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Abstract: Endothelial cells are constantly exposed to environmental stress factors that, above a cer-
tain threshold, trigger cellular senescence and apoptosis. The altered vascular function affects new
vessel formation and endothelial fitness, contributing to the progression of age-related diseases. This
narrative review highlights the complex interplay between senescence, oxidative stress, extracellu-
lar vesicles, and the extracellular matrix and emphasizes the crucial role of angiogenesis in aging
and Alzheimer’s disease. The interaction between the vascular and nervous systems is essential
for the development of a healthy brain, especially since neurons are exceptionally dependent on
nutrients carried by the blood. Therefore, anomalies in the delicate balance between pro- and antian-
giogenic factors and the consequences of disrupted angiogenesis, such as misalignment, vascular
leakage and disturbed blood flow, are responsible for neurodegeneration. The implications of altered
non-productive angiogenesis in Alzheimer’s disease due to dysregulated Delta-Notch and VEGF
signaling are further explored. Additionally, potential therapeutic strategies such as exercise and
caloric restriction to modulate angiogenesis and vascular aging and to mitigate the associated debili-
tating symptoms are discussed. Moreover, both the roles of extracellular vesicles in stress-induced
senescence and as an early detection marker for Alzheimer’s disease are considered. The intricate
relationship between endothelial senescence and angiogenesis provides valuable insights into the
mechanisms underlying angiogenesis-related disorders and opens avenues for future research and
therapeutic interventions.

Keywords: angiogenesis; cellular senescence; aging; extracellular vesicles; oxidative stress;
Alzheimer’s disease

1. Introduction

Angiogenesis is a complex biological process that involves the formation of new blood
vessels from preexisting ones and should not be confused with vasculogenesis, in which
blood vessels emerge de novo from endothelial progenitor cells [1]. It plays a crucial role
during embryonic development and later in tissue growth and repair, wound healing,
and reproduction. Still, it must be carefully regulated to avoid excessive or insufficient
vascularization. New vessels emerge from sprouting endothelial cells (EC), the leading
players, toward an angiogenic stimulus (sprouting angiogenesis) or by insertion into ex-
isting vessels and division into new ones (splitting angiogenesis) [2]. It is led by a tip
cell that elongates and explores the environment while transmitting signals to the stalk
cells that follow behind to proliferate and form tubular networks. The entire process is
highly complex and difficult to imitate in vitro, highlighting the need for development of
reliable models to study it [3–5]. Angiogenesis is governed by a strict balance between
pro- and antiangiogenic factors, which, if broken, leads to uncontrolled cell proliferation
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(cancer, atherosclerosis, rheumatoid arthritis) or mitotic inhibition (aging and neurode-
generative diseases) [6–8]. Excessive angiogenesis can promote inflammation and tissue
damage, while insufficient angiogenesis can lead to ischemia and cell death. Most studies
are focused on the involvement of angiogenesis in cancer and cardiovascular diseases
(CVD). Fewer examine its contribution to neurodegeneration, although it is correlated
with the impairment of angiogenesis [9], endothelial senescence [7] and the occurrence
of cerebrovascular angiopathy (a process in which small blood vessels burst and cause
hemorrhages) [10,11]. The altered blood circulation in the elderly contributes to the lengthy
process of wound healing and inadequate recovery of ischemic tissues due to the lack of
response from aged ECs. Typically, ECs’ physiological functions are suppressed in time
because of accumulated stress and induction of cellular senescence and apoptosis [12],
leading to alterations in the regulation of angiogenesis and insufficient or excessive vascu-
larization [6]. Age-related vasculature dysfunction has been implicated in the pathogenesis
of various neurodegenerative diseases, including Alzheimer’s disease [13], Parkinson’s
disease [14], and Huntington’s disease [15]. It may contribute to their progression by
modulating the delivery of nutrients and oxygen and clearing of waste products from
the brain.

Alzheimer’s disease (AD) is a debilitating condition characterized by progressive
cognitive decline and behavioral changes that severely impact the daily lives of suffering
individuals. Similarly, to other neurodegenerative diseases, aging is an essential factor
contributing to its onset. There is overwhelming research aiming to find the causes, better
ways for detection, treatment and, if possible, ways to avoid it altogether (reviewed else-
where [16–20]). Factors involved in angiogenesis have roles in the birth of new neurons
(neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the
pathogenesis of stroke, AD and motor neuron disease [21]. Indeed, axon and blood vessel
growth and migration are braided together via chemo-repulsive and attractive signals in
which the vascular endothelial growth factor (VEGF) and the Delta-Notch signaling have a
direct effect on both nervous and vascular systems [22], confirming that angiogenesis is
closely related to neurodegeneration. AD patients exhibit changes in the number, diameter
and density of blood vessels, which lead to decreased brain perfusion and BBB disruption.
Here, we explore the current debate on the effect of the monomeric, oligomeric and plaque
forms of amyloid-β on the efficacy of cerebral angiogenesis and blood flow.

