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Abstract: Patients with comorbidities of obesity and diabetes are recognized to be at high risk of
breast cancer development and face worse breast cancer outcomes. Though several reports showed
the reinforced link between obesity, diabetes, and prediabetes with breast cancer, the underlying
molecular mechanisms are still unknown. The present study aimed to investigate the underlying
molecular link between increased risks of breast cancer due to coincident diabetes or obesity using a
spontaneous obese rat model with impaired glucose tolerance (WNIN/GR-Ob rat). A single dose of
solubilized DMBA suspension (40 mg/kg body weight) was orally administered to the animals at
the age of 60 days to induce breast tumors. The tumor incidence, latency period, tumor frequency,
and tumor volume were measured. Histology, immunohistochemistry, and immunoblotting were
performed to evaluate the tumor morphology and expression levels of signal molecules. The develop-
ment of mammary tumors in GR-Ob rats was characterized by early onset and shorter latency periods
compared to control lean rats. While 62% of obese rats developed breast tumors, tumor development
in lean rats was only 21%. Overexpression of ER, PR, Ki67, and p53 markers was observed in tumor
tissues of obese rats in comparison with lean rats. The levels of the hallmarks of cell proliferation and
angiogenesis involved in IGF-1/PI3K/Akt/GSK3β/β-catenin signaling pathway molecules were
upregulated in obese rat breast tumors compared to lean rats. Furthermore, obesity with prediabetes
is associated with changes in IGF-1 signaling and acts on PI3K/Akt/GSK3β/β-catenin signaling,
which results in rapid cell proliferation and development of breast tumors in obese rats than the lean
rats. These results indicate that tumor onset and development were faster in spontaneous obese rat
models with impaired glucose tolerance than in their lean counterparts.

Keywords: breast cancer; obesity; metabolic syndrome; obese rat model; DMBA; insulin signaling;
PI3K/Akt

1. Introduction

Carcinoma of the breast is currently the leading cause of global cancer incidence with
an estimated 2.3 million new cases in 2020, and the fifth leading cause of cancer mortality.
Breast cancer is the most commonly diagnosed cancer among women accounting for 1 in
4 cancer cases and 1 in 6 cancer deaths [1]. Further, the incidence of breast cancer continues
to increase. In the year 2023, 0.3 million new cases of breast cancer in the USA alone were
reported [2]. Epidemiological investigations have established a strong association of breast
cancer with metabolic dysregulation that leads to diabetes and obesity [3–5].

Obesity, a chronic disease with increasing prevalence both in wealthy nations as well
as in low- and middle-income countries, has emerged as a global epidemic. Globally, the
incidence of obesity has tripled since 1975 due to sedentary lifestyles and unhealthy dietary
patterns. According to the WHO Report [6], over 1 billion people worldwide are obese
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which includes 650 million adults, 340 million adolescents, and 39 million children. It is
estimated that 1 in 5 women and 1 in 7 men will be living with obesity by 2030 [7]. Likewise,
there is a significant global prevalence of diabetes mellitus among 20–79-year-olds with
an estimated 10.5% (536.6 million) living with the disease in 2021 which is predicted to
rise to 12.2% (783 million) by 2045 [8]. Global estimates reveal that 1 in 10 people in the
world are diabetic, while 3 in 4 diabetics live in low- and middle-income countries [8].
Most importantly, over 541 million adults have impaired glucose tolerance (IGT) referred
to as prediabetes, which places them at high risk of type 2 diabetes (T2D). Furthermore, the
probability of prediabetics developing diabetes is 3–10 folds higher than in normoglycemic
individuals [9].

Accumulating evidence indicates a strong association between obesity, T2D, and
several types of cancer, including breast cancer [10–13]. High body mass index (BMI),
insulin resistance, increased levels of leptin and aromatase enzymes, and inflammation
of breast adipose tissue are believed to contribute to obesity-related post-menopausal
breast cancer [13]. In a recent study, high BMI, a widely used index of obesity, was an
independent factor associated with a high 21-gene recurrence score in estrogen receptor
(ER)–positive, ERBB2-negative young (≤45 years) breast cancer patients [14]. Several
studies have provided compelling evidence to demonstrate an increased risk of breast
cancer among diabetic women as well as higher mortality and diminished quality of
life [15–18]. Diabetes as well as prediabetes is associated with the risk of breast cancer,
especially in hormone-receptor-positive molecular subtypes [19].

