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Abstract: Huanglongbing (HLB), caused by the Candidatus Liberibacter spp., is the most devastating
disease in the citrus industry. HLB significantly affects and alters the microbial community structure
or potential function of the microbial community of leaves and roots. However, it is unknown how
the microbial community structure of the pericarp with different pigments is affected by Candidatus
Liberibacter asiaticus (CLas). This study identified the enriched taxa of the microbial community
in the citrus pericarp with normal or abnormal pigment and determine the effects of HLB on the
pericarp microbial community using 165 rRNA-seq. The alpha and beta diversity and composition of
microbial communities were significantly different between normal and abnormal pigment pericarp
tissues of ripe fruits infected by CLas. Firmicutes, Actinobacteriota, Bacteroidota, Acidobacteriota, and
Desulfobacterota dominated the pericarp microbiota composition in WDYFs (whole dark yellow fruits)
samples. The relative abundance of most genera in WDYFs was higher than 1%, such as Burkholderia,
and Pelomonas. However, with the exception of the HLB pathogen, the relative abundance of most
genera in the abnormal-colored pericarp samples was less than 1%. CLas decreased the relative
abundance of pericarp taxonomic. The predicted function of microbial was more plentiful and
functional properties in the WDYF sample, such as translation, ribosomal structure and biogenesis,
amino acid transport and metabolism, energy production and conversion, and some other clusters of
orthologous groups (COG) except for cell motility. The results of this study offer novel insights into
understanding the composition of microbial communities of the CLas-affected citrus pericarps and
contribute to the development of biological control strategies for citrus against Huanglongbing.
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1. Introduction

Microorganisms form microbial communities of plant, animal, or ecological environ-
ments, which are collectively known as microbiomes. Microorganisms can be associated
with plants in different compartments, including the rhizosphere, rhizoplane, phyllosphere,
and endosphere [1,2]. The plant microbiomes can perform a variety of functions on plants,
such as supplying nutrition for plants, improving tolerance against biological and abiotic
stresses through phytohormones, and producing antimicrobial compounds or stimulating
plant immunity to improve disease resistance [3-5]. Therefore, the plant microbiome plays
an important role in the plant life cycle, also considered to be an integral component of the
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host plant. Understanding the plant microbiome is of great significance for exploring its
functions for plants.

The microbiome of different citrus tissues shows high diversity and performs a variety
of functions, such as in leaves and roots [6-8]. The strains Variovorax, Methylobacillus,
Novosphingobium, and Methylotenera are involved in promoting plant growth and antibiotic
production [8]. The rhizosphere strain Burkholderia can trigger the expression patterns
of genes involved in systemic resistance in inoculated plants [9]. HLB, caused by the
Candidatus Liberibacter spp., is the most devastating disease in the citrus industry world-
wide [10]. HLB can impair the phloem transportation of photoassimilates [10], cause root
decline [11], and decrease the quality and yield of fruit [12]. To date, a plethora of studies
on the microbial community of different tissues associated with HLB have found that HLB
can significantly affect the microbial community structure or functional property [6-8].
Some beneficial microbes, such as Bacillus sp., can induce host defense responses against
Candidatus Liberibacter asiaticus (CLas), or the benign Xylella fastidiosa strain EB92-1 can
reduce the incidence of HLB symptoms for several years in mature trees and newly planted
young trees [13-15]. Bacillus sp. can induce host defense responses against CLas by enhanc-
ing the expression of several transcription factors and enriching some metabolites involved
in disease resistance [13,14]. These studies show that the microbial community in different
tissues of citrus has a significant relationship with the existence of HLB and the pathogen.

The previous studies about the microbial community structure of citrus mainly focus
on the endosphere in leaves or rhizosphere in roots [9,15,16]. The microbial community
of different color pericarps associated with CLas has not been reported. The present
works have studied the effect of CLas on bacterial diversity using 16S ribosomal DNA
(rDNA)-based microbiota analysis, and explore the predicted function of core microorgan-
isms in the citrus pericarps infected by CLas. These results indicate that CLas can not only
affect the pigmentation of the fruit exocarp (the outer peel) but can also affect the diversity
of bacteria in the entire citrus fruit pericarp.