This narrative review further explores the intricate relationships among senescence,
oxidative stress, extracellular vesicles, and the extracellular matrix, highlighting their
significance in the processes of angiogenesis, aging, and neurodegeneration. Additionally,
it delves into potential therapeutic approaches aimed at modulation of angiogenesis and
amelioration of disease progression.

2. The Dual Nature of Cellular Senescence

Cellular senescence is a fundamental process associated with tissue homeostasis dur-
ing development, first described by Hayflick and Moorhead [23]. The authors observed a
terminal pause in cell division of normal human fibroblasts after several cycles of passaging.
They concluded that cultured cells cease to proliferate upon a finite number of doublings
and, therefore, could be used as a model for aging. Today, this is referred to as the Hayflick
limit. The processes of senescence and aging are intertwined in the sense that aging pro-
gresses with time and associates with increased numbers of senescent cells. Therefore,
cellular senescence is also accepted as a hallmark of aging and a risk factor for age-related
neurodegenerative diseases. However, senescence occurs during the full lifespan of an
individual and is not restricted to later life stages. The resulting inability to divide is a
consequence of irreversible cell cycle arrest, caused by the accumulation of various stress
factors such as DNA damage, inflammation, telomere shortening, chromatin perturbations,
and oncogene induction [12,24–26]. Senescence is believed to have evolved as a protective
mechanism against cancer, but it also contributes to age-related physiological decline [27].
Additionally, loss of senescence during embryonic development allows the progression of
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unhealthy cells in embryos [28]. In contrast, while protecting against the propagation of
mutated DNA, senescence harms long-living organisms, as it inhibits tissue renewal and
function. These observations gave rise to the idea that there is a “right time to senesce”,
arguing that the end goal of the fight against aging is not to completely eliminate senescent
cells (SCs) but to learn how to tame them [29].

2.1. Hallmarks of Aging

In 2022, several new hallmarks of aging were introduced, stressing the complexity of
the aging process [25]. They include compromised autophagy, impeded RNA processing,
and changes in the microbiome and in the mechanical properties of both cells and extracel-
lular matrix [25]. However, until recently the main focus was on the hallmarks of aging
involving information loss (reviewed in [30]), telomere shortening [31] and endogenous
reactive oxygen species (ROS) induced DNA damage [32] (Figure 1). The first is based on
the fact that even though an organism shares the same genetic DNA among all cells, the epi-
genetic differences between them determine the cellular type. With age, epigenetic changes
procured in response to DNA damage and p53 activation make information harder to read
and trigger loss of cellular identity and function. This process is similar to reprogramming
somatic cells to induced pluripotent stem cells (iPSC), achieved by the four Yamanaka
factors, Oct4, Sox2, Klf4 and c-Myc [33]. A recent study supporting this theory utilized
inducible epigenetic modifications to instigate premature aging in transgenic mice. The
subsequent introduction of the Yamanaka factors reversed the “old” phenotype, hypothet-
ically improving the animals’ quality of life [34]. Similar treatments were able to restore
vision in aged mice [33], and short exposure to the same factors (for 13 days) rejuvenated
fibroblasts and allowed them to maintain their original cell identity and improved their
collagen secretion [35].
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The other two hypotheses do not necessarily exclude epigenetic modifications. Instead,
they focus on senescence as the cell’s response to life-long accumulation of stress-induced
DNA damage by telomere shortening or oxidative stress (OS). The former is the result of the
end-replication problem that causes dysfunctional telomeres and triggers the DNA-damage
response (DDR) through ataxia-telangiectasia mutated protein kinase (ATM), checkpoint
kinase 2 (CHK2), p53-binding protein 1 (53BP1) and γ-H2AX histone [36]. T cells can over-

https://www.BioRender.com
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come this issue by elongating their telomeres, using telomeres from antigen-presenting cells
(APCs), rather than increased telomerase activity. The intercellular transfer of telomeres via
extracellular vesicles (EVs) rescues T cells from senescence and maintains their long-term
immunological memory [37]. However, telomere extension can be overwhelmed by other
senile factors, as telomerase activation cannot prevent senescence caused by OS-induced
DNA damage in human fibroblasts but protects them against apoptosis and necrosis [38].
Furthermore, murine cells have significantly longer telomeres than human cells, but under
standard culturing conditions, they senesce substantially faster due to high O2 levels and
severe OS [39]. The induction of senescence in otherwise normal cells through exoge-
nous factors such as chemicals [40], EVs generated from premature senile cells [41], septic
shock [42] and OS is also known as stress-induced premature senescence [43].

