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Section S1. Vitamin D-VDR signaling pathways and regulation of downstream gene 

expression. Vitamin D exerts its biological effects by interacting with the VDR receptor 

through two distinct pathways: the genomic pathway and the nongenomic pathway. These 

pathways play a critical role in regulating downstream gene expression. 

In the genomic pathway, vitamin D enters the cell by crossing the plasma membrane and 

subsequently binds to the VDR receptor in the cytoplasm. This binding event triggers activation 

of the VDR receptor. After activation, the VDR receptor forms a heterodimer with the retinoic 

acid receptor RXR. The next step is the translocation of the vitamin D-VDR-RXR complex 

from the cytoplasm to the nucleus. In the nucleus, this complex recognizes and binds to specific 

DNA sequences, called cis-DNA vitamin D response elements (VDREs), located in the gene 

promoters of the target genes. Binding of the vitamin D-VDR-RXR complex to VDREs serves 

as a regulatory signal that initiates transcription of downstream genes (1). 

Binding of the heterodimer VDR-RXR to DNA has the potential to affect histone modifications, 

thereby affecting the accessibility of transcription factors to chromatin (2). High-affinity 

binding of vitamin D to the ligand-binding domain (LBD) region of VDR results in a 

conformational change in helix 12 of the C-terminus of VDR. This conformational change 

allows VDR to interact with various cofactors (3,4). Cyclin-dependent kinase inhibitor 1 (p21), 

which has a critical function in controlling cell cycle progression and growth, contains VDREs 

that allow it to be directly targeted by the D-VDR complex via the genomic pathway (5). 

Activation of gene expression of enzymes involved in DNA demethylation is an important 

mechanism contributing to the regulation of transcription and chromatin function. Two 

enzymes affected by the genomic vitamin D-VDR pathway are Jumonji domain containing 1A 

(JMJD1A) and lysine-specific demethylase 2 (LSD2). These enzymes play a critical role in 

catalyzing DNA demethylation, which involves the removal of methyl groups from DNA 
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molecules. By actively demethylating DNA, JMJD1A and LSD2 contribute to the maintenance 

of appropriate gene expression patterns and modulation of chromatin structure (6,7). 

The nongenomic signaling pathway of vitamin D involves the activation of various signaling 

molecules and the rapid production of secondary messengers. Key players in this signaling 

pathway include phosphatidylinositol kinase-3 (PI3K), Akt kinase (also known as protein 

kinase B or PKB), and phospholipase C (PLC). In addition, the rapid production of secondary 

messengers such as cyclic AMP (cAMP) and calcium ions (Ca2+) contributes to the signaling 

cascade. Once activated, these signaling molecules set in motion a series of events involving 

the activation of protein kinases. Examples of such protein kinases include mitogen-activated 

protein kinase (MAPK), protein kinase A (PKA), protein kinase C (PKC), proto-oncogenic 

tyrosine protein kinase (SRC), and Ca2+-calmodulin kinase II (CAMKII). Nongenomic effects 

of vitamin D include the opening of Ca2+ channels leading to an increase in intracellular calcium 

levels and triggering downstream effects on cellular processes (8–10). 

Protein kinases target transcription factors such as transcription factor specificity protein 1 

(Sp1), Sp3, and RXR and activate transcription by binding to VDRE elements in gene 

promoters. Vitamin D also exerts nongenomic effects by regulating the binding of VDR to 

proteins such as STAT1 and IKKβ, which allows cross-regulation of gene expression (11). The 

vitamin D-VDR pathway exerts indirect control over gene expression by affecting other 

signaling molecules, pathways, and transcription factors. One example is the suppression of the 

glutathione peroxidase (Gpx) gene through vitamin D-VDR-mediated inhibition of the 

transcription factor NF-κB, which binds to the promoter region of Gpx and controls its 

expression (12,13). Another example is the regulation of glucose-6-phosphate dehydrogenase 

(G6PD) expression mediated by phosphatidylinositol 3 kinase (PI3K) (14). Vitamin D signaling 

activates PI3K, which in turn affects the expression of G6PD. The precise mechanism by which 

PI3K affects G6PD expression may involve activation of downstream signaling cascades (15). 

Expression of the plasma membrane calcium pump (PMCA) gene, which is responsible for 

regulating intracellular Ca2+ concentration, is strongly regulated by signaling pathways 

triggered by secondary messengers. In particular, protein kinase C, cyclic AMP (cAMP), and 

Ca2+ ions play critical roles in this regulatory process. The cAMP signaling pathway affects the 

activity of transcription factors or other regulatory proteins involved in PMCA gene expression. 

Ca2+ levels can activate various signaling cascades, including those involving transcription 

factors or other regulatory elements that directly control the PMCA gene (16). 

Regulation of p27 expression, a key player in cell cycle regulation, is indirectly mediated by 

activation of transcription factors by VDR and vitamin D. Specifically, VDR has been found to 

enhance the expression of the transcription factor Sp1, which subsequently leads to the 

induction of p27 expression (17). In addition, vitamin D indirectly affects the expression of p27 

through activation of Akt kinase. This in turn leads to the activation of the transcription factor 

AFX (also known as forkhead box protein O4, FOXO4), which plays a critical role in the 

induction of p27 expression (18,19). The nuclear factor erythroid 2–related factor 2 (NRF2) 

gene plays a critical role in cellular responses to oxidative stress, and its transcription is 

regulated by several transcription factors. In particular, the nongenomic vitamin D-VDR 

pathway modulates the activity of key transcription factors involved in the activation of NRF2 

gene expression, such as NF-κB and Sp1 (11,17,20,21).  

