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Abstract: Pulmonary adenocarcinomas (pADCs) with an ALK rearrangement are a rare cancer
subtype, necessitating comprehensive molecular investigations to unravel their heterogeneity and
improve therapeutic strategies. In this pilot study, we employed spatial transcriptomic (NanoString
GeoMx) and proteomic profiling to investigate seven treatment-naïve pADCs with an ALK rearrange-
ment. On each FFPE tumor slide, 12 smaller and 2–6 larger histopathologically annotated regions
were selected for transcriptomic and proteomic analysis, respectively. The correlation between pro-
teomics and transcriptomics was modest (average Pearson’s r = 0.43 at the gene level). Intertumoral
heterogeneity was more pronounced than intratumoral heterogeneity, and normal adjacent tissue
exhibited distinct molecular characteristics. We identified potential markers and dysregulated path-
ways associated with tumors, with a varying extent of immune infiltration, as well as with mucin and
stroma content. Notably, some markers appeared to be specific to the ALK-driven subset of pADCs.
Our data showed that within tumors, elements of the extracellular matrix, including FN1, exhibited
substantial variability. Additionally, we mapped the co-localization patterns of tumor microenviron-
ment elements. This study represents the first spatially resolved profiling of ALK-driven pADCs at
both the gene and protein expression levels. Our findings may contribute to a better understanding
of this cancer type prior to treatment with ALK inhibitors.

Keywords: lung adenocarcinoma; pulmonary adenocarcinoma; ALK rearrangement; multi-omics;
digital spatial profiling; proteomics; transcriptomics

1. Introduction

Lung cancer is the leading cause of cancer mortality worldwide, responsible for
2.21 million out of nearly 10 million cancer deaths globally in 2020 [1]. The most common
histological type of non-small cell lung cancer (NSCLC) is pulmonary adenocarcinoma
(pADC), with the morphological subtypes including acinar, lepidic, micropapillary, papil-
lary and solid patterns [2]. The acinar (or tubular) subtype is characterized by the formation
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of glandular structures with luminal spaces. The papillary subtype is distinguished by the
formation of papillary structures, which are finger-like projections lined by tumor cells.
The solid subtype, on the other hand, is composed of sheets or nests of tumor cells without
any glandular or papillary structures. Importantly, these histopathological characteristics
also reflect on the tumor behavior, such as therapy resistance, and can impact patient
outcomes [3]. In addition to morphological subgroups, pADCs can further be classified into
several molecular subtypes with distinct characteristics that reflect on clinicopathological
data as well [4–8]. The proposed classification systems are crucial in understanding the
heterogeneity of lung cancer and guiding personalized treatment approaches.

While most pADCs lack an identifiable driver oncogene, 3–5% of all pADCs within the
Caucasian population contain anaplastic lymphoma kinase (ALK) gene rearrangements [9].
After ALK fuses with its partner gene (most frequently EML4), an increase in ALK activity
occurs, which activates downstream signaling cascades such as the MAPK, PI3K–AKT or
JAK–STAT pathways [10]. Since the discovery of ALK-rearranged lung cancers in 2007 [11],
several ALK inhibitors have been developed and approved for clinical use, such as the first-
generation ALK inhibitor Crizotinib (Xalkori), or the second-generation inhibitor Alectinib
(Alecensa) [12]. These drugs significantly improve progression-free survival and overall
response rates in ALK-positive pADCs; however, responses to ALK inhibitors are often not
durable, and tumors acquire resistance to treatment [12]. Importantly, intratumoral hetero-
geneity has been associated with poor patient outcomes and therapeutic resistance in many
different cancers [13]. The presence of tumor cells with heterogeneous phenotypes within
the same tumor is a complex phenomenon that stems from various genetic, epigenetic and
environmental inputs, and is further complicated by the complex interactions between
cancer cells and the tumor microenvironment (TME) [13]. The TME consists of immune
cells (B cells, natural killer cells, T cells and tumor-associated macrophages), as well as
adipocytes, endothelial cells, fibroblasts and mesenchymal stem cells [14]. In addition, the
TME itself is a heterogeneous entity where the crosstalk among its various elements also
influences cancer-related processes [14].

So far, large-scale omics studies in pADC, containing only a handful of ALK-driven
tumors, have utilized bulk expression profiling [4–8], failing to capture intratumoral molec-
ular changes that carry important implications for therapy and patient survival. Spatially
resolved transcriptomic or proteomic studies of NSCLCs have been already utilized for
biomarker discovery, in particular contributing to potential improvements in immunother-
apy approaches [15–18]. Recently, we reported, for the first time, the proteomic and
glycosaminoglycan characterization of seven pADCs with ALK rearrangement in a spatially
resolved manner [19]. As demonstrated by a multitude of lung cancer studies [5–8], the
integration of multiple omic datasets, such as genomics, transcriptomics or proteomics, can
capture the complexity of the disease more effectively. Herein, we extended our previous
proteomic results [19] with NanoString GeoMx gene expression profiling, enabling a spatial
multi-omic characterization of ALK-driven pADCs prior to treatment with ALK inhibitors.
First, we mapped protein and gene expression patterns and dysregulated pathways charac-
teristic to tumor regions with distinct histopathological features. Next, we investigated the
intratumoral heterogeneity detectable at both molecular levels, demonstrating the key role
of extracellular matrix elements in this phenomenon. By studying inter- and intratumoral
differences, this pilot study aims to gain further insight into the molecular landscape of
this cancer type.

2. Results
2.1. Spatially Resolved Characterization of the Proteome and Transcriptome in
ALK-Rearranged pADCs

To characterize inter- and intratumoral heterogeneity in ALK-rearranged pADCs, we
assembled a cohort of seven formalin-fixed, paraffin-embedded (FFPE), treatment-naive
primary tumors with confirmed ALK rearrangements (Table 1). The cohort consisted of
three female and four male patients. The mean age at surgery was 57.0 years (standard
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deviation, SD = 14.1). Five and two patients received Crizotinib (Xalkori) and Alectinib
(Alecensa) after sample collection, respectively. The mean overall survival was 6.5 years
(SD = 3.6). By the censoring date (January/February 2022), two patients died of lung cancer,
both of whom received Crizotinib.

Table 1. Summary of clinical and histopathological data for each patient. ALKi, ALK inhibitor;
avr., average; nr., number; NA, not available; NAT, normal adjacent tissue; OS, overall survival;
pROI, proteomic region of interest; TIL, tumor infiltrating lymphocyte; tROI, transcriptomic region of
interest; yrs, years.