In addition to its role in DDR, the protein kinase ATM functions as a sensor of redox
homeostasis. It is oxidized and activated by hypoxia [44], resulting in ATM-mediated
phosphorylation and stabilization of hypoxia-inducible factor (HIF)-1α [45], but it can
also cause premature endothelial senescence and dysfunction [46]. In one study, OS
stimulated ATM through the Akt/p53/p21 pathway, causing senescence in ECs, which was
not the case for ATM-KO mice or upon treatment of HUVECs with ATM inhibitors [47].
Moreover, genetic or pharmacological ATM inhibition reduced cellular senescence and
SASP expression [48]. ATM, Akt and the mammalian target of rapamycin (mTORC1)
activation, as part of DDR, stimulates mitochondrial biogenesis and ROS-mediated DNA
damage and senescence. Both of these processes are ameliorated by ATM or mTORC1
suppression [49].

DNA repair can be affected by numerous factors, including changes between anaerobic
and aerobic carbohydrate metabolism that alter NAD+ levels. The molecule is used as a
cofactor by multiple enzymes such as sirtuins (SIRTs)—NAD-dependent protein deacety-
lases involved in epigenetic modifications. SIRTs are known as “longevity genes” because
their overexpression resulted in life extension in yeast, and they are depleted by insuf-
ficient NAD+ [50]. SIRT deficiency has been correlated with stress-induced premature
endothelial [51] and hepatocyte [52] senescence. In a recent review by Charles Bennet [53],
the author shares his disbelief in the correlation between lifespan, NAD+ and SIRT. He
argues that the positive outcome of NMN and NAD+ supplementation is not due to the
activation of SIRT but rather due to the antioxidant effect of these cofactors. Moreover,
NAD+ is necessary for poly-(ADP-ribose) polymerase 1 (PARP1) activity in DDR [36] and,
therefore, reduces the extent of DNA damage. Although PARP1 participates in one of the
major DNA repair mechanisms, it is also involved in parthanatos (programmed cell death,
independent from caspases, unlike apoptosis) [54]. Notably, OS-induced DNA damage and
cell death can be avoided with PARP1 inhibitors or PARP1-KO [54], which also reduces
PARP1-associated senescence-associated secretory phenotype (SASP) [55]. Meanwhile,
SIRT1 has been associated with improved endothelial function [56] and increased microvas-
cular density [57], whereas its knockout results in decreased angiogenesis [58]. A clearer
picture of the interplay between NAD+- (SIRT1, PARP1) and redox sensors (ATM), and
their contribution to endothelial senescence, could be immensely useful.

2.2. The Dose Makes the Poison

The cell’s choice between senescence or death depends on the level of accumulated
stress and the subsequent activation of p53 [59]. Intermediate levels of p53 signal for
senescence, and its hyper- or hypoactivation causes cell death or proliferation, respectively.
To choose a path forward, the cell first undergoes a cell cycle arrest. If the experienced
changes persist above a certain threshold, the cell proceeds with irreversible senescence, a
process called geroconversion [60]. In the case of chronic stress, senescence can be triggered
through either p53/p21 or retinoblastoma (Rb)/p16 pathways [26,59]. Therefore, if a cell is
positive for either of these proteins and for senescence-associated β-galactosidase (SA-β-
Gal), it can be considered senescent. Accumulation of SCs with chronological age varies
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depending on the cell and tissue types. The same applies to the expression and the activity
of the factors that control the senescence signaling pathways.

SCs exhibit a hypersecretory phenotype known as SASP, which is used to alert the
immune system to reduce local inflammation by eliminating them and, potentially, to
direct tissue renewal. Removing SCs in this manner is essential because most of them are
resistant to apoptosis. If SASP secretion is maintained for a short period, the consequential
clearance of unhealthy cells can be very beneficial. On the other hand, prolonged SASP
further increases intercellular stress and has the opposite effect. The SASP factors could
stimulate nearby premalignant cells’ growth and angiogenic activity and, paradoxically,
promote excessive angiogenesis and subsequent progression of cancer or neurodegenerative
diseases [26,61]. Unfortunately, as the immune system weakens with age, its ability to clear
SCs is reduced, and SASP evolves with a change from anti- to pro-inflammatory cytokine
secretion [62]. Thus, the notion that temporally regulated mechanisms orchestrate the
functions of SCs is probably the most coherent senescence concept so far. While all the
beneficial roles of senescence share a transient profile, the deleterious functions of SCs are
associated with their lingering persistence, namely chronic exposure to their SASP [29].