2. Results
2.1. Difference in the Microbial Diversity of the Citrus Pericarp with Different Pigment

A total of 1,158,794 raw reads of 165 rRNA was obtained from sixteen pericarp samples
(four repetitions of each pericarp group) with an average of 72,425 reads of the bacteria
per sample. The average read length of 16S rRNA was 387 bp. The amplicon sequence
variants (ASV) table containing 5848 ASVs (Supplementary Table S1) was obtained. A total
of 64 ASVs coexisted in all pericarp samples (Figure 1B). The most abnormally colored
pericarps, ‘whole green fruits (WGFs)’, and the normal pericarps, ‘whole dark yellow
fruits (WDYFs), presented many unique ASVs compared to the other groups (WGF:1801,
WDYF:2317, Figure 1B). The annotated ASVs were analyzed by Venn, which showed
202 genera overlapped in all samples, and each group of samples has its unique genera
(Figure 1C). Combined with the pericarp phenotype, the genera may contribute to the color
phenotype. This is a question that deserves further study.

The Simpson Index and Shannon Index measure microbial alpha diversity. The
Simpson and Shannon indices revealed significant differences in the overall bacterial
community of citrus fruit pericarp samples with different pigments at the ASV level
(Figure 2A,B). However, TYBGFs vs. WLYFs did not present significant differences between
each other (Simpson Index p-value = 0.43, Shannon Index p-value = 0.54). Therefore, the
alpha diversity of WDYFs was remarkably different from the diversity of other samples
(Figure 2, Supplementary Table S2).
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Figure 1. The phenotype of the four types of pericarps: ‘whole green fruits (WGFs)’, ‘top yellow
and base green fruits (TYBGFs)’, “‘whole light yellow fruits (WLYFs)’, and ‘whole dark yellow fruits
(WDYFs)’ (A), Venn plot of the bacterial ASVs (B), and Venn plot of the bacterial genus (C) in the
WGFs, TYBGFs, WLYFs, and WDYFs pericarp.
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Figure 2. Histograms showing comparisons of alpha diversity of the bacterial community in
‘Shatangju’ mandarin fruit pericarp tissues with different pigments. (A) Shannon Index; (B) Simpson
Index. Values indicate the p-value of the results of pairwise comparison using the Wilcoxon rank-sum
test (**: adjust p-value < 0.01; ***: adjust p-value < 0.001).

Principal coordinate analysis (PCoA) and partial least squares discriminant analysis
(PLS-DA) of the bacterial communities revealed the segregation and clustering of samples
representing the different colored pericarps (Figure 3). The PERMNOVA analysis showed
a significant effect of the different colored pericarps on the beta diversity of bacterial
communities (R? = 0.7185, p-value = 0.001). In addition, the hierarchical clustering of
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Figure 3. PCoA and PERMANOVA results (A), and PLS-DA (B) of the different colored pericarps
(WGFs, TYBGFs, WLYFs, and WDYFs) on the bacterial communities.

2.2. Differences in the Relative Abundance of Taxa in the Microbiome of Different Colored Pericarps

The bacterial ASVs were assigned to 40 phyla and 962 genera in all pericarp samples.
Circos plots showed that the abnormal color pericarp samples (WGFs, TYBGFs, and WLYFs)
presented a higher association with Proteobacteria (approximately 25% in WGFs, 31% in
TYBGFs, and 30% in WLYFs) and Proteobacteria was only 14% in WDYFs at the phylum
level. The association with Firmicutes, Actinobacteriota, and Bacteroidota was approximately
29%, 17%, and 38% in WGFs, respectively, while they were less than 10% in TYBGFs
and WLYFs (Figure S2). Acidobacteriota and Desulfobacterota were less than 10% in all
abnormal color pericarp samples (Figure S2). Firmicutes, Actinobacteriota, Bacteroidota,
Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota compositions at the
phylum level in WDYFs samples, contributing to 61%, 77%, 57%, 92%, and 94%, respectively
(Figure S2).