Coincident obesity and T2D are recognized to increase the incidence of all molecular
subtypes of breast cancer and worse outcomes, besides significantly lowering the survival
rate [20–24]. Hyperglycemia, hyperinsulinemia, and insulin resistance, cardinal features of
obesity and T2D, are believed to promote breast carcinogenesis [24,25]. A bi-directional
relationship was observed between dysregulated glucose/insulin metabolisms with breast
cancer [26]. In this clinical study, investigators found a correlation between severities
of glucose/insulin metabolism with tumor and insulin resistance-related markers. The
PI3K/Akt signaling pathway that plays a central role in various physiological processes
and mediates the biological effects of insulin and insulin-like growth factor-1 (IGF-1) is
aberrantly activated in diabetes/IGT, obesity, and breast cancer suggesting a possible link
between these comorbidities [27].

The National Institute of Nutrition has developed a unique spontaneous mutant obese
rat model with impaired glucose tolerance (WNIN/GR-Ob) that can be transformed into
frank diabetes by dietary manipulations [28]. WNIN/GR-Ob rat displays a set of character-
istics and features associated with the other obese animal models and in addition, exhibits
impaired glucose tolerance (IGT), all of which make WNIN/GR-Ob rat a suitable model
of metabolic syndrome (MetS) [29]. The present study was undertaken to investigate the
combined effect of obesity and IGT on the development of chemically induced mammary
tumors in the WNIN/GR-Ob rat model. Hormone receptor status, as well as the expression
of Ki-67, p53, and key molecules in the IGF-1/PI3K/GSK3β/β-catenin signaling pathway,
were assessed by immunohistochemical and immunoblotting analyses to evaluate the
efficacy of 7,12-dimethylbenz[a]anthracene-(DMBA) induced mammary carcinogenesis in
WNIN/GR-Ob rats as a coincident model of IGT/obesity and breast tumor.

2. Results
2.1. Obesity Accelerates the Onset and Development of Breast Cancer

The development of breast tumors was examined physically by palpation. No mam-
mary tumors were detected in both control lean and control obese rats (Figure 1A,B). The
onset of breast tumors occurred earlier in WNIN/GR-Ob rats administered with DMBA
than in the lean rats with DMBA. The onset of tumor development in obese rats was
observed after the 9th week of DMBA administration, whereas it was observed after the
26th week in counter lean rats. After 32 weeks of administration of DMBA, 62% of obese
rats developed mammary tumors, while only 21% of the lean animals developed breast
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tumors (Figure 1C). The average latency period for tumor development was 119 days in
obese rats administered with DMBA compared to 211 days in the lean rats administered
with DMBA (Table 1). The average tumor latency was shorter in the obese rats by 92 days
when compared to lean rats. It was clear that the onset of the tumor and its development
was faster in obese rats than their counter lean rats with a higher percentage of tumor
incidences in obese rats than the lean rats. Mammary tissues of all experimental rats
were examined for histomorphological changes by H&E staining (Figure 2). Tumor mass
showed lobules with pleomorphic epithelial cells with distinct variations in cell size and
shape. Nuclear pleomorphism and increased mitotic figures were observed (Figure 2).
Histopathological examination of these tumors revealed that in the obese rats administered
with DMBA, 20% of the rats had adenocarcinoma and 40% had fibroadenoma, while all the
tumors in lean rats were adenocarcinomas.
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Figure 1. Induction and development of tumors in lean and obese rats upon DMBA oral administra-
tion (40 mg/kg body weight). (A) Graphical representation of tumor induction and development
in lean and obese rats with DMBA administration. (B) Actual images of lean and obese rats with
and without tumors. (C) Quantitative representation of the percentage of tumor-bearing animals
with duration.
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Table 1. Tumor percentage, latency period average tumor volume, and the total number of tumors in
obese and lean rats. Data are the mean of eight animals in each group.