3. Endothelial Senescence

Aging and prolonged exposure to environmental factors, such as toxins, ROS, shear
stress, and extracellular matrix (ECM) perturbations, induce senescence in ECs (Figure 1).
Interestingly, unlike most SCs, senescent ECs (sen-ECs) remain susceptible to apoptosis [63],
a mechanism most likely evolved to rearrange the microvasculature and counteract prolif-
eration. Senescence in ECs is usually triggered by telomere shortening [26], which can be
avoided by the exogenous introduction of telomerase [6]. Ionizing radiation can also gero-
convert human microvascular cells in a time- and dose-dependent manner, predominantly
by uncoupling Complex II of the mitochondrial respiratory chain [64], demonstrating ECs’
susceptibility to OS. In any case, the balance between senescence and angiogenesis becomes
dysregulated during aging and neurodegenerative diseases, but the underlying mecha-
nisms remain elusive. The negative consequences of vascular aging are apparent in older
people in whom the regeneration of blood flow after ischemia or wounding is a slow and
tedious process [65]. The accumulated stress over time reduces the proliferative capacity
of ECs and modifies their interaction with the already altered ECM [66]. Furthermore,
aging reduces the general expression of vascular endothelial growth factor (VEGF) [6] and
promotes angiogenic incompetence in ECs, making them unable to respond to VEGF [7].
Some of the suggested reasons for the VEGF insensitivity are the age-related loss of VEGF
receptor 2 (VEGFR2) [67], androgen resistance [68] and reduction in nitric oxide (NO) [6].
Furthermore, the SASP can directly inhibit angiogenesis by secreting factors that block
endothelial cell proliferation and migration. At the same time, SCs can induce angiogenesis
by secreting pro-inflammatory cytokines that promote neovascularization.

3.1. ECM Disruption Accelerates Vascular Aging

Aged vasculature is described with increased microvascular perfusion, susceptibility
toward pro-inflammation and atherosclerosis, disrupted ECM interaction and altered secre-
tory, barrier and transport functions [8,9,25,69]. The ECM comprises the natural scaffolding
and framework on which ECs reside. The latter shape the vessel’s lumen, align to its length
and curvature by attaching to the basal membrane and control the permeability, contractil-
ity and passage through the vessel [70]. The ECM consists primarily of collagen, elastin and
fibrinogen, synthesized by ECs and fibroblasts and subjected to constant rearrangement
by resident cells. It also mediates chemical cues that can alter the cell’s response and vice
versa, creating the tissue microenvironment and enabling ECs to proliferate, migrate and
stimulate vascular smooth muscle cells to form capillary networks and constrict/dilate
fully formed vessels. One of the hallmarks of endothelial senescence and blood vessel aging
is the stiffening of the ECM through glycation, aggregation and crosslinking [71]. Therefore,
diseases occur not only when the cells are damaged but also when the ECM becomes
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impaired. For instance, elastin is renewed quite slowly; thus, changes in its structure tend
to persist for longer periods of time. Meanwhile, collagen secretion increases, causing the
stiffening of ECM in an NAD+-dependent manner [69]. Angiogenesis also relies heavily on
the deposition and degradation of the ECM by metalloproteinases (MMPs), whose activity
increases with age, further reducing the elasticity of the connective tissue and stimulating
higher traction forces even in non-senescent cells [71]. This leads to endothelial dysfunction
characterized by excess angiogenesis, leaky vasculature and low shear stress that can-
not induce protective signaling pathways—a faulty process described as non-productive
angiogenesis. Hence, by treating the age-related stiffening of the ECM, we could tackle
endothelial dysfunction. One such example is the treatment of myocardial tissue with an
optimized intravascular infusible ECM, which is able to fill gaps between the ECs, reduce
vascular leakiness and improve vascular fitness [72].

3.2. Navigating the Currents: Shear Stress and Its Impact on Endothelial Cells’ Function

Naturally, endothelial cells are constantly exposed to shear stress in vivo from the
movement of a non-Newtonian fluid, i.e., the blood. The wall shear stress (WSS) is described
as the traction forces generated on the endothelial wall by a flow and depends on its
velocity [73–75]. This type of stress activates the endothelial NO synthase (eNOS), aids in
cellular alignment and protects against endothelial dysfunction [66,76]. In a comprehensive
review, Yi-Shuan J. Li et al. summarized the effect of WSS on ECs and concluded that
high shear stress inhibits apoptosis through PI3K/Akt-mediated activation of eNOS and
increases migration [77]. It should be noted that values of high and low WSS can vary
between studies and cell lines. In some cases, excessive proliferation is stimulated by
disturbed (oscillating) flow that provokes local monolayer permeability (high turnover-
leaky hypothesis [78]). This brings the question of whether the overall strength of the WSS
or the local occurrence of such is the triggering force for these effects (Table 1). Moreover,
could the increased proliferation aim to induce new vessel formation to dissipate the high
pressure, especially in aortic ECs? In contrast, active cell division could be a substantial
issue for brain blood vessels, as microvascular ECs must avoid uncontrolled proliferation
and non-productive angiogenesis to maintain the blood–brain barrier (BBB). In agreement,
human microvascular ECs (HMVECs) do not elongate in response to increased curvature
and/or shear stress, presumably to minimize the length of tight junctions (per unit length
of the capillary) and reduce the paracellular transport into the brain [79]. Human umbilical
vein ECs (HUVECs), on the other hand, can migrate both with and against the flow,
demonstrating the interplay between function and response to environmental signals [80].

