote uncontrolled
tumor proliferation and progression [182].

MiR-155 acts on the angiotensin II receptor type 1 (AGTR1) by inhibiting it. Choi et al.
studied this compound using anti-miR-155. They found that combination therapy with
anti-miR-155 and losartan had a synergistic effect and has an antiproliferative effect [183].

3.10. MiR-372

It acts as a tumor suppressor and inhibits the occurrence and development of endome-
trial cancer. Its expression is much lower in the EC than in healthy endometrial tissues.
Overexpression of miR-372 suppressed cell proliferation, migration, and invasion and led
to G1 phase arrest. MiR-372 also promotes apoptosis of endometrial cancer cells in vitro.
Researchers detected the expression of known miR-372 targets in other malignancies. They
showed that cyclin A1 and cyclin-dependent kinase 2 (CDK2) were downregulated by
miR-372. It was also shown that transfection of miR-372 reduces the expression of RhoC,
matrix metalloproteinase 2 (MMP2), and MMP9, while it increases expression of cleaved
polymerase poly (ADP ribose) (PARP) and bcl-2-linked protein X (Bax) [184].

Another tested target for miR-372 was PRMT6 (protein arginine methyltransferases).
PRMT6 overexpression promotes EC cell proliferation and migration and is significantly
associated with higher tumor histology grades and unfavorable prognosis. PRMT6 induces
AKT and mTOR phosphorylation in the EC. MK2206 or rapamycin inhibits the AKT/mTOR
pathway via PRMT6. miR-372-3p expression downregulates PRMT6. In clinical trials,
PRMT6 expression was associated with low miR-372-3p expression [185].

3.11. MiR-93

MiR-93 derives from the paralog (miR-106b-25) of the miR-17-92 [186] cluster. Its high
expression is associated with the short survival of patients with endometrial cancer. In
biological experiments conducted in vitro, miR-93-5p overexpression has been shown to
promote the proliferation and migration of endometrial cancer cells. Therefore, it is very
possible that miR-93-5p promotes the development of endometrial cancer [187].

Chen et al. studied miR-93, which was highly expressed in endometrial cancer tissues.
Overexpression of miR-93 promoted the migration and invasion of endometrial cancer
cells and decreased E-cadherin expression and increased N-cadherin expression without
changing RhoC expression in the EC. MiR-93 promotes EMT, migration, and invasion in
endometrial cancer cells by regulating FOXA1 [186].
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3.12. MiR-125

One important family of miRNAs is the miR-125 family, which includes miR-125a, miR-
125b1, and 125b2, which produce nearly identical products of different genes. The miR-125b
is of particular interest. Human miR-125b is found throughout the human body and is the
highest expressed in the brain and ovaries, followed by the thyroid, pituitary, epididymis,
spleen, testes, prostate, uterus, placenta, and liver. MiR-125b can be upregulated, e.g.,
in colorectal cancer or hematopoietic tumors. However, it may be strongly reduced in
breast tumors and hepatocellular carcinoma [188]. Shang et al. showed that miR-125b
was downregulated by about 30% in endometrial cancer. Downregulation of miR-125b
increased cell invasiveness that could be rescued by overexpression of miR-125b. The direct
target for miR-125b is ERBB2. ERBB2 has been shown to modulate microRNA activity by
binding to microRNA targeting sequences on the 3′UTR of target mRNAs. ERBB2, encoded
as a member of the epidermal growth factor (EGF) receptor family of receptor tyrosine
kinases, is associated with increased invasion as a proto-oncogene [189].

3.13. MiR-222

MiR-222 has been studied as one of the markers to detect endometrial cancer in
patients. Montagnana et al. showed higher serum miR-222 levels in EC patients compared
to controls [147].

Donkers et al. studied urinary miR levels and showed that miR-222 expression was
significantly reduced in older women [45].

Liu and others studied miR-222-3p and showed that it targeted Erα. miR-222-3p
expression is negatively correlated with ERα. Overexpression of miR-222-3p in RL95-2 cells
promotes cell proliferation, increased invasiveness, and induces a G1 to S phase shift in the
cell cycle. In addition, the researchers showed that miR-222-3p expression was significantly
lower in ERα-positive than in ERα-negative EC tissue samples and that the miR-222-3p
expression level is inversely correlated with Erα expression. The miR-222-3p expression
level is lower in lower-grade tumors. In addition, miR-222-3p was positively associated
with lymph node metastases [42].