Information Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Clinical data

Sex male male male female female female male
Age at

diagnosis
(yrs)

53.6 43.7 68.9 32.8 68.5 64.2 66.7

Stage on
presentation NA NA NA 3 NA 4 3

Administered
ALKi Crizotinib Crizotinib Crizotinib Crizotinib Crizotinib Alectinib Alectinib

Alive no yes no yes yes yes yes
OS (yrs) 2.2 6.6 4.1 13.8 7.3 4.9 6.7

Proteomic
data

Nr. of pROIs 2 2 6 3 4 3 3
Morphology

of pROIs
(nr.)

tubular (2) NAT (1),
solid (1)

NAT (3),
papillary (2),
tubular (1)

papillary (3) solid (4) solid (3) NAT (1),
solid (2)

Avr. TIL (%) 25.00 25.00 15.00 23.33 8.75 28.33 30.00
Avr. mucin

score 3.00 2.00 2.00 3.00 0.00 0.00 0.50

Avr. stroma
score 3.00 2.00 1.67 2.33 1.75 1.00 3.00

Transcriptomic
data

Nr. of tROIs 12 12 12 12 12 12 12

Morphology
of tROIs (nr.)

NAT (1),
tubular (11)

NAT (2),
solid (10)

NAT (2),
papillary (8),
tubular (2)

NAT (1),
papillary (11) solid (12) solid (12) NAT (2),

solid (10)

Avr. immune
score 2.25 2.00 2.00 1.42 2.25 1.60 1.17

2.1.1. Histopathological Description of the Sample Cohort

For each FFPE tumor, smaller regions of interest (ROIs) were selected for transcriptome
and proteome analysis (tROIs and pROIs, respectively). The smaller tROIs were chosen
based on their morphologic setting and varying levels of lymphocytic infiltration, while the
pROIs covered larger areas of the whole tumor slide. Histologically normal adjacent lung
tissue near the tumor (normal adjacent tissue, NAT) was also obtained for both proteomic
and transcriptomic analysis. In total, we analyzed 84 tROIs and 23 pROIs (Figure S1,
Table S1). An overview of the study can be seen in Figure 1a.

Each ROI was annotated with histopathological data (see Table 1 for the overview and
Table S1 and Figure S1 for the detailed ROI characteristics, also including the relationship
between pROIs and tROIs). For the pROIs, the percentage of tumor-infiltrating lymphocytes
(TILs), the mucin and stroma score (ranging between 0 and 3) were recorded, whereas for
the tROIs, the immune score (ranging between 0 and 3) was noted (Section 4). Additionally,
the morphology of both the pROIs and tROIs from tumor regions was described (tubular,
papillary or solid).

2.1.2. Overview of the Collected Proteomic and Transcriptomic Data

Through label-free proteomics and NanoString GeoMx Digital Spatial Profiling (Section 4,
Table S2), we identified and quantified a total of 2318 proteins and 1811 genes. While the
transcriptomic data contained no missing values, the proteomic data showed a substantial
amount of missing protein intensities, with only 49.8% of the protein groups (1154 out of
2318) being quantified across at least 80% of the analyzed pROIs. For statistical analyses,
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the missing values for the 1154 protein groups were imputed with low numbers, assuming
that the missingness was due to low abundance [20]. The number of imputed values
was the highest for the NAT regions (Figure S2a). A visual inspection of the principal
component analysis (PCA) biplot based on the Z-score-normalized gene counts (Figure S2b)
and label-free quantification (LFQ) values (Figure S2c) showed no outlier ROIs in either
dataset. Importantly, the imputation did not alter the overall clustering of the proteomic
samples (Figure S2c).
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Figure 1. Spatial characterization of the proteome and transcriptome in seven ALK-rearranged
pADCs. (a) Schematic overview of the study. (b) Histogram of gene-wise Pearson correlation
coefficients calculated between the pROIs and tROIs (left) and the enriched pathways (one-tailed
Fisher’s exact test, p < 0.15) for the significantly positively correlated genes (right). (c) Histogram of
Pearson correlation coefficients calculated between the pROIs and tROIs at the singscore level (left),
and the top significantly correlating gene sets (right).

The filtered protein list from the pROIs and the gene list from the tROIs shared merely
162 common genes. To circumvent this low overlap at the gene level, both datasets were
additionally transformed into single-sample gene set scores (singscores) (Section 4). This
increased the overlap to 431 common singscores. The correlation between the two omics
data was assessed by averaging the gene count data and tROI singscores across the larger
measured pROIs. The commonly identified genes (n = 162) were generally positively
correlated between the two datasets (Figure 1b, Table S3), with a mean Pearson correlation
coefficient (r) of 0.43 (SD = 0.33). To be exact, 69 of the 162 genes showed a strong positive
Pearson correlation (adj. p < 0.05) and only 1 gene (60S acidic ribosomal protein P0, RPLP0)
showed a significant negative Pearson correlation (adj. p < 0.05). The top positively cor-
relating genes were glucose-6-phosphate 1-dehydrogenase (G6PD), 14-3-3 protein sigma
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(SFN), fructose-bisphosphate aldolase A (ALDOA), thymidine phosphorylase (TYMP) and
carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) (Figure S2d). The
functional analysis of the 69 significantly positively correlating genes revealed the overrep-
resentation (one-tailed Fisher’s exact test, p < 0.15) of the following gene sets: mTORC1
signaling, glycolysis and gluconeogenesis, G2/M checkpoint, transcriptional regulation by
TP53, tyrosine and phenylalanine metabolism, and allograft rejection (Figure 1b, Table S3).

On the other hand, the correlation between tROI and pROI singscores (n = 431) were
less prominent (Figure 1c, Table S3), with a mean Pearson’s r of 0.24 (SD = 0.34). In total, 63
and 6 gene sets showed a significant positive and negative correlation, respectively, from
which the top 5 significant processes in both directions are indicated in Figure 1c. Among
the top positively correlating processes, we identified metabolism (e.g., glycolysis, RNA
metabolism) or immune-system-related processes (such as allograft rejection, adaptive
immune system), as well as cell cycle and DNA replication, signal transduction and gene
regulation (mTORC1 signaling, MYC targets, p53 pathway, NCAM signaling) (Figure 1c,
Table S3). The negatively correlating processes, with adj. p < 0.05, included oncogenic
MAPK signaling, MAP2K and MAPK activation, and developmental biology (Figure 1c,
Table S3).

2.2. Multi-Omic Signatures of Histopathological Features

To uncover the main ROI characteristics affecting the protein and gene expression pro-
files, we performed the unsupervised consensus clustering (partitioning around medoids
algorithm, Pearson distance) of the pROIs and tROIs (Figure 2a,b). This exploratory analysis
revealed that both sample sets were optimally grouped into six clusters and clustering was
largely driven by interpatient differences. In addition, NAT regions were well separated
based on their proteomic profile, which was less prominent at the gene expression level.

Next, we were interested in how various histopathological features, including tissue
type, immune infiltration, mucin and stroma score were reflected on the proteome and
transcriptome. Therefore, differential expression analyses, followed by pre-ranked gene
set enrichment analysis (GSEA) were conducted. In parallel, we also investigated which
protein/gene-level finding could be supported by the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) [6] pADC data.