Table 1. Effects of the type of wall shear stress (WSS) on EC function.

Type of WSS Cell Line Cell Response Reference

Sudden, temporal, 10 dyne/cm2 HUVECs ↑ proliferation [74]

Steady, uniform HUVECs no effect [74]

Linear, physiological, 12 dyne/cm2 * BAECs ↓ proliferation [75]

Gradient, <68 dyne/cm2 HMVECs migrate against flow; orient
perpendicularly at highest WSS [80]

Linear, high, 284 dyne/cm2

Gradient, positive, 150–170 dyne/cm2 BAECs **
↓ alignment;
↑ proliferation;
↑ apoptosis

[81]

Linear, low, 30 dyne/cm2

Gradient, negative, 170–150 dyne/cm2 BAECs
↑ alignment;
↓ proliferation;
↓ apoptosis

[81]

* Physiological WSS 10–20 dyne/cm2; 10 dyne/cm2 = 1 N/m2 = 1 Pa. ** BAECs—bovine aortic endothelial cells.
↑—indicates an increase in the process; ↓—indicates a decrease in the process.
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The flow also helps to form the lumen of blood vessels and organizes the ECs during
sprouting angiogenesis. Recent research describes the counteracting forces between the
actin cytoskeleton of ECs and the hemodynamic forces of the flow, which are necessary
to establish a fully functioning vessel [82]. It is unclear how sen-ECs respond to the flow
regarding lumen formation. Since sen-ECs exhibit significant morphological changes and
stronger focal adhesion compared to cell–cell contacts [83], it would be interesting to study
whether senescent cells can withstand these forces.

3.3. Linking NO Signaling with Endothelial Senescence

NO plays various roles beyond vasorelaxation, including influencing the maturation
of endothelial progenitor cells, mitochondrial function, cell division, and inhibiting platelet
aggregation and pro-inflammatory cytokine-induced signaling pathways. In short, NO
protects against the factors contributing to endothelial senescence. It is generated from
L-arginine by eNOS, which requires tetrahydrobiopterin (BH4) as a cofactor (Figure 2).
The expression of eNOS is induced by shear stress [84], but its activity is inhibited by ROS
or NG-nitro-L-arginine methyl ester (L-NAME). Furthermore, lack of BH4 or L-Arg can
cause eNOS uncoupling and production of superoxide anion (O2

•−) instead of NO—a
major cause of endothelial senescence. A reaction between the superoxide anion and NO
produces ONOO− (peroxynitrite (PN)), further reducing NO’s bioavailability and promot-
ing eNOS uncoupling and vascular dysfunction through OS [85]. PN also causes lipid
peroxidation, protein oxidation and nitration, and LDL oxidation through Apolipopro-
tein E (ApoE). Inhibition of eNOS decreases the activity of human telomerase (hTERT)
in HUVECs, making them susceptible to telomere-induced senescence [86]. Moreover,
eNOS-KO mice experience premature cardiac aging and aortic stiffness, which is explained
by increased calcium-dependent focal adhesion [87]. Although, PN-dependent Ca2+ in-
flux in ECs leads to vascular dysfunction [88], when it is generated by shear stress, it
activates eNOS through calcium-calmodulin complexes [89]. Undisturbed laminar flow
also upregulates eNOS transcription in an ERK1/2- and NF-kB-dependent manner, con-
tributing anti-inflammatory properties to NF-kB activation [90]. In addition, a novel
eNOS modulator—MAGI1 (MAGUK with inverted domain structure-1), associated with
VE-cadherin in cell-cell contacts—can support NO production under shear stress via
PKA/AMPK-mediated mechanism [91]. Considering the vasoprotective properties of NO,
eNOS activity under physiological flow can counteract endothelial dysfunction (Figure 2).
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4. Unveiling the Interplay between Hypoxia and Oxidative Stress-Induced
Endothelial Senescence

