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Abstract: Polyoxometalates have emerged as promising bactericidal agents. In the current study,
the bactericidal activity of polyoxometalate K6[P2Mo18O62] against Escherichia coli (E. coli) O157:H7
and its possible underlying mechanisms were explored. The obtained results demonstrated that
K6[P2Mo18O62] could effectively kill E. coli O157:H7 at millimolar levels. Moreover, K6[P2Mo18O62]
treatment also induced significant increases in recA protein expression and further triggered char-
acteristic apoptosis-like bacterial death events such as DNA fragmentation and phosphatidylserine
exposure. In conclusion, polyoxometalate K6[P2Mo18O62] possesses a desirable antibacterial activity, and
induction of bacterial apoptosis-like death might be involved in its underlying bactericidal mechanisms.
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1. Introduction

Antimicrobial resistance presents a serious concern worldwide. In recent decades, a
variety of novel strategies have been adopted to diversify antibacterial agents. For instance,
a great number of natural bioactive compounds have been reported to possess antibacterial
activity [1]. Meanwhile, a considerable amount of effort has also been made to identify
synthetic compounds with a significant and/or broad spectrum bactericidal activity, such
as nanoparticles and organic–inorganic hybrid compounds [2–5].

In particular, polyoxometalates, a group of discrete polynuclear early transition metal
oxide clusters [6], have been widely reported as potential antibacterial agents against nu-
merous food-borne bacteria [7]. Moreover, studies also revealed that polyoxometalates not
only exert a significant bactericidal activity themselves, but also exhibit strong synergistic
antibacterial effects together with conventional antibiotics [8,9].

Currently, polyoxometalate–protein and polyoxometalate–enzyme interactions are
believed to play crucial roles in mediating the bactericidal activity [10]. In some cases,
polyoxometalates can even form covalent interactions with biomacromolecules to affect
their normal functions. Thus, polyoxometalates can interfere with a diverse range of
functions of proteins and enzymes which are indispensable for bacterial survival and
growth [11]. Notably, recent studies also revealed that a number of polyoxometalates could
exert phosphatase activities [12–16], showing the diversity of the interactions between
biomolecules and polyoxometalates.

Bacterial apoptosis-like death, also known as bacterial programmed cell death, is
a kind of bacterial response to environmental stress, which is mainly mediated by the
recA-lexA pathway and the mazEF-mediated pathway in Escherichia coli (E. coli) [17].
Studies have further revealed that these two mechanisms could work together in bacteria to
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determine their fate. For instance, the mazEF-mediated pathway reduces recA mRNA levels.
Notably, DNA damage has been identified as the main cause of recA-mediated bacterial
apoptosis-like death [18]. It has been reported that the recA expression can increase 17-fold
within 10 min of UV irradiation [19]. Indeed, a number of bactericidal compounds (e.g.,
antibiotics) were found to induce the expression of recA as well as consequent physiological
and biochemical hallmarks of bacterial apoptosis-like death [20–23].

However, to the best of our knowledge, it is still unknown whether bacterial apoptosis-
like death is associated with the antibacterial effects of polyoxometalates. Therefore, in the
current study, the polyoxometalate K6[P2Mo18O62] was synthesized and its bactericidal
activity against E. coli O157:H7 (one the most common bacterial strains to cause food-borne
illnesses in people [24]) was determined. Moreover, the possible involvement of bacterial
apoptosis-like death in its underlying bactericidal mechanisms was also investigated.

2. Results
2.1. Synthesis and Characterization of K6[P2Mo18O62]

The polyoxometalate K6[P2Mo18O62] was synthesized according to the literature [25].
As expected, the resultant yellow powder was obtained as shown in Figure 1A. Furthermore,
the infrared spectra of the as-synthesized powders showed the characteristic peaks of
polyoxometalate K6[P2Mo18O62] located at 769, 900, 908, and 1086 cm−1, which are the
tensile vibration characteristic peaks of Mo-Oc-Mo, Mo-Ob-Mo, Mo-Od, and P-Oa (Oa
represents those coordinated to P and to Mo atoms, Ob represents those coordinated to
Mo atoms whose MoO6 octahedron are corner-shared, Oc represents those coordinated
to Mo atoms whose octahedron are side-shared, and Od represents the terminal oxygen
atoms), respectively (Figure 1B). Taken together, the obtained results suggest that the
polyoxometalate K6[P2Mo18O62] was synthesized successfully.
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Figure 1. Synthesis and characterization of polyoxometalate K6[P2Mo18O62]. (A) Picture of as-synthesized
K6[P2Mo18O62] powder. (B) FTIR spectrum of as-synthesized K6[P2Mo18O62].