2.2.1. Molecular Characteristics Associated with pADCs Compared to Normal
Adjacent Tissues

The pROIs showed prominent differences between tumors and NATs, with 310 pro-
teins upregulated and 136 proteins downregulated in tumors (Table S4). At the tROI
level, 47 upregulated and 38 downregulated genes in tumors were detected (Table S4). In
both datasets, ALDOA, glutathione peroxidase 1 (GPX1), macrophage migration inhibitory
factor (MIF), pyruvate kinase PKM (PKM), endoplasmin (HSP90B1), mucin-1 (MUC1),
tenascin (TNC), SFN, CEACAM6 and 40S ribosomal protein S6 (RPS6) were significantly
upregulated in tumors (Figure S3a), whereas the collagen alpha-6(VI) chain (COL6A6),
alpha-2-macroglobulin (A2M) and plasma protease C1 inhibitor (SERPING1) were signifi-
cantly downregulated in tumors (Figure S3b). The genes complement C3 (C3), C4b-binding
protein alpha chain (C4BPA), clusterin (CLU), collagen alpha-1(I) chain (COL1A1) and
laminin subunit beta-3 (LAMB3) showed, however, opposite tendencies in the two omic
data (downregulation in tumors at the pROI level, but upregulation in tumors at the
tROI level) (Figure S3c). The CPTAC dataset largely supported our findings for these
proteins and genes, either at the proteome or transcriptome level, or both (Figure S3a–c).
Interestingly, some differential expressions (GPX1, C4BPA) were only confirmed in the
ALK-rearranged subset of the CPTAC dataset.
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Figure 2. Investigation of histopathological features at the multi-omic level. (a) Consensus clustering
outputs for pROIs based on the normalized protein LFQ values (left) and heatmap showing the pROI
clusters (right). (b) Consensus clustering outputs for tROIs based on the normalized gene counts
(left) and heatmap showing the tROI clusters (right). (c) Normalized enrichment scores (NES) from
pre-ranked GSEA for tumor vs. NAT comparisons in pROI (x-axis) and tROI (y-axis) data. (d) NES
from pre-ranked GSEA for immune infiltration high vs. low comparison in pROI (x-axis) and tROI
(y-axis) data. (e) NES from pre-ranked GSEA for the mucin high vs. low (x-axis) and stroma high vs.
low (y-axis) comparisons in the pROI data.
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Pathway-level analysis of tumor-specific signatures, supported by both pROI and
tROI data, showed that tumors display an increased expression of members of glycol-
ysis, unfolded protein response, mTORC1 signaling and infection pathways (Figure 2c,
Table S4). Moreover, proteomics indicated that proteins involved in pathways such as
translation, RNA and glucose and amino acid metabolisms were upregulated in tumors
compared to NATs. On the other hand, numerous processes related to the extracellular
matrix (ECM) organization, apical junction, receptor tyrosine kinase (RTK) signaling such
as MAPK signaling and Toll-like receptors were significantly downregulated in tumor
pROIs. The complement and coagulation cascade displayed opposite tendencies at the two
molecular layers (upregulated according to the tROI data, but downregulated according to
the pROI data).

2.2.2. Multi-Omic Signatures Related to Varying Levels of Immune Infiltration

In terms of immune-infiltration-associated differences, only the protein sulfotrans-
ferase 1A1 (SULT1A1) was significantly upregulated with increasing TIL amounts in the
pROIs, while tROI data showed the upregulation of HLA class I histocompatibility antigen,
B alpha chain (HLA-B) and the downregulation of prostaglandin G/H synthase 2 (PTGS2),
with an increasing immune score (Figure S4a, Table S4). By correlating these genes’ expres-
sion values in the CPTAC data with the ESTIMATE (estimation of stromal and immune cells
in malignant tumor tissues using expression data [21]) immune scores, our observations
could be confirmed, either at the protein or transcript level or at both levels (Figure S4a).
Interestingly, SULT1A1 only showed upregulation in the ALK-rearranged pADCs at the
transcript level.

The observation that proteomic regions did not significantly differ based on TIL
amounts was underscored by the pre-ranked GSEA results (no gene set below adj. p < 0.05),
whereas tROIs showed prominent differences based on the immune score, and most
pathways upregulated with a higher immune score were involved in the immune system,
such as antigen processing and presentation, signaling by interleukins, or neutrophil
degranulation (Figure 2d, Table S4).

2.2.3. Proteomic Changes Associated with Mucin and Stroma Scores

The mucin- and stroma-score-related differences were only assessed for pROIs. The
proteins prothrombin (F2), lumican (LUM), prolargin (PRELP) and N-acetylmuramoyl-L-
alanine amidase (PGLYRP2) were significantly upregulated, while 13 proteins such as lacto-
transferrin (LTF), proteins S100-A8 and -A9 (S100A8, S100A9), histone H1.5 (HIST1H1B),
DNA-dependent protein kinase catalytic subunit (PRKDC), or splicing factor U2AF 65 kDa
subunit (U2AF2) were significantly downregulated with increasing mucin score (Figure S4b).
On the other hand, the protein biglycan (BGN) was significantly upregulated, and voltage-
dependent, anion-selective channel protein 2 (VDAC2), long-chain-fatty-acid–CoA ligase 1
(ACSL1) and hemoglobin subunit delta (HBD) were significantly downregulated with
increasing stroma scores (Figure S4c).

To investigate the alignment with CPTAC data, we compared the above-mentioned
protein and gene expressions in tumors with invasive mucinous morphology (n = 3) to
tumors with other morphologies (acinar, intestinal, lepidic, micropapillary, papillary, sarco-
matoid, solid). Only a subset of the differentially expressed proteins could be confirmed by
the CPTAC data, namely HIST1H1B, PRKDC, U2AF2 and PRELP (Figure S4b). In addition,
for proteins showing differential expression with stroma score in our data, we checked the
correlation between ESTIMATE stromal scores and the protein or gene expression in the
CPTAC data. Only the trend for VDAC2 and ACSL1 could not be validated (Figure S4c).
Of note, the proteins showing an increasing and decreasing expression tendency with
mucin and stroma scores were not overlapping (Table S4); however, the pre-ranked GSEA
results showed similar patterns for both mucin and stroma-high ROIs, from which the most
prominent was the concordant upregulation of ECM organization, epithelial–mesenchymal
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transition (EMT)-related proteins, and in parallel, the downregulation of members of RNA
metabolism or signaling by ROBO receptors (Figure 2e).

2.3. Assessment of Intratumoral Heterogeneity in Seven ALK-Rearranged pADC Cases

Our previous analyses were focused on the multi-omics characterization of histologi-
cally defined ROI groups. However, intratumoral heterogeneity might not be solely defined
by visible histopathological observations. To uncover the drivers of molecular homogeneity
and heterogeneity, the overall expression variability for each protein and gene within each
case was assessed through their coefficient of variation (CV) (Section 4).