The main reason for O2’s negative manifestation is that it is responsible for the genera-
tion of reactive oxygen species (ROS), which cause DNA damage and induce senescence. It
is still unclear whether there are different mechanisms of senescence activation, depending
on the source of ROS and/or the place of accumulation [92]. For example, in CVD, mito-
chondrial dysfunction often triggers age-associated perturbations in the production of NO
and VEGF [27,66], which can be mitigated by reduced mitochondrial oxidative phospho-
rylation in mammals [93]. On the other hand, mitochondrial ROS in the model organism
Caenorhabditis elegans increases its longevity [94]. In addition, reduced mitochondrial mass
and alterations in the electron transport chain (ETC) due to a decline in cytochrome C
oxidase and Complex IV [95] and upregulated NADPH oxidases (NOX) increase OS and
shorten telomeres [96]. The role of mitochondria in senescence was also confirmed by
global transcriptomic analysis, where the expression of 38% of senescence-associated genes
was reversed in mitochondrial-depleted fibroblasts [49]. A direct link between ROS, telom-
ere shortening and senescence was evidenced by assessing the number of SA-β-Gal+ ECs
after exposure to H2O2 or glutathione (GSH) peroxidase inhibitors (it should be noted
that other senescence markers were not used) [96]. Since OS is a prominent contributor
to endothelial senescence, it is natural to assume that low levels of O2 could prevent this
process. Interestingly, low ROS delay DNA replication and cell cycle progression via a
CDK2-dependent mechanism [97]. Therefore, lower ROS levels and prolonged cell division
could potentially prevent replicative EC senescence due to excessive telomere shortening
and reduced DNA damage. The following section further explores the interplay between
hypoxia and OS-induced endothelial senescence.

4.1. HIF-1α in Angiogenesis

The excess O2 under typical in vitro experiments (20% pO2) generates a significant
amount of ROS, making common culturing conditions hyperoxidative [92]. In contrast,
human, bovine and murine fibroblasts grown under 5% pO2 increase their lifespan by
20%, 80% and up to 500%, respectively, due to significantly less OS [98–100]. Based on the
available data, it is reasonable to consider that lower oxygen levels may reduce OS. This is
not entirely true, because prolonged lack of O2 can seriously affect cellular metabolism and
function, leading to tissue damage and organ failure if not treated promptly. This state is
known as hypoxia and occurs when the body or a specific tissue or organ is deprived of
adequate oxygen. However, short-term hypoxia can act as a hormetic stress (a short jump
out of the individual’s comfort zone and subsequent quick recovery to homeostasis) and
increase cell resilience (for a detailed review, see [101].)

Hypoxia orchestrates angiogenesis through the main pro-angiogenic factor—VEGF.
Its expression is regulated by the three isoforms of HIF—1, 2 and 3α. They are under the
control of prolyl-hydroxylases (PHDs), which target HIFs for proteasomal degradation but
are sensitive to oxygen deprivation and are destroyed under hypoxic conditions. HIF-1α
is ubiquitously expressed and responds to acute respiratory changes, whereas HIF-2α
is responsible for chronic hypoxia and is localized in ECs and glial cells. Besides VEGF,
other typical targets of HIF-1α and 2α are glucose transporter 1 (GLUT1) and lactate
dehydrogenase A (LDHA). In addition, HIF-1α regulates the expression of erythropoietin
(Epo) and Mmp-9, and HIF-2 that of Oct4 [102]. Besides acting as a transcription factor
for VEGF, HIF-1α recruits endothelial progenitor cells from bone marrow and supports
their differentiation into ECs, increases the expression of VEGF receptors (VEGFR1/2),
stimulates the production and secretion of MMPs and recruits supporting cells to create
mature and stable blood vessels [103]. Under hypoxic conditions, EVs carrying MMPs can
also stimulate ECs to proliferate, migrate, and form capillary-like structures [104,105].
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4.2. Hypoxia Is Essential for the Day–Night Cycle

Although, HIF-1α is associated with poor prognosis in cancer and CVD, it works
synergistically with one of the core regulators of the circadian rhythm—basic helix-loop-
helix ARNT like 1 (BMAL1) [106]. In fact, hypoxia is so tightly related to the circadian
clock that the incidence of heart attacks increases on the Monday following the daylight
saving time transition [107]. Increase in HIF-1α during the day triggers the expression of
the pro-angiogenic genes—Vegf, Epo and Glut1, but its persistence corresponds with the
activation of pro-apoptotic genes—Bnip3 and Noxa1 in cells [106]. The circadian rhythm is
also regulated by the hormone melatonin. It is synthesized predominantly by the pineal
gland at night and is suppressed by bright light. Besides its role in the awake–sleep cycle, it
is also one of the strongest known natural antioxidants. Melatonin supplementation can im-
prove sleep and reduce jet lag, which is also observed with mild hypoxia [108]. Our recent
studies demonstrated its ability to reduce OS and improve cognitive functions in a rat AD
model [109]. Notably, short-term fluctuations in O2 activate autophagy, degrade damaged
mitochondria and reduce mitochondrial ROS. Hence, there is an evolutionary pressure to
adapt to moderately low O2 levels. In contrast, inhibition of autophagy during prolonged
exposure to hypoxia increases the levels of ROS due to the uncoupling of complex III and
generation of semiquinone (QH•). This results in O2