Control DMBA-Treated

Lean Obese Lean Obese

Incidence percentage 0 0 21.42 62.5
Latency period 0 0 211 119
Average tumor volume (cm2) 0 0 5.5 3.06
Cumulative tumor volume (cm2) 0 0 22.22 42.84
Total Number of tumors 0 0 4 14
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Figure 2. Histology (H&E staining) of breast tissues of lean control (A), lean tumor (B), obese control
(C), and obese tumor (D). Tumor mass from both lean and obese rat breast tissues show lobules with
pleomorphic epithelial cells and distinct variations in cell size and shape. Scale: 100 µm.

2.2. Obesity Promotes Oncogenic Markers Expression in Rat Mammary Gland

In the process of diagnosing breast cancer, the prognostic markers ER, PR, Ki67, and
p53 proved to be the most effective. These proteins were screened for presence and relative
expression in normal mammary tissues and DMBA-induced breast tumors of both lean
and obese rats. Positive staining areas were observed for ER, PR, Ki67, and p53 in each
and every breast tumor segment, and this was true regardless of whether the rats were
lean or obese. The expression of these markers was significantly higher in rat mammary
tumor tissues compared to normal mammary tissue. The expression of these molecules
was also significantly higher in mammary tumor tissues of obese rats compared to lean
rats (Figure 3).
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2.3. Immunohistochemistry of Insulin Signaling Pathway and PI3K/GSK3β/β-Catenin Role in
Breast Cancer Development

IGF-1 and its cognate receptor are crucial for the normal growth and development of
the mammary gland. The overexpression of these molecules triggers signaling processes
that are key to cancer cell growth and survival. IGF-1-mediated activation of PI3K/GSK/-
catenin was investigated in order to study potential molecular processes that may contribute
to the effect of obesity and impaired glucose tolerance on breast cancer development and
progression. The concentrations of the IGF-1/PI3K/GSK3/β-catenin signaling pathway
components IGF-1, IGF-1R, pIRS-1, PI3 kinase, Akt, pAkt, GSK-3, pGSK-3, β-catenin,
and VEGF were evaluated. It was observed that the expression of signaling molecules
IGF-1, IGF-1R, pIRS-1, PI3 kinase, pAkt, pGSK-3, β-catenin, and VEGF was elevated in
the breast tumor tissues of obese rats compared to lean rats and that the expression of
these signaling molecules was elevated in tumor tissue compared to respective control
breast tissues (Figures 4 and 5). The levels of total GSK-3 and Akt expression were reduced
(Figures 4 and 5). Further observations by immunoblotting also confirm that mammary
tumor tissues of obese and lean rats had higher expression levels of PI3K, pAKT, pGSK-3β,
β-catenin and VEGF than normal mammary tissues (Figure 6). The increased expression of
IGF-1 and IGF-1R has stimulated the increased expression of downstream molecules, such
as pIRS-1, PI3 kinase, pGSK-3, β-catenin, and VEGF, leading to the proliferation, survival,
and metastasis of breast tissue.
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Figure 4. Expression of insulin and PI3K/Akt signaling pathway molecules by immunostaining.
Representative images of immunohistochemical staining of IGF-1, IGF-1R, pIRS, PI3K, Akt, and pAkt
in breast tissues of lean control, lean tumor, obese control, and obese tumor. Scale: 100 µm (IGF-1,
IGF-1R, PI3K and pAkt) and 200 µm (pIRS-1 and Akt).
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Figure 5. Expression of GSK/catenin signaling pathway molecules by immunostatining. Representa-
tive images of immunohistochemical staining of GSK-3β, p GSK-3β, β-catenin, and VEGF in breast
tissues of lean control, lean tumor, obese control, and obese tumor. Scale: 100 µm (GSK-3β, pGSK-3β
and β-catenin) and 200 µm (VEGF).
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Figure 6. Expression of PI3K/Akt/GSK-3β/β-catenin signaling molecules by immunoblotting.
Representative images of immunoblots along with respective quantitative bar graphs of pAkt, PI3K,
pGSK-3β (ser9), β-catenin, and VEGF are shown. Data represent the ratio of phospho-form with
total (pAkt and p GSK-3β) or ratio with β-tubulin (PI3K, β-catenin, and VEGF). Values are expressed
as mean ± SEM of three replicates and statistical significance among the groups is indicated by
* (p < 0.05) and ** (p < 0.01).