2.3.1. Homogeneously Expressed Proteins and Genes within the Tumors and
Associated Pathways

Proteins with a stable expression (i.e., had a low CV) within minimum four tumors
(Section 4) (n = 49) showed marginally significant (one-sided Fisher’s exact test, adj. p < 0.25)
enrichment for signaling processes such as PI3K–AKT–mTOR signaling, EPH–ephrin sig-
naling, oncogenic MAPK signaling and signaling by Rho GTPases (Figure 3a, Table S5).
The tROI data showed that genes with a stable expression within minimum four tumors
(n = 276) were involved in pathways such as chromatin organization, DNA repair, transcrip-
tion, post-translational protein modification (e.g., ubiquitination, SUMOylation), innate
immune system (MyD88-independent TLR4 cascade, DDX58/IFIH1-mediated induction
of interferon-alpha/beta, Fc epsilon receptor signaling), death receptor signaling, just to
highlight the top significant gene sets (Table S5). Notably, oncogenic MAPK signaling and
PI3K–AKT–mTOR signaling were also overrepresented (one-sided Fisher’s exact test, adj.
p = 0.011 and 0.115) at the tROI level (Figure 3a).

2.3.2. Key Players in Intratumoral Heterogeneity

To study the molecular heterogeneity of the tumors, the proteins and genes that
appeared as highly variable for at least four cases (n = 101 and 232, respectively) were
investigated (Table S5). Notably, three heat shock proteins, namely heat shock protein
family A (Hsp70) member 1A (HSPA1A), heat shock protein family B (Small) member 1
(HSPB1) and heat shock protein 90 beta family member 1 (HSP90B1) displayed high stability
at the protein expression level, but high variability at the gene expression level in at least
four tumors (Table S5).

The pathway enrichment analysis for the variable proteins and genes (Figure 3a,
Table S5) revealed that multiple members of the ECM organization and remodeling, ECM–
cell interactions, EMT, oxygen transport and specific pathways “MET activates PTK2
signaling”, “diseases associated with glycosaminoglycan metabolism”, “molecules associ-
ated with elastic fibers” showed high variability across the pROIs. For tROIs, members of
EMT, complement and coagulation cascades, ECM organization, signaling pathways (TNFa
signaling via NFkB, KRAS signaling, MET-activated PTK2 signaling), cell motility and
migration, receptor interactions, angiogenesis and hypoxia, glycolysis and inflammatory
responses appeared to be highly variable.

Among all six tumors that contained multiple tumor pROIs, we identified five proteins
with a high CV (i.e., were among the proteins with the top 20% highest CV in all tumors),
namely spectrin alpha chain, erythrocytic 1 (SPTA1), apolipoprotein E (APOE), band 3 anion
transport protein (SLC4A1), fibronectin (FN1) and periostin (POSTN) (Figure S5a). In line
with the pathway analysis results, all genes except for SPTA1 were members of at least one
of the significant pathways (Table S5).

We detected 24 genes across the tumor tROIs that showed a high CV (i.e., were among
the genes with the top 20% highest CV in seven out of seven cases), such as multiple
collagens (COL1A1, COL1A2, COL3A1, COL5A1, COL5A2), S100A8, S100A9, FN1, or Early
growth response protein 1 (EGR1) (Figure S5b). The majority of genes were also members
of the significantly enriched pathways (Table S5).
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and heat shock protein 90 beta family member 1 (HSP90B1) displayed high stability at the 

Figure 3. Observed intratumoral homogeneity and heterogeneity in ALK-rearranged pADCs. (a) En-
riched gene sets for the proteins and genes showing low or high variability within a minimum of
four tumors, supported by both pROI and tROI data. (b) Tumor ROIs showing a heterogeneous
expression of FN1 at both protein and gene level. The FN1 categories were defined by clustering ROIs
based on FN1 expression (Euclidean distance and complete linkage). (c) FN1 expression vs. EMT
singscore across the pROIs (left) and tROIs (right). (d) The FN1 protein/gene expression association
with survival both in this study’s cohort and in the TCGA/CPTAC pADC cohorts. The hazard
ratios with 95% confidence intervals (CIs) and Cox regression p-values are indicated on the right.
(e) Unsupervised clustering of the estimated abundance of TME elements in the tROIs.

Of note, FN1 showed high variability at both molecular layers, which can be demon-
strated via sketch images of all seven tumors (Figure 3b). FN1 levels were mildly correlated
across the tumor pROIs and tROIs (Pearson’s r = 0.3548, p = 0.1485, adj. p = 0.2292, Table S3).
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In addition, FN1 was associated with 12 out of the 15 gene sets enriched at both molecular
levels for variably expressed proteins and genes (Table S5), including EMT, which was
among the top significant pathways in both pROI and tROI data. The EMT singscores
strongly correlated with the FN1 amounts across both pROIs and tROIs (Figure 3c). Hypoth-
esizing that heterogeneous FN1 expression could have implications for patient outcome, we
examined its relationship to the overall survival across multiple pADC cohorts, including
the cohort in the present study, as well as the pADC cohort of The Cancer Genome Atlas
(TCGA) and CPTAC. We found that FN1 could not be significantly associated with survival
in a univariate setting in neither cohorts, albeit the hazard ratios were generally higher
than 1, particularly for the ALK-rearranged subset of pADCs (Figure 3d).

2.3.3. Co-Localization Patterns of Tumor Microenvironment Elements

To further investigate the intratumoral heterogeneity, we performed the estimation of
immune and stroma cell abundance across tROIs to reflect on their TME composition. The
unsupervised k-means clustering on the TME elements showed interesting co-localization
patterns (Figure 3e). In particular, macrophages, non-classical monocytes, endothelial cells,
natural killer cells and fibroblasts formed one cluster (row cluster 1). Row cluster 2, rather
similar to row cluster 1, contained naive and memory CD4+ T cells, naive and memory
B cells, memory CD8+ T cells, regulatory T cells, plasma and plasmacytoid dendritic
cells (DCs). Interestingly, the abundance of naive CD8+ T cells, mast cells, myeloid DCs,
neutrophil cells and classical monocytes (row cluster 3) were not correlated with other TME
elements, only weakly correlated with each other (Figure S5c).

3. Discussion

Spatial molecular profiling of tumors continues to enhance our understanding of
cancer by adding to the crucial spatial context, hence the increasing popularity of such
studies, also in lung cancer [15–18]. Harnessing the proteome for spatial characterization
is particularly valuable alongside DNA and RNA sequencing, as ultimately, proteins
provide the structural and functional framework for cellular life and thus offer a closer
representation of the phenotype. In this preliminary study, we explored the main molecular
and pathway-level drivers of inter- and intratumoral heterogeneity across seven pADCs
with confirmed ALK rearrangements, collected prior to treatment with ALK inhibitors
(either Crizotinib or Alectinib).