•− formation and its conversion to
H2O2 by superoxide dismutase (SOD) [110]. The generated H2O2 inhibits PDHs and indi-
rectly stabilizes HIF-1α, causing chronic hypoxia [103] (Figure 3). Furthermore, inhibition
of the ETC by hypoxia can lead to mitochondrial dysfunction and increased EV secretion,
causing inflammation in many cell types [111].
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During hypoxia, HIF-1α induces the expression of glycolytic enzymes, stimulates
glycolysis and inhibits pyruvate dehydrogenase kinase 1 (PDK1), suppressing the pyruvate
dehydrogenase complex (PDH) and the TCA cycle. As a result, mitochondrial respira-
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tion is reduced along with mitochondrial ROS and senescence [112]. However, disrup-
tion of the circadian clock impairs anaerobic glycolysis [113], causing acidification of the
cells [114]. Lower pH redirects perinuclear lysosomes to the cytoplasm’s periphery, sep-
arating mTORC1 from its upstream activators, inhibiting its activity [114]. mTORC1 is
an essential sensor for nutrients and feeding times, central to establishing the circadian
rhythm. Hence, environmental factors such as the ATP/AMP ratio, NAD+ bioavailability
and the overall redox state of the cell could prepare the organism for the light cycle as
well as its metabolic response. Similarly, hypoxia can modulate the cell cycle arrest trig-
gered by p16/Rb and provoke apoptosis resistance in SCs by elevating Bcl-2, Bcl-xL and
p21 levels [60]. Even though p21 overexpression is connected with senescence, moderate
levels promote cell survival, as p21-KO mice accumulate significant DNA damage and
undergo apoptosis [115]. Hypoxia inhibits mTOR, which suppresses the conversion from
p21-mediated cell cycle arrest to irreversible senescence [116], increases NO levels [117],
inhibits NF-kB and decreases SASP [118], independent of p53 and HIF-1α. Inhibition of
autophagy by mTOR can lead to insulin resistance, further increasing the concentration of
glucose in blood plasma, subsequent OS and endothelial senescence. This demonstrates
another possible mechanism through which mTOR inhibition can suppress aging [119]
(Figure 3). Nevertheless, lower mitochondrial ROS failed to reduce senescence in hyperoxic
conditions unless p53 and Rb were inhibited [120].

5. Exploring the Role of Extracellular Vesicles in Angiogenesis and Senescence

Legends about the infamous Hungarian Countess Elizabeth Bathory tell the story of
her supposed anti-aging process of bathing in the blood of young girls. A similar idea
governs the myths for vampires, which might not necessarily stay young, but become
immortal by feeding on human blood. Surprisingly, there seems to be some truth in these
myths, as recent studies showed that blood exchange from young to old mice rejuvenates
them, but the opposite transfusion leads to senescence in the young [121–123]. The latter
highlights the role of SASP in aging, which assists the immune response and, in the context
of angiogenesis, influences new vessel formation. In addition to soluble factors, such as
chemokines, inflammatory cytokines and growth factors, extracellular vesicles (EVs) are
key components of SASP (reviewed in [124]). EVs are a very heterogeneous group of mem-
branous structures, roughly categorized into three main groups based on size and origin:
apoptotic bodies (ABs), microvesicles (MVs) that range from 50 to 5000 nm and are formed
by outward budding and fission of the plasma membrane, and exosomes (30–100 nm)
that are produced by the fusion of multivesicular endosomes with the plasma membrane,
releasing intraluminal vesicles into the extracellular space. The EVs play important roles in
intercellular communication, and their release is a strictly regulated process [125]. They are
involved in both physiological and pathological processes and play a role in intercellular
communication through the transfer of proteins, lipids, and nucleic acids [126,127]. EVs are
implicated in cancer etiology due to their ability to promote cancer cell migration, trans-
formation of non-malignant cells and pro-angiogenic activity [128]. While healthy cells
release EVs as part of normal cellular homeostasis, senescent cells secrete EVs that have a
significant role in angiogenesis and neurodegenerative disease progression. The presence
of pro-angiogenic molecules like HIF-1α, VEGF, MMPs, and microRNAs in EVs [129] may
lead to homeostasis disruption and non-productive angiogenesis. The role of EVs as key
functional components of SASP is further highlighted by the observation that secretion
of EVs is much higher in different types of senescent cells, including ECs, as compared
to young ones [130,131]. A possible explanation for this is the observed upregulation of
neutral sphingomyelinase and dysfunction of lysosomal activity in senescent cells [132].
One study even suggests that hypoxia prevents senescence by decreasing the SASP, rather
than reducing the number of senescent cells [118].