2.2. Antibacterial Effects of K6[P2Mo18O62] against E. coli O157:H7

As shown in Figure 2A, the results from the Kirby–Bauer disk diffusion test showed a
clear circular area around the discs impregnated with K6[P2Mo18O62] at concentrations of
4 mg/mL or above. The inhibition zone diameters further increased with the increase in
K6[P2Mo18O62] concentration (Figure 2B). Similarly, the solid contact test also supported
the above findings. As can been seen from Figure 2C, the inhibitory effect against E. coli
could reach 95.99 ± 0.86% on the LB agar plate containing K6[P2Mo18O62] at 1 mg/mL.
Further increases in the concentration of K6[P2Mo18O62] resulted in better inhibitory effects
on E. coli. (the CFU of bacteria decreased by 2.03 and 2.16 logarithms, respectively, when
the K6[P2Mo18O62] concentration was 2 and 3 mg/mL). When the concentration reached
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4 mg/mL in the agar plate, nearly 100% of bacteria could not survive, evidenced by the
fact that no bacterial colony was observed on the plate after incubation at 37 ◦C for 12 h.
The results showed that K6[P2Mo18O62] demonstrated a desirable killing activity against
the typical food-borne pathogen E. coli. O157:H7.
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Figure 2. Bactericidal effects of polyoxometalate K6[P2Mo18O62] against E. coli. (A) The killing effect
of polyoxometalate K6[P2Mo18O62] on E. coli O157:H7 determined by a Kirby–Bauer disk diffusion
test. The 6 mm filter paper disks impregnated with sterile water (negative control), chloramphenicol
(positive control) and K6[P2Mo18O62] at different concentrations. (B) The inhibition zone diameter
size. (C) The killing effect of polyoxometalate K6[P2Mo18O62] on E. coli O157:H7 determined by the
agar contact method. The colony numbers of E. coli O157:H7 were counted on plates containing
K6[P2Mo18O62] at different concentrations.

2.3. K6[P2Mo18O62] Possesses Phosphatase Activity

As reported in a previous study [12], the potential phosphatase activity of K6[P2Mo18O62]
was evaluated by determining the cleavage of the phosphate bond of the DNA analogue
4-nitrophenyl phosphate (NPP). As shown in Figure 3, the 1H NMR spectra showed that
NPP incubation with K6[P2Mo18O62] resulted in new resonances (6.89 ppm and 8.18 ppm)
in addition to the resonances of the orthoprotons of NPP (7.34 ppm and 8.22 ppm), showing
the formation of a hydrolysis product (p-nitrophenol (NP)) [14]. Thus, the experimental
results indicated that the phosphate ester bonds in the DNA analogue NPP could be cleaved
by K6[P2Mo18O62], highlighting its capability to induce DNA damage.
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p-nitrophenol (NP).

2.4. K6[P2Mo18O62] Treatment Induced a Significant Increase in the recA Expression in
E. coli O157:H7

Next, the induction effects of K6[P2Mo18O62] on the recA expression in E. coli was
explored using real-time PCR. As can be seen from Figure 4A, the recA transcription was
significantly elevated upon K6[P2Mo18O62] treatment.
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of K6[P2Mo18O62] treatment on the mRNA level of recA in E. coli. (B) The effect of K6[P2Mo18O62]
treatment on the expression of recA protein in E. coli. * p < 0.05, *** p < 0.001 compared to control group.
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Western blotting was also applied to further verify the changes in the recA protein
expression in E. coli upon K6[P2Mo18O62] treatment. As shown in Figure 4B, K6[P2Mo18O62]
treatment resulted in obvious increases in recA protein compared with the non-treatment
control group, while K6[P2Mo18O62] at 4 mg/mL or above demonstrated a similar induction
effect to UV irradiation, which is a well-known recA inducer in E. coli. In summary, the
results from both transcriptional and protein levels showed K6[P2Mo18O62] could alter the
recA expression.