The D-VDR pathway plays a central role in regulating several genes associated with essential 

biological processes that contribute to hepatocyte function, chronic liver injury, and fibrosis. In 

particular, genes such as Gpx, PMCA, JMJD1A, LSD2, and p27 are involved in these processes 

(see discussion and references 54-57, 58-60, 62, 64-67 in the main text). 
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Figure S3 

 

Figures S1-S3. Flow cytometric analysis for determination of CD3+VDR+ and CD14+VDR+ 

cell levels in human peripheral blood. S1: Representative analysis for a healthy control subject. 

S2: Representative analysis for an HCV+ patient. S3: Representative analysis for a cirrhotic 

patient. Top panel: PBMCs were gated for lymphocytes based on forward and side light scatter 

and analyzed for CD3 expression. Positive cells were further analyzed for VDR expression. 

Lower panel: PBMCs were gated for monocytes based on forward and side light scatter and 

analyzed for CD14 expression. Positive cells were further analyzed for VDR expression. 

Numbers in the dot plots indicate the percentage of gated cells expressing the relevant marker. 

MFI, median fluorescence intensity. 

 

Section S4. Structure preparation and molecular dynamics (MD) simulations 

Structure preparation. The crystallographic structure with PDB code 1ie9 (22)] was used to 

prepare the parameters for the vitamin D binding domain of the VDR. USCF Chimera (v1.11.2) 

(23) was used to clear the crystallographic water and remove any ligands present in the PDB 

files. 

Design of vitamin D. The molecule of vitamin D was designed using USCF Chimera (23). 

Geometry optimization was performed using GAMESS software (24, 25). Density functional 

theory (DFT) (26, 27) with Hartree- Fock (HF) approximation was used for optimization. The 

atomic basis set B3LYP/6-311G was used, and the maximum convergence criterion was set to 

0.0001 (27, 28). The optimized conformation of vitamin D was used to derive the atomic 

charges using the RESP method (29). The derivation of the charges of RESP was performed on 

the server RED (https://upjv.q4md-forcefieldtools.org/REDServer-Development/) (30, 31) 

using pyRED (30). The optimized structure of vitamin D was manually positioned in the 

binding site of the VDR based on the structural information of the complex crystal structure 

1ie9. 

MD simulations. All MD simulations were performed using AMBER14 software (32). The 

parameters for the different systems (wt and fokI variants in both the apo-form and in complex) 

https://upjv.q4md-forcefieldtools.org/REDServer-Development/
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were created using the tLEap program. The ff14SB (33) force field was used to assign partial 

atomic charges to amino acid residues, and all histidine residues were protonated at –Nδ. The 

GAFF (34) force field was used to construct the parameters for the vitamin D molecule derived 

from the RED server for the MD simulation. A truncated octahedron box (cutoff distance of 10 

Å) and periodic boundary conditions using the TIP3PBOX water model (35) were used to 

solvate the systems. 

Minimization was performed in two steps for all systems. For the first 25000 iterations of the 

process, a position constraint of 100 kcal mol–1 Å–2 was imposed on the solute. This was 

followed by 150000 minimization steps without position constraint. The system was heated to 

300 K over a period of 100 ps under constant volume conditions (NVT ensemble) using 

Langevin dynamic temperature scaling (36) and a collision frequency of 5 ps–1. Heating was 

followed by pressure equilibration for 100 ps. During both heating and pressure equilibration, 

a position constraint of 10 kcal mol–1 Å–2 was imposed on the solute. Finally, an unconstrained 

equilibration step was performed for 200 ps. The MD production simulation was performed 

under constant pressure and temperature conditions (NPT ensemble) for 150 ns. All bonds 

involving hydrogen atoms were constrained to an equilibrium distance using the SHAKE 

algorithm (37), while long-range electrostatic interactions were calculated using the Particle 

Mesh Ewald (PME) function (38).  

Trajectory and cluster analysis: All analyses (e.g., rmsd, cluster calculations, and hydrogen 

bond interactions) were performed using the cpptraj module (39) of AMBER14. Geometric 

criteria for hydrogen bond (Hb) definitions were used in the analysis of interactions. The cutoff 

distance for donor−acceptor was 3.5 Å, and the angle cutoff for the donor−hydrogen−acceptor 

angle was 120°. Clustering analysis was performed using the hierarchical approach (40) during 

the grouping process in the different MD trajectories, using Rmsd as the distance metric (cutoff 

2.5 Å). 

Molecular graphics and analyses were performed using the UCSF Chimera package. Chimera 

was developed by the Resource for Biocomputing, Visualization, and Informatics at the 

University of California, San Francisco (supported by NIGMS P41-GM103311). 

 

Table S1. Hydrogen bond (Hb) interactions in % presence during MD simulation between 

vitamin D and its receptor 
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