At the genus level of bacteria, 202 genera coexisted in the four types of pericarp
samples. They also have their genera (WGFs: 189, TYBGFs: 25, WLYFs: 40, and WDYFs:
165) in all pericarp samples (Figure 1C). The relative abundance of some bacterial gen-
era was obviously different among the four types of pericarps (Figure S3). Candidatus
Liberibacter spp. was the most abundant genus (WGFs: 72.26%, TYBGFs: 91.25%, WLYFs:
95.57%) in all abnormal fruit pericarps and was only 0.22% in WDYFs (Figure S4). Ex-
cept for Sphingomonas (4.02%) in TYBGFs, the relative abundance of most genera in the
TYBGFs, and WLYFs samples was less than 1%. The bacterial composition of the WGFs
samples was more complex than that in the TYBGFs and WLYFs. Some genera that the
relative abundance was more than 1% in WGFs samples included Bacteroides (3.46%),
Pseudomonas (2.45%), Prevotella (1.27%), Geobacillus (1.31%), Delftia (1.00%) (Figure S4D).
On the contrary, the relative abundance of most genera in WDYFs is higher than 1%, such
as unclassified_f Rhodocyclaceae (6.44%), Staphylococcus (4.03%), Thauera (2.85%), Zoogloea
(2.91%), Raoultella (1.54%), Paludibacter (2.31%), Burkholderia-Caballeronia-Paraburkholderia
(2.37%), and Acidothermus (2.41%, Figure S4A). Some genera that had a very low percentage
(less than 0.01%) were merged into others (WGFs: 15.42%, TYBGFs: 3.12%, WLYFs: 2.74%,
and WDYFs: 48.86%, Figure S4). Therefore, the microbial structure of the WDYFs pericarp
was more complex at the genus level. Although the relative abundance of Candidatus
Liberibacter spp. is inconsistent with color severity based on the result data, Candidatus
Liberibacter spp. should have a significant effect on fruit phenotype.
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Some genera showed significant differences among all samples. Candidatus Liberibac-
ter spp. is the pathogen of Huanglongbing. It reveals significant differences in the relative
abundance among the four types of pericarp samples (p = 0.0072) and was significantly low
in abundance in the WDYFs samples (Figure S5). Some other genera also show significant
differences. The genera unclassified_Rhodocyclaceae, Thauera, Zoogloea, and Paludibacter were
significantly high in abundance in WDYFs. Prevotella, Bacteroides, and Pseudomonas showed
the same significantly high abundance in the WGFs samples (Figure S5). TYBGFs samples
possess a significantly enriched genus, Sphingomonas. The p-values of all the above genera
were less than 0.05. The differences in pericarp microbiota among all pericarp samples
were also evidenced by LEfSe (linear discriminant analysis effect size), which showed the
most differently abundant taxa of these pericarp samples (Figure S6). Using a metagenomic
biomarker discovery approach, some genera were discovered to be significantly enriched
in the WDYFs pericarps (linear discriminant analysis (LDA) score > 4, p-value < 0.05), such
as Rhodocyclaceae (LDA score = 4.44, p-value = 0.0048), Enterobacteriaceae (LDA score = 4.17,
p-value = 0.0051), Zoogloea (LDA score = 4.06, p-value = 0.0065), Thauera (LDA score = 4.00,
p-value = 0.0072), and Comamonadaceae (LDA score = 4.25, p-value = 0.0084). The WGFs
pericarps also own some significantly enriched bacterial genera, including Bacteroidaceae
(LDA score = 4.23, p-value = 0.039) and Pseudomonadales (LDA score = 4.10, p-value = 0.0083)
at the genus level (Figures 56 and S7). These genera may be involved in the formation of
fruit color phenotype and were worthy of further study.

2.3. Correlation Analysis between Microbes and Metabolites of Citrus Pericarps

The correlation analysis between the pericarps” microbes and metabolites indicates
potential mutual contribution. To inquire into the contributions of metabolites to peri-
carps’ microbes, RDA was carried out on the top significantly changed metabolites (do-
cosanoic acid, quinine, dihydropinosylvin, coronatine, peonidin-o-hexoside, 6,7-dimethoxy-
4-methylcoumarin&quot, myricetin, and 3-indole propionic acid) related to the top pericarps’
microbes. The top high-enriched or low-enriched metabolites that have been published
before [17] significantly correlated to the pericarps’ microbes, especially 3-indolepropionic
acid (R? = 0.9873, p-value = 0.001), quinine (R? = 0.8621, p-value = 0.002), and myricetin
(R? = 0.9872, p-value = 0.002). This study found that the top three high-enrichment metabo-
lites in WDYFs, namely 3-indole propionic acid, 6,7-dimethoxy-4-methylcoumarin, and
myricetin significantly correlated to the bacteria of the WDYFs pericarp. However, the top
five high-enrichment metabolites in the three abnormal pericarps, namely docosanol acid,
dihydropinosylvin, coronatine, quinine, and peonidin-o-hexoside significantly correlated
to bacteria of WGFs, TYBGFs, and WLYFs samples (Figure 4).