2.5. K6[P2Mo18O62] Treatment Induced Apoptosis-Like Bacterial Death Events in E. coli O157:H7

The protein recA has been documented as an important regulator of the apoptotic
demise of bacteria, which is characterized by DNA fragmentation and membrane depolar-
ization [17]. As shown in Figure 5A, the flow cytometry analysis of bacteria with TUNEL
staining showed that treatment with K6[P2Mo18O62] yielded obvious increases in the per-
centages of TUNEL positive cells, indicating that fragmentation of E. coli DNA occurred
upon treatment with the death-inducing polyoxometalate. Next, we also performed a flow
cytometry analysis with Annexin V-FITC staining to detect phosphatidylserine exposure,
a characteristic event of membrane depolarization. The obtained results also showed
bacterial population in the lower right (Q3) quadrant, which indicated that FITC-annexin V-
positive/PI-negative cells dramatically increased following K6[P2Mo18O62] treatment, sug-
gesting phosphatidylserine externalization at the outer layer of the cytoplasmic membrane
in E. coli cells (Figure 5B). Taken together, the results revealed that, upon K6[P2Mo18O62]
treatment, E. coli showed the characteristics of apoptosis-like bacterial death events.

Figure 5. Cont.
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Figure 5. Polyoxometalate K6[P2Mo18O62] treatment induced characteristic apoptosis-like bacterial
death events. (A) Quantitation of TUNEL staining by flow cytometry. (B) Quantitation of annexin
V-FITC/propyl iodide staining by flow cytometry.

3. Discussion

Polyoxometalates represent a large class of anionic clusters, consisting of transi-
tional metal oxides with a wide variety of physical and chemical properties. In recent
decades, the interest in polyoxometalate-related studies has steadily expanded due to
the variety of their functionalities. Particularly, a number of studies have focused on
the potential of polyoxometalates in the battle against bacteria. For instance, Nadiia
Gumerova et al. reported the antibacterial activity of 29 different polyoxometalates and
found that a Preyssler-type polyoxometalate ([NaP5W30O110]14−) and Dawson-type polyox-
ometalates ([P2W18O62]6−, [(P2O7)Mo18O54]4−, [As2Mo18O62]6− and [H3P2W15V3O62]6−)
showed promising antibacterial activity against M. catarrhalis [26]. Indeed, more studies
also suggested that polyoxometalates could synergistically kill the bacteria with traditional
antibiotics. For example, Inoue et al. reported that polyoxometalates (K6[P2W18O62]·14H2O,
K4[SiMo12O40]·3H2O, and K7[PTi2W10O40]·6H2O) showed strong sensitizing effects against
methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus
aureus (VRSA) strains [27]. These findings highlighted the promising potential of polyox-
ometalates as anti-bacterial agents. Here, a Dawson-type polyoxometalate K6[P2Mo18O62]
with a desirable bactericidal activity against E. coli O157:H7 was prepared by hydrothermal
synthesis and characterized by infrared spectroscopy. The obtained infrared spectrum was
consistent with the properties of H6[P2Mo18O62] reported by Ding et al. [28], indicating
K6[P2Mo18O62] was successfully synthesized.

Although it is widely accepted that the mechanisms underlying the bactericidal activity
of polyoxometalates could be attributed to their interaction with proteins and enzymes [10],
it is worth mentioning that phosphatase activity has been identified in a range of polyox-
ometalates [12–16] in the last decade. Thus, their potential DNA-damaging effects should
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not be overlooked, which have been identified as the main cause of recA-mediated bacterial
apoptosis-like death [18].