3. Discussion

Breast cancer, the most frequent cancer in women, is a major public health issue.
Several studies have provided strong evidence for a positive association between obesity,
diabetes/IGT, and increased risk of breast cancer development as well as recurrent metasta-
sis [30–36]. The combined effect of obesity and diabetes on breast cancer outcomes has been
extensively reported in humans [21–23,37], and undiagnosed IGT is known to affect the
survival of breast cancer patients [38]. Insulin/IGF signaling is reported to be dysregulated
in obesity, diabetes, and breast cancer underscoring intricate overlaps in the underlying
metabolic abnormalities and disease spectrum [39]. Hence, in this study, we investigated
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the combined effects of obesity and IGT on breast cancer risk and probable mechanisms
using a genetically obese rat model with IGT for chemically induced breast cancers. The
results of the present study reinforce the tenet that obesity and IGT have the propensity to
progress to breast tumorigenesis.

In the present investigation, spontaneous mammary tumors did not develop in the un-
treated obese rats until 40 weeks of age. However, DMBA administration (40 mg/kg body
weight) induced mammary tumors from the 9th week, which reached 62% at 40 weeks
of age. DMBA administration accelerated the neoplastic transformation of the mammary
gland in obese rats. On the contrary, the same amount of DMBA in lean littermates induced
mammary tumors only at the 26th week, and only 21% of animals had tumors at 40 weeks.
Obese rats developed mammary tumors faster after receiving the same dose of DMBA.
Studies examined several different kinds of signs of mammary tumors and measured how
much they were present in the breast tissue of both lean and obese rats that had been
given DMBA to cause breast tumors. Acceleration of mammary tumors has been reported
in mutant obese Yellow mice [40] and Zuccher rats [41,42] upon DMBA administration
compared to counter leans supporting the current observations. However, these studies
have not explained how breast cancer accelerates in these models. Previous investigations
found that diet-induced or mutant-induced obesity increased tumor susceptibility. We
found similar results with obese rats with decreased glucose tolerance in this investigation.
This is the first report demonstrating enhanced susceptibility of a preclinical rat model with
obesity and IGT to carcinogen-induced mammary tumor development. We believe that this
can be a valuable animal model to analyze underlying molecular mechanisms associated
with the development of comorbidities encompassing obesity, IGT, and mammary tumor
and a valuable tool to test putative preventive/therapeutic agents.

ER and PR are important biological markers that have a key role in cellular growth,
proliferation, and differentiation. Measurement of the levels of these hallmarks of breast
cancer is useful as a prognostic indicator and in determining the possibility of hormonal
resistance in breast cancer and treatment plan [43]. In the present study, obese animals had
higher levels of all these markers in their tumor tissues than lean rats. Obesity has been
suggested to increase steroid hormone receptor expression with consequent progression and
proliferation of breast cancer cells [44]. An association between obesity and PR positivity
was observed in ER-positive tumors [45]. The poorer survival of ER-positive breast cancer
patients could depend on the tumor PR status [46]. Obese rats with IGT had a greater
incidence of breast cancer than lean rats due to elevated ER and PR expression. IGT obesity
may increase the risk of hormone-responsive breast cancer.

Ki67 is the most commonly used proliferative marker in breast cancer. High Ki67
expression predicts poor prognosis [47]. Ki67 distinguishes breast cancer molecular sub-
groups. It was classified as luminal-A or luminal-B based on the Ki67 value [48]. DMBA-
induced breast cancers of obese rats had greater Ki67 expression with ER and PR positivity
than lean rat breast tumors. Breast cancer has been clinically verified using the Ki67 as
a proliferative marker [49]. The tumor suppressor gene TP53 encodes p53. In normal
cells, ubiquitylation and proteasome activity destroy the p53 protein, which has a short
half-life [50]. Mutations in the p53 gene stabilize a protein post-transcriptionally, caus-
ing cell accumulation [51], 18–25% of initial breast tumors have p53 mutations [52]. The
IHC-detected p53 expression in breast cancer was associated with an aggressive, metastatic
phenotype and worse outcomes [53,54]. Obese rats develop breast cancer faster than lean
rats due to DMBA’s aggressive tumor induction and increased p53 expression in breast
tumor tissues.