To investigate how the pericarps’ microbes are related to different patterns of metabo-
lites due to ‘Candidatus Liberibacter asiaticus’ infection in ‘Shatangju’ mandarin fruits, the
correlation between the top 50 genera and the top 50 significantly changed metabolites
that have been published before [17] was analyzed using the Spearman rank correla-
tion coefficient (Figure S8). In Figure S8, the relative abundance of some genera, such as
Faecalibacterium, Curtobacterium, Staphylococcus, Raoultella, unclassified_f Prevotellaceae,
Bacillus, Chryseobacterium, Brevundimona, and Candidatus Liberibacter, etc. were significantly
correlated with the concentrations of the some significantly changed metabolites enriched
in the four types of pericarps, such as o-caffeoyl maltotriose, tricin 4’-0-3-guaiacylglycerol,
n-hexosyl-p-coumaroyl serotonin, morroniside, 6,7-dimethoxy-4-methylcoumarin, and
p-coumaraldehyde. Interestingly, this study found that Faecalibacterium was positively
or negatively correlated with all metabolites except for d-pantothenic acid, o-caffeoyl
maltotriose, and tricin 4’-o-3-guaiacylglycerol. There were four significantly changed
metabolites including d-pantothenic acid, quinine, myricetin, and 3-indole propionic acid
that were significantly correlated with the relative abundance of most bacterial genera,
such as Staphylococcus. Myricetin and 3-indole propionic acid were significantly positively
correlated with the relative abundance of most bacterial genera except Faecalibacterium,
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Candidatus Liberibacter, and norank_f_Mitochondria that were a negative correlation with
the two metabolites (Figure S8).
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Figure 4. RDA plots relating the significantly changed metabolites of the pericarp and the relative
abundance of bacteria that were enriched in pericarp samples.

2.4. Bacterial Function Prediction in the Different Colored Citrus Pericarps

Functional annotation was performed by comparing clean reads to the COG (clus-
ters of orthologous groups) databases. Twelve abundant COG functions (relative abun-
dance > 5%) were identified in all pericarp samples (Figure S9). The most abundant
was the translation, ribosomal structure, and biogenesis (J) item (WDYEF: 6.94%; WLYF:
14.1%; TYBGEF: 12.76%; WGEF: 10.22%), except for the function unknown (S) item, followed
by amino acid transport and metabolism (E), energy production and conversion (C), etc.
(Figure S9). The results of the COG functional annotation showed that the pericarp groups
had functional differences in the field of 23 COG functional annotations (Figure S9). The
orders of the relative proportion of COG functional annotations (from high to low) differed
among the four group samples (Figure 5). The result revealed that the COGs in the WDYFs
pericarp were always significantly different from the other pericarp samples except for cell
motility (N).

Six level_1-pathways were identified through KEGG database analysis (Figure 6A).
The annotated unigenes of the four types of citrus pericarps were mainly involved in the
metabolic pathway, and the proportions of the metabolic pathway in WDYFs was 76.25%;
in WLYFs was 73.81%; in TYBGFs was 74.03%; and in WGFs was 75.78%, followed by
environmental information processing, genetic information processing, cellular processes
(Figure 6). Except for genetic information processing, the proportions of other level _1-
pathways in WDYFs were significantly higher than that in WLYFs, TYBGFs, and WGFs
(p-value < 0.05). The functional annotation of microorganisms is further analyzed in KEGG
level_2-pathways. There are 46 KEGG level-2 pathways that were annotated in all pericarp
samples (Figure 6B). They are mainly involved in carbohydrate metabolism, amino acid
metabolism, energy metabolism, and the metabolism of cofactors and vitamins.

There are five level_3-pathways that were significantly different among the four groups
of pericarps based on the KEGG database (p-value < 0.05) (Figure 7). Among them, ko01120
(microbial metabolism in diverse environments) and ko01230 (biosynthesis of amino acids)
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in WDYFs were significantly higher than that in TYBGFs and WLYFs and others were
significantly lower than that in the TYBGFs and WLYFs groups (p-value < 0.05). Thirteen
enzymes differed greatly among the four groups of pericarps (p-value < 0.05) (Figure 8). The
histidine kinase and peptidylprolyl isomerase in the WDYF were significantly higher than
that in the other three groups (p-value < 0.05) (Figure 8). Eleven enzymes in TYBGFs, WGFs,
and WLYs were significantly higher than that in WDYFs (p-value < 0.05) (Figure 8C,D). Ten
KEGG ortholog (KO) groups were significantly different among the samples (p-value < 0.05)
(Figure 8A,B). Three KOs in the WDYFs were higher than those in the other three groups.
Their functions were related to RNA polymerase sigma-70 factor, ECF subfamily (K03088),
ABC-2 type transport system ATP-binding protein (K01990), and ABC-2 type transport
system permease protein (K01992). Seven KOs in TYBGFs, WGFs, and WLYFs groups were
significantly different from that in the WDYFs group that reveal a high abundance trend
(p-value < 0.05).
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Figure 5. COGs function predicted for 16s rRNA of the four types of citrus pericarp by PICRUST.
*: adjust p-value < 0.05; **: adjust p-value < 0.01.
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p-value < 0.05; **: adjust p-value < 0.01.