Apoptosis is a programmed cell death which was believed to occur only in eukaryotes.
However, in recent decades, increasing evidence has demonstrated that events similar to
the characteristic hallmarks of apoptosis also take place in bacteria, suggesting that bacteria
also contain basic cell death programs, known as apoptosis-like death. Indeed, growing
evidence shows a range of death-inducing stress (e.g., antibacterial agent treatment, UV
irradiation, etc.) could trigger apoptosis-like processes in bacteria. For example, it has been
revealed that a complex of alpha-lactalbumin (ALA) and oleic acid isolated from human
milk with antimicrobial activity could induce S. pneumoniae to display phenotypic traits
of apoptosis. Here, the polyoxometalate [P2Mo18O62] was also found to induce the over-
expression of recA (a key protein controlling bacterial apoptosis-like death) and further
resulted a range of apoptosis-like bacterial death events such as DNA fragmentation and
phosphatidylserine exposure. Therefore, induction of bacterial apoptosis-like death might
be involved in its underlying bactericidal mechanisms.

Admittedly, here, the association between polyoxometalates and bacterial apoptosis-
like death was only evaluated in E. coli O157:H7 upon K6[P2Mo18O62] treatment. Indeed, a
comprehensive assessment of the pro-apoptotic properties of polyoxometalates with differ-
ent structures in various food-borne bacteria strains could provide more insight, especially
considering a range of polyoxometalates have been reported with better properties (e.g., a
higher killing activity against bacteria (lower MIC at micromolar level) [26], a lower toxicity
against mammalian cells (higher IC50) [29], etc.) than K6[P2Mo18O62]. In addition, the latest
evidence also suggests that bacterial apoptosis-like death plays a crucial role in biofilm
development [30]. Overall, investigating the roles of bacterial programmed cell death in
the bactericidal action of polyoxometalates could provide useful information for exploring
novel anti-bacterial agents in the future.

4. Materials and Methods
4.1. Chemicals, Reagents and Bacterial Strains

Sodium molybdate dihydrate (Na2MoO4·2H2O, 99%), phosphoric acid (H3PO4, 85%),
hydrochloric acid (HCl, SCR, 36%~38%), potassium bromide (KBr, 90%), and 3-(Trimethylsil
yl)propionic-2,2,3,3-d4 acid sodium salt ((CH3)3SiCD2CD2CO2Na, 98%) were purchased
from Macklin. Escherichia coli (E. coli) O157:H7 was purchased from China from the Indus-
trial Culture Collection.

4.2. Synthesis and Characterization of K6[P2Mo18O62]

The synthesis of polyoxometalate K6[P2Mo18O62] was performed according to our
previous publication [25]. For each batch of synthesis, 40 g of sodium molybdate dihydrate,
6 mL of phosphoric acid, 33 mL of hydrochloric acid, and 40 g of potassium bromide were
used. IR spectroscopy was applied to confirm the successful synthesis of K6[P2Mo18O62].

4.3. Antibacterial Activity Tests
4.3.1. Kirby–Bauer Disk Diffusion Test

The killing effect of polyoxometalate K6[P2Mo18O62] on E. coli O157:H7 was firstly
evaluated using the Kirby–Bauer disk diffusion method according to the method in the
literature [31]. In brief, E. coli in the logarithmic growth phase was evenly spread over LB
agar plates, and sensitivity test paper discs impregnated with different concentrations of
K6[P2Mo18O62] were pasted on the surface of the agar plates. Each test was repeated three
times with sterile water as a negative control and chloramphenicol as a positive control.
After incubation at 37 ◦C for 24 h, the inhibition diameter was recorded by a Vernier caliper
and an image was captured with a digital camera.
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4.3.2. Agar Contact Method

The killing effect of polyoxometalate K6[P2Mo18O62] on E. coli O157:H7 was also evalu-
ated using the agar contact method according to the literature with some modifications [32].

In brief, the LB agar plates (molten agar medium) were prepared with incorporation
of varying concentrations of the antimicrobial agents (chloramphenicol or K6[P2Mo18O62]).
Then, the bacteria were evenly spread on LB plates. After incubation at 37 ◦C for 24 h,
the inhibition rate was calculated by counting the decrease in the colony number when
compared to the negative control plate (without antimicrobial agents). Each test was
repeated three times.

4.4. Real-Time PCR

E. coli was cultured in liquid LB broth and then treated with K6[P2Mo18O62] for 3 h at
37 ◦C. The bacterial total RNA was isolated using an E.Z.N.A.® Bacterial RNA Kit (Omega
Bio-tek). The RNA concentration was determined using a NanoDrop™ 2000 Spectrophotome-
ter, before isolated RNA (1 µg) was reverse-transcribed to cDNA using a PrimeScript™ RT
Reagent Kit (Takara, Shiga, Japan).