On the FFPE slides, larger proteomic and smaller transcriptomic regions (23 pROIs and
84 tROIs), both from tumor and NAT regions, were selected for molecular profiling. Regions
were characterized according to histopathological observations, including morphology
and the extent of immune infiltration, as well as mucin and stroma scores. Morphologi-
cal patterns (lepidic, papillary, acinar, cribriform, micropapillary and solid) and further
histological features are often combined within a pADC and carry prognostic value [3,22].
In our study, only one tumor (Case 3) displayed multiple morphologies, and a multitude
of regions (10 out of 23 pROIs and 44 out of 84 tROIs) showed solid patterns. Tumors
with a solid morphology were generally characterized by a low mucin score compared to
papillary and tubular morphologies.

Through molecular profiling, we achieved the identification of 2318 protein groups
and 1811 genes, with 1154 protein groups and 1811 genes confidently quantified across the
entire sample set. The correlation between proteomics and transcriptomics can vary from
study to study, some reporting a moderate correlation [6–8], while some noted low correla-
tions [5,23–25]. We observed a lower correlation between the proteome and transcriptome,
both at the gene and pathway levels (median Pearson’s r = 0.43 and 0.24, respectively). The
majority of the pathways that we found to be positively correlated between the proteome
and transcriptome (amino acid metabolism, glycolysis, p53 pathway, adaptive immune
system, DNA replication) were supported by the results from Chen et al. [5]. The signifi-
cant negative correlation for the ribosomal protein RPLP0 was corroborated by previous
proteogenomic findings, in which ribosomal functions were found to be lowly correlated
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(an observation made not just in lung adenocarcinoma [8,25], but also in other cancer
types [26]). The poor correlation for some other RNA and protein abundances, such
as for members of developmental biology and the MAPK signaling pathway might be
due to post-transcriptional or post-translational regulation that our study was not able
to capture [27–29]. Regardless, the overall positive correlation between protein and gene
expression suggests that the two molecular layers rather support than contradict each other.

Clustering the pROIs and tROIs in an unsupervised manner revealed that intertu-
moral heterogeneity is stronger than intratumoral heterogeneity, with the exception of
NAT regions, which exhibited distinct molecular expression profiles. Indeed, a comparison
between tumor and NAT regions resulted in a multitude of differentially expressed proteins
and genes, some of which were identified at both the proteome and transcriptome level
and were also supported by the CPTAC pADC dataset [6], such as the upregulation of
ALDOA and MUC1, or the downregulation of A2M and COL6A6. Opposite tendencies
(downregulation in tumors vs. NATs at pROI level, but upregulation in tumors vs. NATs at
the tROI level) were observed for three proteins involved in the complement cascade (C3,
C4BPA and CLU), and two proteins secreted to the ECM (COL1A1 and LAMB3). Interest-
ingly, we identified a marker, GPX1, which showed higher gene and protein expressions
in ALK-rearranged pADCs compared to NATs, but not in ALK-negative pADCs. On the
contrary, both studies by Wen et al. [30] and Tian et al. [31] identified GPX1 as being
downregulated in lung tumors compared to NATs. A previous study suggests that GPX1
may induce cisplatin-based chemoresistance in NSCLC [32], but the exact role of this gene
in lung cancer is still unclear [33]. Investigation of pathway-level differences of tumors
compared to NATs mirrored known cancer hallmarks, including the impairment of glycoly-
sis [34], unfolded protein response [35], translation [36], ECM organization [37] pathways
or signaling by RTKs [38]. Importantly, except for the first two processes, these hallmarks
were only detected at the protein level, highlighting the relevance of proteomics in spatial
profiling studies.

The role of tumor-infiltrating immune cells and the potential routes for successful
immunotherapies in NSCLC is actively studied [15–18], which is also of interest in the
ALK-rearranged subset of lung cancers because immune-based therapies showed limited
efficacy in this cancer type [39]. When examining immune-infiltration-related patterns in
our data, we identified the protein SULT1A1 being upregulated with increasing TIL %,
which was confirmed only by the ALK-rearranged subset of pADCs in the CPTAC data [6],
indicating that this protein might behave distinctly in the presence of the ALK oncogene.
Both the upregulation of HLA-B and downregulation of PTGS2 with an increasing immune
score in the tROIs was supported by CPTAC data [6]. PTGS2 (also known as COX2)
has been associated with an immunosuppressive TME [40]. In addition, members of
multiple immune-system-related processes, such as antigen processing and presentation,
or neutrophil degranulation, were identified to be upregulated with an increasing immune
score in the tROI data, thus confirming the agreement between the molecular signatures
and the pathological evaluation. On the other hand, pROIs did not display significant
pathway-level differences between regions with a varying TIL %, potentially caused by
more heterogeneous immune infiltration patterns within large pROIs.

Excessive intra- and/or extra-cytoplasmic mucin can often be observed in EML4–ALK-
positive pADCs [41–43]. Mucins potentially have an important, but still unelucidated
role in lung cancer development [44]. It is widely known that another tissue component,
the stroma, affects tumor behavior as well [45]. Our previous publication on the hereby
presented proteomic data also highlighted that proteomic and glycosaminoglycan profiles
of individual tumor regions are highly dependent on mucin content and less on the stromal
content [19]. The GSEA analysis in our study confirmed that pROIs with higher mucin
and stroma scores showed a prominent upregulation of ECM components, which again
demonstrated the alignment between molecular-level findings and histologically visible
ROI phenotypes. Contrasting our differential expression results with findings reported in
Balbisi et al. [19] and the CPTAC data revealed that the protein products of PRELP and
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BGN may be promising markers for increasing the mucin and stroma content in pADC
tissues, respectively.

Lung cancers with confirmed ALK rearrangements often contain regions that are
ALK-negative according to a previous study [46]. This intratumoral heterogeneity of ALK
rearrangements can potentially lead to additional molecular- and pathway-level variations,
which can be captured with spatial omics analyses. By investigating which proteins and
genes showed the lowest and highest variability within the tumors, we uncovered the path-
ways with the presumably most stable and heterogeneous activity. At both the pROI and
tROI level, members of the oncogenic MAPK and PI3K–AKT–mTOR signaling exhibited
low variability. Interestingly, the aberrant ALK activity in this cancer type leads to the acti-
vation of both MAPK–ERK and PI3K–AKT–mTOR pathways [47]. Focusing on pathways
that contribute to intratumoral heterogeneity, both molecular layers hinted toward EMT
and ECM organization-associated pathways. EMT is a crucial process in cancer, as it results
in polarized epithelial cells changing their morphology to a mesenchymal phenotype,
through which cells gain migratory and invasive properties [48]. This phenotypic change
can mediate ALK inhibitor resistance [49]. ECM remodeling plays an essential role in the
EMT process and promotes cancer metastasis [50]. Interestingly, three heat shock proteins
displayed high stability at the protein expression level, but high variability at the gene
expression level. Heat shock proteins are produced when cells are exposed to stressful
conditions, thus the disagreement between the proteome and transcriptome might again
be due to post-transcriptional regulation, which enables cells to adapt to stress in a timely
manner [51].