The major contributing factors of obesity and T2D/IGT that influence the risk of
cancer were increased levels of growth factors such as insulin, IGF-1, steroid and peptide
hormones, and inflammatory markers [55]. Aberrant activation of IGF-1 signaling has
been documented in breast cancer tissues [56–58]. IGF-1 binds to its cognate receptor to
induce phosphorylation of IRS-1 and triggers a cascade of events that eventually results in
breast cancer development, progression, and metastasis [59,60]. ER is known to enhance
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the expression and activation of IGF-1R [61,62]. Activation of IRS-1 has been reported in
ER-positive breast cancer [63]. Furthermore, the crosstalk between ER and IRS-1 increases
the risk of breast cancer [56]. Although some studies on obese rodent animal models
showed the association of obesity with increased breast cancer [64,65], the mechanism
underlying the association between obesity and breast cancer has not been delineated.
Here we demonstrate that administration of DMBA induced increased expression of IGF-1,
IGF-1R, pIRS, and ER in the tumor tissues of obese rats with subsequent activation of
downstream molecules in the signaling pathway that could promote tumor development.

Phosphorylation of IRS-1 stimulates PI3K/Akt signaling that plays a pivotal role in
cell proliferation, cell survival, migration, and differentiation [66]. Inappropriate activa-
tion of PI3K/Akt signaling has been reported in diverse malignancies including breast
cancer [67–69]. Our findings indicate that in obese breast tumors, PI3K stimulates PDK1,
which phosphorylates Akt kinase. Akt phosphorylates GSK3 at Ser9, inhibiting its activity
and stabilizing and accumulating β-catenin, which induces cell proliferation (Figure 7).
The aberrant expression of β-catenin was associated with adverse outcomes of breast can-
cer [70–72]. The lower expression of these signaling molecules in lean rat tumor tissues
may not stimulate this signaling cascade, resulting in delayed breast tumor induction and
low tumor incidence.
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Figure 7. Schematic representation of IGF-1/PI3K/Akt/GSK-3β/β-catenin signaling. In obese rat
breast tumor tissues, the higher-level expression of IGF-1 results in binding to IGF-1R. After binding
of IGF-1 ligand to its receptor IGF-1R, IRS-1 is phosphorylated to initiate the downstream substrates
PI3K. Subsequently, Akt is activated in response to PI3K signaling and becomes phosphorylated. The
activated Akt phosphorylates GSK-3β at ser9, leading to GSK-3β inhibition and ultimately resulting
in stabilization and accumulation of β-catenin which results in higher cell proliferation (B). In lean
rats’ lower levels of IGF-1 cannot trigger the downstream cascade and reduced levels of IGF-1R,
pIRS, pAkt, and GSK-3β (ser9) in lean tumor tissues subsequently, activated GSK-3β stimulates
degradation of β-catenin (A).

In conclusion, the WNIN/GR-Ob rats serve as an excellent model for studying the
influence of obesity and impaired glucose tolerance on the progression of chronic diseases,
particularly breast cancer. GR-Ob rats treated with DMBA exhibited a higher incidence of
mammary tumors at an earlier stage compared to lean rats. Obesity and IGT contribute to
enhanced IGF-1 response, which facilitates cancer development by inhibiting apoptosis and
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promoting cell proliferation. The activation of the PI3K/Akt/GSK-3 signaling pathway by
IGF-1, along with the nuclear accumulation of β-catenin, upregulates transcription factors
associated with cell proliferation. Consequently, tumor development and progression
were significantly elevated in obese rats, as evidenced by increased expression of VEGF
and Ki67. These findings emphasize the importance of understanding the relationship
between obesity and breast cancer in order to develop effective strategies for prevention
and treatment.