3.14. Let-7

The Let-7 miRNA family was first discovered in nematodes and has as many as 13
members that are located on 9 different chromosomes. Their role is to control the time of
division, differentiation, and proliferation of stem cells. They play an important role in
carcinogenesis. Its reduced expression is found in the bladder, breast, colorectal, cervical,
endometrial, head and neck, lung, ovarian, prostate, and kidney cancers. let-7’s role is
to regulate cell differentiation and proliferation as well as inhibit cancer cells by directly
acting on RAS genes via LIN28. Let-7 and LIN28 both have inhibitory effects on each other.
Decreased let-7 levels result in increased RAS levels leading to tumor cell proliferation [26].

Zhang et al. have shown that the activated estrogen receptor can repress BAX ex-
pression by regulating a group of microRNAs including but not limited to members of
the has-let-7 family. This results in the promotion of an increased BCL2/BAX ratio as
well as increased survival and proliferation in affected cells. These ER-regulated has-let-7
microRNAs can be detected in most endometrial hyperplasias and may be potentially
useful indicators of estrogen overexposure [58].

Let-7 (lethal-7) has been described in the pathogenesis of ovarian germ cell tumors
(GCT). Let-7 is regulated by the RNA-binding protein LIN-28 homolog A (LIN28). GST
LIN28-positive tumors have been shown to be downregulated let-7 [190].

3.15. MiR-429

MiR-429 belongs to the miR-200 family and its dysregulation is involved in the
epithelial–mesenchymal transition (EMT), progression, development, invasion, metastasis,
apoptosis, and drug resistance of various cancers.
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Its target is PTEN, which is a significant tumor suppressor gene in the EC. As reported
by Yoneyama et al., overexpression of miR-429 in EC results in downregulation in EWG
PTEN. The putative recognition site for miR-429 is the 3′ untranslated PTEN region (3′-
UTR) [129].

4. Summary

MiRNAs play an important role in carcinogenesis and have been the subject of many
studies in this field. Carcinogenesis is a complex process involving the dysregulation of
many genes, and, therefore, studies on the functions and targets of miRNAs will expand
our understanding of the molecular mechanisms that control cancer development [168].

The role of miRNA is the subject of research, e.g., in the etiopathogenesis of polycystic
ovary syndrome (PCOS). It has been proven in the literature that in patients with metabolic
syndrome a change in miRNA expression occurs. The question we are still looking for
an answer to is whether these changes are the direct cause of endometrial cancer and if
carcinogenesis can be prevented by changes in epigenetics. Another question is how can
changes in miRNAs be observed in this group of patients since it is known that their levels
can change with the aging of the body.

A large group of PCOS patients uses Metformin [191]. It is a hypoglycaemic drug
that, in short, works in three ways: it reduces hepatic glucose production, increases muscle
insulin sensitivity, and delays glucose absorption in the intestine [191]. It also affects
changes in miRNA expression [192]. MiR-20a-5p expression was shown to be increased
in women with PCOS using Metformin [193]. In contrast, the following miRNAs were
decreased: miR-122, miR-29a, and miR-223 [194]. Metformin facilitates weight loss, so will
it prevent the development of endometrial cancer?

Studies on the effect of exercise and physical activity on weight loss have also been
conducted. A decrease in miR-423-5p expression, a drop in whole-body insulin resistance,
and an increase in liver insulin sensitivity have been demonstrated [195]. Some physical
exercises can alter miRNAs in skeletal muscle, heart muscle, bone, adipose tissue, liver,
brain, and body fluids [196]. However, it has not been shown whether they have an effect
on reducing the risk of endometrial cancer.

There is a need to develop new biomarkers for the detection of endometrial cancer
and for these markers to accurately distinguish between low-grade (stage 1 and grade 2)
or high-grade (stage 3) endometrioid cancer lesions. Chen et al. reported unique miRNA
signatures for endometrial cancer, based on the following miRs: miR-652, miR-3170, miR-
195, miR-34a, and miR-934 [197]. Such signatures were also created for the differentially
expressed miRNA (DEmiR) step to help predict high-risk gynecological cancer patients
and demonstrate their role in early and late disease.

MiRNAs may be promising biomarkers. They can be detected in solid tissue samples,
but also in blood, serum [44], urine [45], and other body fluids [198]. Since they can be
detected in urine and are stable there, urine appears to be a promising non-invasive test for
the detection of EC [45,199]. To date, it has not been established which type of sample can
be used to obtain the most reliable biomarker for the detection of endometrial cancer.
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