3. Discussion

Huanglongbing (HLB) can greatly affect the leaves, roots, and fruits. Previous studies
focused on the microbial community of the citrus endophyte of leaves and root or rhizo-
sphere associated with HLB and CLas suppression, and CLas significantly affected the
microbial community structure or function [6-8]. The current study carried out a com-
prehensive analysis of the pericarp microbiome of ‘Shatangju’ mandarin with different
pigments infected by CLas. The resulting data showed significant differences in the micro-
bial alpha and beta diversity and composition of microbial community between normal
and abnormal pigment pericarp tissues of ripe fruits infected by CLas. The significant
overall differences based on the Simpson Index and Shannon Index among the different
colored pericarp samples were observed, except TYBGFs vs. WLYFs. These results high-
light the great correlation between bacterial communities and the pericarp phenotype.
In rhizosphere and rhizoplane samples, microbiological compositions were dramatically
influenced by CLas using a 165 rDNA-based analysis [18]. The current results are consistent
with previous reports. However, the significant difference in alpha diversity of the citrus
rhizosphere and rhizoplane microbiome due to HLB was not observed using metagenomic
(MG) and metatranscriptomic (MT) approaches [9]. The difference in the impact of HLB
on the rhizosphere microbiome might be due to the genomic background, tree age, and
the development stage of Candidatus Liberibacter spp. infection [18,19]. In this study, the
bacterial microbiome of the ‘Shatangju” mandarin pericarp with different pigments was
affected by CLas and showed a great correlation with the pericarp phenotype using 165
rRNA sequencing. Combined with the previous studies, more accurate techniques, such
as metagenomic, may be needed to further analyze the relationship between Huanglong-
bing and the pericarp microbiome. Regarding the bacterial community of citrus pericarp,
Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were the predominant genera that
have been reported on the fruit surface of oranges [20]. In this study, Proteobacteria was
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the predominant genera in the WGFs and TYBGFs sample. Firmicutes, Actinobacteriota,
Bacteroidota, Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota com-
positions at the phylum level in the WDYFs samples. Therefore, CLas affected the main
microbiota structure in ‘Shatangju’ mandarin pericarp tissues and reduced the diversity of
microorganisms in the peel. The relationship between these genera and fruit phenotypes
should deserve further study.

The plant microbiome plays an important role in plant health and defense against
plant pathogens. Plant-associated microbiota can defend against plant pathogens via direct
competition, producing antimicrobial compounds or stimulating plant immunity to resist
or tolerate pathogen infection [3-5,21]. To date, a plethora of research topics involved in
the identification of microbial members in citrus associated with CLas. However, CLas can
seriously affect the microbial community and reduce the beneficial microorganism of citrus
leaves or roots [6-8]. The beneficial bacteria genera were reduced by HLB and CLas in-
clude Variovorax, Novosphingobium, Methylobacillus, Methylotenera, Burkholderia, Bacillus, and
Lysobacters [8,18]. They are involved in the competition for nutrition with pathogens, antago-
nizing pathogens through antibiotic production, assisting the host with nutrient acquisition,
and inducing host defense responses [9,14]. These studies show that beneficial bacteria
can be used to defend against CLas and improve plant health. In this study, the predomi-
nant genera in WDYF include unclassified_Rhodocyclaceae, Staphylococcus, Thauera, Zoogloea,
Raoultella, Paludibacter, Burkholderia-Caballeronia-Paraburkholderia, Pelomonas, and Acidother-
mus. According to previous research reports, the endophytes, such as Methylpbacterium,
Burkholderia, Sphingomonas, and Bradyrhizobiaceae were involved in nutrition competition,
antagonizing pathogens, and host disease-resistant response [22]. Burkholderia can trigger the
expression of defense-related genes and SA-mediated induced system resistance genes [9].
The predominant Burkholderia genus, such as Burkholderia-Caballeronia-Paraburkholderia, may
play a positive role in the health of citrus fruit [23].