Of note, FN1, a well-known EMT marker, was identified as highly variably expressed
both at the protein and gene level. Moreover, our data weakly indicates that an overall
higher FN1 expression in an ALK-driven tumor tissue could be correlated with worse sur-
vival. Previous studies have shown that FN1 has both tumor-suppressive and -promoting
characteristics [52]. In line with this, it has been investigated for its role in pADC prognosis.
Some noted that a lower FN1 expression indicates a more favorable outcome [53,54], while
some studies showed the downregulation of FN1 with pADC progression [55,56] or no
relationship with survival at all [57,58]. The controversies in the literature may arise from
the heterogeneous expression of FN1 within the tumor tissue, as we also demonstrated in
this study. Furthermore, there is a lack of investigations regarding the specific role of FN1
in ALK-rearranged pADCs.

Lastly, investigating the co-localization patterns of TME elements across tROIs pro-
vided additional insights regarding intratumoral heterogeneity of ALK-driven pADCs.
Our findings indicated that the presence of naive CD8+ T cells, mast cells, myeloid DCs,
neutrophils and classical monocytes was largely independent of the presence of other TME
elements. The clinical significance of immune–cancer interaction patterns is highly specific
to different cancer types and subtypes [59,60]. Hence, focused studies on the clinical rele-
vance of TME localization patterns, as well as on the ALK-driven tumor cell interactions
with their microenvironment are needed to further enhance our precision-medicine-based
therapeutic strategies.

We acknowledge that our pilot study has limitations. Due to the small number of
tumors involved with heterogeneous clinical data, our findings may not be generalizable to
all ALK-driven pADCs. Furthermore, it is challenging to evaluate the individual molecular
characteristics of histopathological features, as these features can be correlated with each
other. Some of the observed intratumoral molecular variability might be biased from
stochastic factors at the cellular level, or from phenotypical differences such as the varying
levels of tumor purity. In addition, both the spatial gene expression profiling and the
shotgun proteomic approach carries identification and quantification biases; the former
focuses on quantifying known cancer-related genes, whereas the latter is prone to detect
the proteins with a more abundant expression. Besides the unavoidable technical and bio-
logical limitations often causing milder correlations in the measured protein and transcript
abundances [27–29], the size-differences in the studied pROIs and tROIs may also affect the
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aggreement between proteome- and transcriptome-level results. Large pROIs are inherent
to the technique used in this study (on-tissue digestion with repeated pipetting). Although
an investigation of smaller pROIs would be possible after laser capture microdissection,
that workflow includes in-solution digestion which lacks the required efficiency and re-
producibility [61]. Therefore, we opted to carry out the current methodology with larger
pROIs, despite the size differences between pROIs and tROIs. In summary, a larger cohort
of ALK-rearranged pADCs will be required to validate the findings presented in this paper.
To strengthen the reliability of our results, however, we validated multiple findings by
investigating the data of larger, previously published pADC cohorts (TCGA, CPTAC).

4. Materials and Methods
4.1. Patients and Collected Histopathological Data

The primary tumors were collected at the National Korányi Institute of Pulmonology
(NKIP), Hungary, with ethical approval (2521-0/2010-1018EKU, 510/2013, 52614-4-213EKU)
by the Medical Research Council of Hungary. ALK positivity was determined via IHC
and FISH at the central pathology department. The patients were all treated with ALK
inhibitors after sample collection at NKIP.

The slides were stained with hematoxylin and eosin (HE), and scanned with a Panno-
ramic 250b Slide scanner (3DHistech Ltd., Budapest, Hungary). Morphological areas were
annotated by a board-certified pathologist with thoracic pathology experience. Immune cell
(lymphocytic) infiltration was only considered intratumorally, within the area of tumor cell
nests, and was assessed as a percentage semi-quantitatively in the QuPATH v0.3.0 software
environment [62], and later grouped into an immune score ranging from 0 to 3. Mucin
and stroma scores were given as a ratio of surface area on the tissue slide: 0: none, score 1:
1–33%, score 2: 34–66%, score 3: <67% mucin or stromal content in the given area (ROI).

4.2. NanoString GeoMx Profiling

Slides were baked at 65 ◦C for 1.5 h to be deparaffinized and then rehydrated. Antigen
retrieval was performed for 20 min at 100 ◦C, and was digested with 1 µg/mL proteinase-K
using a Leica BOND-RX (Leica Biosystems, Deer Park, Illinois, USA). After overnight
hybridization with cancer transcriptome atlas (CTA) probes, the samples were washed
to remove off-target probes and stained with morphology markers for two hours. The
morphology markers were PanCK (488 channel, 1:500, Novus Biologicals, Centennial,
CO, USA), SYTO83 (532 channel, 1:25, Invitrogen, Waltham, MA, USA), CD45 (1:100,
594 channel, Cell Signaling Technologies, Danvers, MA, USA), and CD3 (647 channel,
1:100, Origene, Rockville, MD, USA). RNA ID and UMI containing oligonucleotide tags
were cleaved with UV light and collected by the GeoMx from each of the ROIs that
were placed on the patient samples. Digital slides with this fluorescent staining were
utilized for identification of various morphological areas and lymphocytic infiltration by
the same pathologist as above. After collecting the oligo tags, NGS library preparation was
performed according to Illumina protocols using Dual-Index primers to specify which ROI
the tags belong to. After library purification with AMPure beads (Indianapolis, IN, USA),
sequencing was performed on an Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA).
Fastq files were processed using the Nanostring DnD pipeline into digital count (.dcc) files,
which were uploaded back into the GeoMx for data analysis.

4.3. Mass-Spectrometry-Based Proteomic Measurements
4.3.1. On-Tissue Proteolytic Digestion and Solid-Phase Extraction Purification