The resultant cDNA was then used as a template for real-time PCR, which was
performed on a qTOWER3 (Analytik Jena AG, Jena, Germany) under the following settings:
an initial cycle at 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for
50 s with the following melt curve determination using 2× SYBR green PCR Master Mix.
The primer sets used in the current study were: recA-F: GCGAAATCGGCGACTCTC;
recA-R: ATCAGCAGC GTGTTGGAC; 16S-F: GCAAGCGGACCTCATAAA; and 16S-R:
ATTCACCGTGGCATTCTG.

4.5. Western Blot

The Western blot assay was carried out according to the method of Grinholc et al. [33].
In short, E. coli was treated according to the description above, and then the protein was
extracted using a Bacterial Protein Extraction Kit (Sangon Biotech, Shanghai, China). The
protein was quantified and separated by SDS-PAGE electrophoresis before the gel was
transferred to a PVDF membrane. The PVDF membrane was immediately blocked with 5%
skimmed milk at room temperature for 1 h and incubated with E. coli recA polyclonal anti-
body (Abnova, 1:3000) at 4 ◦C for 12 h. Subsequently, the PVDF membrane was incubated
with Goat anti-rabbit IgG H&L/HRP antibody (Bioss, 1:3000) at room temperature for 1 h.
Then, an enhanced ECL chemiluminescence substrate (Biosharp, Hefei, China) was used to
visualize the protein band. GAPDH protein was used as an internal reference protein.

4.6. Flow Cytometric Analysis
4.6.1. Flow Cytometric Analysis of the TUNEL Assay

E. coli was treated according to the description above, and then collected by centrifu-
gation at 5000× g for 10 min. The bacteria were washed with PBS and then fixed with 4%
paraformaldehyde for 30 min. The bacteria were collected by centrifugation again, washed
with PBS, resuspended in PBS solution with 0.3% Triton X-100, and incubated for 5 min.
The bacteria were then washed twice with PBS and labelled using a One Step TUNEL
Apoptosis Assay Kit (containing a mixture of terminal deoxynucleotidyl transferase and
FITC-conjugated dUTP) (Beyotime, Shanghai, China). The FITC fluorescence was detected
by a CytoFLEX flow cytometer.

4.6.2. Flow Cytometric Analysis of Annexin V-FITC and Propidium Iodide (PI) Staining

E. coli was treated according to the description above, and then collected by centrifu-
gation at 5000 g for 10 min. The bacteria were stained with Annexin V-FITC and propidium
iodide according to the protocol of the Annexin V-FITC Apoptosis Detection Kit (Beyotime,
Shanghai, China). The FL1 and FL2 signals were detected by a CytoFLEX flow cytometer.
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4.7. Flow Cytometric Analysis of Annexin V-FITC and Propidium Iodide (PI) Staining

The experiment was carried out as reported by Vanhaecht et al [12]. In brief, a
solution of a DNA simulant, 4-nitrophenyl phosphate disodium salt hexahydrate (NPP),
was incubated with or without K6[P2Mo18O62] solution (20 mM) at 37 ◦C. Then, the NMR
spectra of the mixed liquid were determined using an Avance Neo 600m full digital NMR
spectrometer (Bruker, Billerica, MA, USA).

4.8. Statistical Analysis

The results were expressed as mean ± standard deviations (SD) and analyzed using a
Student’s t-test or an analysis of variance (ANOVA) followed by Tukey’s test using Origin.
p-values of less than 0.05 were considered as statistically significant.

5. Conclusions

In conclusion, the current study demonstrated that [P2Mo18O62] could effectively
kill E. coli O157:H7 at millimolar levels. Moreover, the obtained results also showed that
K6[P2Mo18O62] treatment triggered characteristic apoptosis-like bacterial death events such
as recA overexpression, DNA fragmentation, and phosphatidylserine exposure. Taking
these results together, polyoxometalate K6[P2Mo18O62] possessed a desirable antibacterial
activity, and induction of bacterial apoptosis-like death might be involved its underlying
bactericidal mechanisms.
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