4. Materials and Methods
4.1. Sample Collection

Citrus reticulata cv. ‘Shatangju’ that was used for this study was infected by the
HLB-pathogen, Candidatus Liberibacter asiaticus, and grown at the same citrus research
orchard. At maturity, the CLas-infected trees produced different colored fruits and they
were classified into four types based on the pericarp coloration: ‘whole green fruits (WGFs)’,
‘top yellow and base green fruits (TYBGFs)’, “‘whole light yellow fruits (WLYFs)’, and
‘whole dark yellow fruits (WDYFs, Figure 1A). The entire pericarps including albedo and
flavedo tissue together were collected and used for this study. Detailed information on
the geographical location and handling of the relevant materials refers to the published
paper [23].

4.2. DNA Extraction and 16S rRNA Gene Amplification

Total microbial genomic DNA was extracted from the pericarp samples using the
FastDNA® Spin Kit (MP Biomedicals, Santa Ana, CA, USA) according to the manu-
facturer’s instructions. The hypervariable region V5-V7 of bacterial 16S rRNA gene
was amplified with primer pairs 799F (5-AACMGGATTAGATACCCKG-3’) and 1193R
(5-ACGTCATCCCCACCTTCC-3’) by using the TransStart® FastPfu DNA Polymerase
(TransGen Biotech, Beijing, China) according to the manufacturer’s protocols and ABI
GeneAmp®9700 PCR thermocycler (ABI, Foster City, CA, USA) [24].

4.3. llumina MiSeq Sequencing and Data Processing

The purified amplicons were pooled in equimolar amounts and paired-end sequenced
on an [llumina MiSeq PE3000 platform (Illumina, San Diego, CA, USA) according to the
standard protocols by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). After
demultiplexing, the resulting sequences were quality filtered with fastp (0.19.6) [25] and
merged with FLASH (v1.2.11) [26]. Then, the high-quality sequences were de-noised
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using the DADA2 plugin in the Qiime?2 [27,28] pipeline with recommended parameters,
which obtains single nucleotide resolution based on error profiles within samples. DADA2-
denoised sequences are usually called amplicon sequence variants (ASVs). To minimize the
effects of sequencing depth on alpha and beta diversity measure, the number of sequences
from each sample was rarefied to 20,000, which still yielded an average Good’s coverage
of 97.9%. The taxonomic assignment of ASVs was performed with the representative 99%
similarity using the Naive Bayes consensus taxonomy classifier and implemented in Qiime2
and the SILVA 165 rRNA database (v138). The metagenomic function was predicted by
PICRUSt2 based on ASV representative sequences [29].

4.4. Statistical Analysis

The Majorbio Cloud platform (https://cloud.majorbio.com, accessed on 16 May 2021)
was used to perform the bioinformatic analysis of the pericarp microbiota. Based on the
ASVs information, the alpha-diversity indexes of Simpson and the Shannon index were
calculated with Mothur v1.30.2 [30]. Principal coordinate analysis (PCoA) was used for
judging the similarity among the four types of pericarp samples based on Bray—Curtis
distances, and the PERMANOVA test was used to assess the percentage of variation
using the Vegan v2.5-3 package through the adonis function. The linear discriminant
analysis (LDA) effect size (LEfSe) was performed to search for the significantly different
taxa (phylum to genera) of bacteria among the four types of pericarps (LDA score > 4,
p < 0.05). The distance-based redundancy analysis (db-RDA) was performed using the
Vegan v2.5-3 package to investigate the effect of pericarp metabolites on the bacterial
community structure. The forward selection was based on Monte Carlo permutation tests
(permutations = 9999). A correlation analysis between top-changed pericarp metabolites
and top-enriched bacteria was performed through Spearman’s correlation coefficient with
anr > 0.6 (p <0.05).

5. Conclusions

In summary, this study demonstrates that the diversity and composition of microbial
communities between normal and abnormal pigment pericarp tissues of ripe fruits infected
by CLas revealed marked differences. The effect of CLas with different content on the
relative abundance of the microbial was different. Firmicutes, Actinobacteriota, Bacteroidota,
Acidobacteriota, and Desulfobacterota dominated the pericarp microbiota composition at
the phylum level in WDYFs samples. The relative abundance of most genera in WDYFs
is higher than 1%, such as Burkholderia and Pelomonas. The irregularly colored pericarp
samples each have different dominant bacteria genera from WDYFs. The relationship
between these genera and fruit phenotypes deserves further study. This study provides
novel insights for understanding the composition of the CLas-affected citrus pericarps-
enriched microbiome and its effect on plant health.
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