4. Materials and Methods
4.1. Animal Grouping and Housing

Obese mutant rats with characteristics of abnormal response to glucose load (IGT),
hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and hyperleptinaemia
were used in the study. Littermate-lean rats were used as controls. A total of 32 female rats
(16 lean rats and 16 obese rats) 60 days of age were used for the investigation. The animals
were housed individually in polycarbonate cages and autoclaved paddy husk was used
as bedding material. Twelve hours of light–dark photoperiodicity with standard lighting
conditions were maintained in the experimental rooms. The temperature, relative humidity,
and air changes were kept constant at 22 ± 2 ◦C and 55 ± 10%, 14–16, respectively. Both
the lean and obese rats were allowed 3 days of acclimatization and subsequently divided
into four groups of eight animals each based on their body weight. Lean rats that did not
receive any treatment served as lean control, whereas lean rats administered with DMBA
were used as the lean tumor group. Untreated obese rats served as obese control, while
obese rats that received DMBA administration are considered as the obese tumor group.
All the animals received sterile standard rodent chow (AIN93M) diet and water ad libitum.
The study was reviewed and approved by the Institutional Animal Ethical Committee
(P10F/IAEC/NIN/5/2018/GBP/WNIN GR-Ob). The experiment was conducted in the
animal facility, ICMR-National Institute of Nutrition, Hyderabad, India in compliance with
the guidelines prescribed by the Committee for the Purpose of Control and Supervision on
Experiments on Animals (CPCSEA).

4.2. DMBA Preparation and Administration

Mammary carcinogenesis was induced by the administration of DMBA (Sigma Aldrich,
St. Louis, MO, USA). DMBA was dissolved in refined sesame oil (20 mg/mL) and stirred
slowly using a magnetic stirrer until complete dissolution. A single dose of solubilized
DMBA suspension (40 mg/kg body weight) was orally administered to the animals at
the age of 60 days. The control rats received an equal amount of sesame oil. Based on a
pilot study, since a single dose of DMBA at 40 mg/kg body weight was found to induce
mammary tumors in both lean and obese rats without causing any mortality, this dose was
administered for the experimental study.

4.3. Measurements of Tumor Growth Parameters

To determine the incidence and latency of tumor formation, rats were palpated at the
thoracic and abdominal-inguinal mammary glands once a week starting from one week
after the administration of DMBA. Tumor parameters such as the percentage of tumor-
bearing animals per group (tumor incidence), the period from carcinogen administration to
the appearance of the first tumor (latency period), the average tumor number per group
(tumor frequency), and tumor size were measured. Tumor size was measured by recording
the length and width of each tumor using a digital caliper in each group. The volume (V)
of tumors was calculated according to the formula: V = π × S1

2 × S2/12, where S1 and S2
are tumor diameters, assuming S1 < S2 [73].

4.4. Gross Necropsy

After completion of the feeding schedule (32 weeks after administration of DMBA),
rats were fasted overnight and euthanized by CO2 inhalation. A gross necropsy of the rats
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was carried out to examine abnormalities. The mammary region of both tumor-bearing
and control rats was shaved and the hair removed. The mammary tumors and control
mammary tissues were excised and used for analysis. The in situ examination was carried
out, after opening the viscera, and the major organs such as the brain, heart, lungs, liver,
spleen, kidneys, and pancreas were separated from the viscera and cleaned from fat, blotted
on a filter paper, and weighed (Sartorius analytical balance with a 0.1 gm sensitivity). The
breast tumor tissues and normal breast tissues along with the other organs were fixed in
a solution containing 10% formalin in sodium phosphate buffer at pH 7.4. These tissues
were processed for histopathological and immunohistochemical analyses.

4.5. Hematoxylin and Eosin Staining

For analysis of tumor morphology, a smaller representative portion was taken from
the freshly collected samples after animal necroscopy. For the histopathological study, H&E
staining was performed for both breast tumors and normal breast tissues. Paraffin tissue
sections of 4 µm thickness were made using a microtome (Jinhua Yidi Medical Appliance
Co., Ltd., Jinhua City, China), followed by processing with an automatic tissue processor
(Thermo Fisher Scientific Inc, Waltham, MA, USA). Hematoxylin and Eosin staining was
performed using an autostainer (Sakura Tissue-Tek DRS 2000 automated slide stainer).
The H&E stained slides were investigated for the detection of breast cancer metastatic
stages, and images were acquired at 10× and 40× magnification with a Leica microscope.
(Leica Microsystems, Wetzlar, Germany).