The on-tissue proteolytic digestion and solid-phase extraction purification was per-
formed on formalin-fixed, paraffin-embedded (FFPE) lung tissues. The dewaxing and
rehydration step was performed by sequential washing with xylene, ethanol, ethanol-water
mixtures and 10 mM ammonium bicarbonate (ABC) solution. Then, antigen retrieval was
performed by heated hydrolysis (85 ◦C) for 30 min in sodium citrate buffer (pH = 6.0). Tis-
sues were washed with water and dried before digestion. Tryptic digestion on the surface of
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the selected tissue areas (Figure S1, Table S1) relied on a previously described protocol [61],
and all incubations were performed in a humidified box placed into an environmental
shaker. First, the proteins in the selected tissue areas were denatured and alkylated by
adding 2 µL of a solution containing 0.1% RapiGest SF (Waters, Milford, MA, USA) + 5 mM
DTT + 10% glycerol (incubation: 55 ◦C, 20 min). Next, 2 µL solution containing 25 mM
ammonium bicarbonate + 10 mM IAA + 10% glycerol was added (incubation: in the dark,
RT, 20 min). Trypsin/Lys-C mix (Promega, Madison, WI, USA) enzyme solution (2 µL)
(50 ng/µL trypsin/Lys-C mix in 50 mM ABC, and 10% glycerol) was added in two cycles,
followed by three cycles of 2 µL trypsin (Promega, Madison, WI, USA) enzyme solution
(200 ng/µL trypsin in 50 mM ABC, and 10% glycerol). Each cycle consisted of 40 min
of incubation at 37 ◦C. The resulting peptides were manually extracted from the tissue
surface by repeated pipetting using 5 × 2 µL 10% acetic acid solution. The samples were
dried in a SpeedVac and purified using a Pierce C18 spin tip (Thermo Fisher Scientific,
Waltham, MA, USA) solid-phase extraction (SPE) method optimized in-house [63]. The
resin and buffers for loading and washing were cooled to 4 ◦C. Sample loading was per-
formed in 50 µL water (0.1% heptafluorobutyric acid, HFBA) and the washing step was
carried out with the same buffer 2 × 100 µL). Purified peptides were eluted from the
tips by adding 2 × 50 µL 70:30 v/v acetonitrile:water (0.1% trifluoroacetic acid, TFA) and
1 × 50 µL 70:30 v/v acetonitrile:water (0.1% formic acid, FA). The samples were dried down
using SpeedVac.

4.3.2. nanoUHPLC–MS/MS Measurements

For the nanoUHPLC–MS/MS measurements, the samples were reconstituted in 8 µL
injection solvent (98:2 v/v water:acetonitrile, 0.1% FA), of which 6 µL was injected into
the nanoHPLC-MS system. Dionex Ultimate 3000 RSLC nanoUHPLC coupled to a Bruker
Maxis II Q-TOF (Bruker Daltonik GmbH, Bremen, Germany) via CaptiveSpray nanoBooster
ionization source was used for the analysis. Trapping was performed on an Acclaim
PepMap100 C18 (5 µm, 100 µm × 20mm) trap column with water containing 0.1% TFA
and 0.01% HFBA. Peptides were separated on an Acquity M-Class BEH130 C18 analyt-
ical column (1.7 µm, 75 µm × 250 mm Waters, Milford, MA, USA) using gradient elu-
tion (isocratic hold at 4% for 11 min, then elevating B solvent content to 25% in 75 min,
and to 40% in 15 min). Solvent A consisted of water +0.1% formic acid, Solvent B was
acetonitrile +0.1% formic acid. Spectra were collected using a fixed cycle time of 2.5 s and
the following scan speeds: MS spectra at 3 Hz, while CID was performed on multiply
charged precursors at 16 Hz for abundant ones and at 4 Hz for low abundance ones.
Internal calibration was performed by infusing sodium formate and data were automati-
cally recalibrated using the Compass Data Analysis software 4.3 (Bruker Daltonik GmbH,
Bremen, Germany).

Proteins were then identified with Byonic v4.2.10 (Swissprot human database, date of
retrieval: 1 November 2020), and a focused database was created for subsequent label-free
quantitation (LFQ) and intensity-based absolute quantification (iBAQ) with MaxQuant
v1.6.17. The most important parameter settings are summarized in Table S2. Further
data analysis steps were applied to the resulting MaxQuant output, as described in the
following paragraphs.

4.4. Data Analysis

Data analysis steps were performed with R v4.2.0, unless specified otherwise. The
custom R scripts used for data processing and analysis are available at https://github.com/
bszeitz/ALK_rearranged_pADCs_multiomics (accessed on 9 June 2023).

4.4.1. Quality Control and Data Normalization

The raw NanoString data (.dcc files) were processed in the GeoMX Analysis Software
v2.2.0.122. Initial QC was performed to primarily check sequencing parameters and tem-
plate control counts. No transcriptomic ROIs (tROIs) were discarded. As the NanoString
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CTA panel has 5 probes per gene target, Biological Probe QC was run to identify any
outlying probes before individual probe data were collapsed to gene-level counts. There
were 9 individual outlying gene probes identified (1 each from 9 separate genes), and
1 outlying negative probe identified and removed at this stage. The resulting gene level
count data are the raw dataset, and the negative probes were used to calculate the limits of
quantitation for each tROI: [Geometric Mean of negative probes × (Geometric Standard
Deviation of negative probes)2]. The raw gene counts were then normalized using third
quartile (Q3) normalization before additional data analysis was performed. A normaliza-
tion factor was generated for each tROI as shown: [Geometric Mean of all ROI Q3 values in
the dataset/individual ROI Q3 value]. In total, 1811 genes were quantified across all tROIs.
The normalized gene counts were loaded into R v4.2.0 for further processing.

For the proteomic data, normalization steps were conducted within R v4.2.0. The
protein expression matrices were derived from two different quantification methods, iBAQ
and LFQ, used for within-sample and between-sample comparisons, respectively. Both
the iBAQ and LFQ values were log2-transformed and normalized by centering the values
around the global median. A total of 2318 protein groups were quantified in at least one pro-
teomic ROI (pROI). After retaining only 1154 and 1751 protein groups that were quantified
across minimum 80% of the pROIs with the LFQ and iBAQ method, respectively, missing
values were imputed with low-intensity values using the “impute.MinProb” function from
the imputeLCMD R package v2.0 [20].

4.4.2. Retrieval of External Proteomic and Transcriptomic Datasets

The Lung Adenocarcinoma dataset of TCGA (Firehose Legacy) was downloaded
from the cBioPortal website (https://www.cbioportal.org/datasets, accessed on 8 June
2023) [64,65] on 12 April 2023. Two samples (“TCGA-50-5066-02” and “TCGA-50-5946-02”)
were removed to have only one sample per patient. This resulted in a total of 522 samples
in the mRNA data and 365 in the Reverse Phase Protein Array (RPPA) data. Samples with
ALK translocation were considered for some of the analyses, for which the clinical table
“data_bcr_clinical_data_patient.txt” was filtered for “ALK_TRANSLOCATION_STATUS”
column = “YES”, resulting in 34 samples in the mRNA expression table, and 22 samples in
the RPPA expression table.

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteomic and transcrip-
tomic dataset of pADCs was downloaded from the respective publication [6], accessing
Tables S2 and S3. Information on the overall survival for these samples was extracted from
Soltis et al., Table S2 [8]. From the 211 samples (110 tumors and 101 NATs), the samples
with ALK translocation were selected by filtering for “ALK.fusion” column = “1”, resulting
in 7 samples.

4.4.3. Calculation of Single-Sample Gene Set Enrichment Scores

The normalized gene counts from NanoString and the iBAQ protein intensities (after
imputation of missing values) were transformed into singscores using the “simpleScore”
function from the singScore R package v1.16.0 [66]. The gene sets were obtained from the
Molecular Signatures Database (MSigDB) v.7.5.1 [67]. The Hallmark [68], KEGG [69] and
Reactome [70] gene sets were used in the analysis and treated as directional (i.e., gene sets
that contain only upregulated genes). Gene sets where the number of overlapping genes
with our data did not reach 10 were deleted. All parameters in the “simpleScore” function
were left at default.

4.4.4. Abundance Estimation of Tumor Microenvironment Elements

The NanoString SpatialDecon algorithm [71] was used to estimate the abundance of
the immune and stromal cell types based on gene counts in individual tROIs. For this,
the “spatialdecon” function from the “SpatialDecon” R package v1.6.0 and the cell profile
matrix called “SafeTME” was employed. The negative control probe was used to estimate
each data point’s expected background.

https://www.cbioportal.org/datasets
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4.4.5. Cluster Analyses

K-means clustering was performed using the “kmeans” function from the stats R
package v4.2.0. For consensus clustering of the full pROI and tROI data, the Consensus-
ClusterPlus R package [72] v1.60.0 and its function “ConsensusClusterPlus” was used.
The basis of clustering was the pROIs’ protein LFQ values and tROIs’ gene counts. Both
expression matrices were Z-score-normalized, and then resampled 1000 times using the
bootstrap method with a probability of 0.8 for selecting any sample and any protein/gene.
The bootstrap sample datasets were clustered using the partitioning around medoids
method with Pearson distance and complete linkage. The range of two to ten clusters were
explored, and the best number of clusters (K) was selected based on the visual inspection
of ConsensusClusterPlus outputs.

4.4.6. Correlation Analyses

To assess the similarity of the two omic datasets, the gene count matrix and singscore
matrix of the smaller tROIs from the same pROI were averaged. These average gene counts
and singscores of tROIs were correlated with pROI LFQ values (filtered and imputed) and
singscores, respectively, using Pearson correlation, by applying the “cor.test” function from
the correlation R package v0.8.2 [73]. The p-values were corrected using the Benjamini–
Hochberg (BH) method and adj. p < 0.05 was considered significant.

4.4.7. Differential Expression Analyses

Differential expression analyses using gene counts and protein LFQ values were
performed using the R package glmmSeq v0.5.5 [74]. The “lmmSeq” function was used,
building linear mixed effects models in which the patient was always included as a random
effect in the model.

For tumor vs. NAT comparisons, only patient tumors containing both tissue types
were considered (five patients for the tROIs and three patients for the pROIs). Only those
proteins/genes were regarded as significant which showed a minimum of 1.5-fold change
(FC) difference and BH-adj. p < 0.05.

To identify features that are correlated with the extent of immune cell infiltration in the
tumors, TIL % as a continuous independent variable for the pROIs (ranging between 5 and
40 %) and immune score as categorical independent variable for the tROIs (ranging between
1 and 3) were used. In case of pROI results, the only proteins regarded as significant were
those for which BH-adj. p < 0.05. Regarding tROI results, the only genes regarded as
significant were those which showed an upregulation tendency from immune score 1–2–3,
with a minimum of 1.5 FC difference and BH-adj. p < 0.05.

Mucin and stroma score comparisons were only checked in the proteomic data. Prior
to the mucin score analysis, the NAT regions and the only region with mucin score = 1
were excluded. The only proteins regarded as significant were those which showed an
upregulation tendency from mucin score 0–2–3, with a minimum of 1.5 FC difference
and BH-adj. p < 0.05. Prior to the analysis of stroma score differences, the NAT regions
and the only region with stroma score = 0 were excluded. The only proteins regarded as
significant were those which showed an upregulation tendency from stroma score 1–2–3,
with a minimum of 1.5 FC difference and BH-adj. p < 0.05.

4.4.8. Cox Regression Analyses

Cox regression analyses were performed using the “coxph” function from the survival
R package v3.4.0. For the pROI and tROI data, the mean ROI values (pROIs: LFQ intensities;
tROIs: gene counts) within each patient were taken prior to the analysis to have only one
expression value per patient. NAT regions were excluded from this calculation. The
Cox regression models were adjusted for different baseline hazards of patients receiving
Crizotinib and Alectinib (“strata(drug)”). For external datasets (TCGA, CPTAC), the
“strata(stage)” expression in the Cox model was used to adjust for the different baseline
hazards of patients.
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4.4.9. Selection of Proteins and Genes with Stable and Variable Expression within Tumors

To address the variability of their expression, the CV was calculated for each protein
and gene individually within each patient’s tumor. The ROIs of NATs were excluded prior
to CV calculation so that the analysis was not driven by tumor vs. NAT differences, thus
proteomic data of Case 2 was not included in the analysis as it contained only one tumor
pROI. Proteins and genes with stable expression were selected based on whether their CV
values were among the bottom 20% within at least four cases. The proteins and genes with
variable expression were chosen according to their CV values being among the top 20%
within at least four cases.

4.4.10. Pathway Analyses

To perform one-tailed Fisher’s exact test (i.e., overrepresentation analysis, ORA) of the
gene sets from Hallmark, KEGG, Reactome databases, the “fora” function of the “fgsea” R
package v1.22.0 [75] was used. The background gene list (“universe”) was set according
to the conducted analysis. When the pathway enrichment for genes positively correlating
between pROIs and tROIs were assessed, only the commonly quantified 162 genes were
used; when any list of proteins from the pROI data was investigated, then all proteins
quantified in at least one pROI were used (n = 2318); and when any gene list from tROIs
was checked, then all genes quantified across the tROIs were used (n = 1811). The minimum
and maximum size of the gene sets were set to 1 and infinite, respectively.

Differential expression analyses were followed by pre-ranked GSEA, in which the
Hallmark, KEGG, Reactome gene sets were tested. The proteins/genes were ranked
based on the FC/coefficient multiplied by the −log10 p-value. In the case of multiple-
group comparisons when multiple FCs/coefficients were present, the mean FC/coefficient
was used for pre-ranked GSEA. The pre-ranked GSEA was performed using the “GSEA”
function from the clusterProfiler R package v4.4.4 [76]. The default settings were used,
except that pvalueCutoff was set to 1. The BH method was used for p-value adjustment.
For visualization purposes, representative pathways from all significant pathways were
curated by the authors.

4.4.11. Visualizations

Figures were drawn using the R packages ggbiplot v0.55, ComplexHeatmap v2.1.13
and ggplot2 v3.4.1.

5. Conclusions

Advances in omics profiling technologies, such as next-generation sequencing or
mass-spectrometry-based proteomics, have enabled a more comprehensive molecular
profiling of lung tumors, leading to the identification of novel molecular alterations and
the development of new targeted therapies. This pilot study, to our knowledge, is the first
to address the inter- and intratumoral heterogeneity of ALK-rearranged pADCs at both the
proteome and transcriptome levels. The gene and protein expression patterns within the
tumors and across histologically distinct regions may have future implications for targeted
therapy design. By uncovering the spatially resolved biology of ALK-rearranged tumors,
we hope this work will enhance our biological understanding and improve therapeutic
efforts for this cancer type.
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