4.6. Immunohistochemistry

The formalin-fixed breast tissues were embedded in paraffin, and transverse sections
(4 µm) were mounted in gelatin-coated slides. Immunohistochemical analysis was per-
formed using a Vectastain Elite ABC kit (Vector Laboratories, Newark, CA, USA) that
exploits the Avidin-Biotin Complex (ABC) method. Deparaffinized sections were pro-
cessed in 10 mM sodium citrate buffer (pH 6.0) and heated for 5 min (antigen retrieval
step). After blocking with 3% horse serum provided with the kit, the primary antibody
(1:500 dilutions) was added to the sections and incubated overnight at 4 ◦C. In the present
study, the following primary antibodies were utilized: estrogen receptor (ER, PA1-310B),
progesterone receptor (PR, MA1-410), Ki-67 (MA5-14520) and vascular endothelial growth
factor (VEGF, PA5-85171) from Invitrogen (Waltham, MA, USA), p53 (2524S), insulin-
like growth factor 1 (IGF-1, 73034S), insulin-like growth factor 1receptor (IGF-1R, 3027S),
phospho insulin receptor substrate 1 (pIRS-1, 3066S), phosphoinositide 3 kinase (PI3K,
4292S), protein kinase B (Akt, 9272S), p-Akt Ser473 (9271S), glycogen synthase kinase-3 beta
(GSK-3β, 12456S), pGSK-3β Ser9 (9336S), and β-catenin (8814S) from Cell Signaling Tech-
nology (Danvers, MA, USA). After primary antibody incubation, the sections were washed
three times for 5 min in 20 mM phosphate buffer saline (PBS pH 7.4). After washing with
PBS, slides were incubated for 1 h at room temperature with a biotinylated secondary
antibody (1:500 dilutions) solution and DAB was used as the chromogen. The negative
controls were run simultaneously with the omission of the primary antibody. After staining,
the sections were counterstained with hematoxylin. The sections were then dehydrated
through ethanol and xylene before coverslips with Paramount. The DAB staining was visu-
alized in the bright field using a Leica microscope (Leica microsystems, Wetzlar, Germany)
at 10× and 40× magnifications.

4.7. Immunoblotting

The total proteins were extracted from breast tissues by homogenizing with 100 mM
Tris-HCl buffer, pH 7.4 on ice with mortar and pestle, and the homogenate was centrifuged
at 12,000× g for 30 min. The protein concentrations were estimated by the method of
Lowry et al. [74] Equal amounts of protein from tissue extracts were separated using 12%
SDS-PAGE and transferred to 0.2 µm nitrocellulose blotting membrane (GE Healthcare
Life Science, Chicago, IL, USA) at 80 V for 1.5 h using a Bio-Rad transblot apparatus.
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To determine the uniformity of loading and transfer, membranes were stained with Pon-
ceau S. The membrane was blocked for 2 h in phosphate buffer saline containing 20 mM
sodium phosphate buffer, pH 7.4, and 5% nonfat dry milk powder at room temperature.
Immunoblotting was performed by incubating the blot at 4 ◦C overnight with primary an-
tibodies of IGF-1, phospho-IRS-1, PI3K, Akt, phospho-Akt, GSK-3β, phospho-GSK-3β, and
β-catenin (1:1000 dilution). After overnight primary antibody incubation, the membrane
was washed 3 times with PBS and then the blot was incubated for 2 h with HRP-tagged anti-
rabbit/anti-mouse respective secondary antibody with a dilution of 1:10,000. Equal loading
of the protein samples was assessed by probing the membrane with a 1:1000 dilution of
the β-tubulin loading control antibody. The immunoblots were developed with enhanced
chemiluminescence detection reagents (Bio-Rad Laboratories, Hercules, CA, USA). The
images were analyzed and quantified using Image J software for Windows [75].

4.8. Statistical Analysis

All statistical analysis was performed using GraphPad Prism software 8.0 version. The
data are expressed as mean ± standard mean error (SEM). p values were determined using
one-way ANOVA followed by Tukey’s multiple comparison tests.
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