The important role of EVs from ECs, as well as other blood cell types, in angiogen-
esis is summarized here [125]. More specifically, EVs from ECs are rich in β1 integrins
and metalloproteinases (MMP-2 and MMP-9), which allow them to penetrate the ECM,
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to remodel it and to form tubular capillary-like structures. Stimulation with VEGF and
FGF-2 facilitates the association of the active and proenzyme forms of the MMPs with
EC-derived vesicles [133]. EVs can also transport urokinase plasminogen activator/uPA
receptor (uPA/uPAR), which are both pro-angiogenic. It was shown that uPAR modu-
lates VEGF-induced EC migration by balancing the proteolysis of the ECM and the cell
motility through integrin-associated focal adhesion (Figure 4). Revu Ann Alexander and
colleagues demonstrated that VEGF causes endocytosis of αVβI integrin and activation
of uPA/uPAR, resulting in matrix degradation [134]. Another active participant in this
process is the inhibitor of uPA—plasminogen activator inhibitor (PAI-1), which is released
from the degraded matrix and internalized, further directing the balance toward invasive
cell migration, i.e., angiogenesis (Figure 4). Inhibition or deficiency of uPAR suppressed
VEGF-induced angiogenesis in tumor cells [135] or in mice [136], respectively. Moreover,
uPAR stimulated angiogenesis through VEGFR2, which upon internalization activates other
pro-angiogenic stimuli [136]. In confluent ECs, the expression of uPAR is down-regulated
compared to sub-confluent proliferative cells, thus preventing VEGF-activated signaling
and angiogenesis [137]. In addition, levels of PAI-1 are elevated in senescent and aged
ECs, making it a useful marker for senescence [138]. Besides inhibiting uPAR, PAI-1 also
induces p53 and p21, activity that is suppressed by SIRT1 overexpression in endothelial
cells. SIRT1 is also able to induce eNOS activity, protecting ECs from endothelial dysfunc-
tion [138]. The pro-angiogenic properties of exosomes from ECs may also be attributed
to EV-associated micro RNAs such as miR-214 [139]. More specifically, the latter prevents
senescence through silencing ATM in recipient cells.
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are carried by extracellular vesicles (EVs) to ECs. Upon receptor binding, VEGF-mediated matrix
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inhibitor-1 (PAI-1), which inhibits uPA/uPAR recognition and subsequent VEGFR2 activation. This
feedback loop prevents excessive angiogenesis. The red X depicts the obstruction of uPA/uPAR
recognition under the influence of PAI-1 and the inability of uPA/uPAR to activate VEGFR2. Created
with https://www.BioRender.com (accessed on 30 May 2023).
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Depending on their source and the specific experimental conditions, EVs may also
have anti-angiogenic properties. For example, NO production and angiogenesis are im-
paired by EC-derived EVs under oxidative stress, via Src kinase- and NOX-dependent
mechanisms [66,140,141]. Moreover, in contrast to EVs from young cells, those derived
from senescent cells exert mostly negative effects on EC functions and angiogenesis. More
specifically, senescent osteoblasts secrete EVs that induce senescence and apoptosis and
decrease proliferation of ECs through transfer of miR-139-5p [142]. Likewise, senescent
HUVEC cells secrete exosomes that interfere with cell growth and downregulate expression
of adherent junction proteins, resulting in impaired endothelial migration of young ECs
and endothelial barrier dysfunction [143].

Interestingly, the effect of EVs on angiogenesis may be swayed in opposite direc-
tions depending on the dose. Namely, it was found that a low dose of EVs exhibited
pro-angiogenic activity, which was suppressed below control levels upon increasing the
concentration of the EC-derived EVs [144]—an effect dependent on uPA activity. The
inhibitory effect of EC-derived EVs on endothelial cell tube formation was confirmed by
another study in which even higher concentrations of EVs were used, and it was shown that
the inhibition was dependent on NF-kB signaling and eNOS pathway suppression [145].
EVs are carriers of damaged genomic DNA molecules whose concentration increases in EVs
upon induction of senescence [130] and under pathological conditions [146]. Functioning
as intercellular vectors, EVs may transfer their DNA into the cytoplasm of recipient cells,
leading to activation of the cGAS-STING signaling and consequently EC senescence, eNOS
suppression and endothelial dysfunction [147]. Therefore, the hormetic effect of EC-derived
EVs on EC tube formation, as well as the inhibitory effect of EVs from senescent ECs on
angiogenesis, may possibly be due to EV DNA-induced cGAS-STING activation. Shedding
more light on these processes and mechanisms would be a particularly interesting direction
for further studies.

6. The Non-Productive Angiogenesis in Alzheimer’s Disease

Currently, there are two main hypotheses for the development of AD—the accumula-
tion of amyloid plaques (Aβ) due to an error in the metabolism of the amyloid precursor
protein (APP); and the hyperphosphorylation of Tau (or p-Tau), resulting in microtubule
polymerization catastrophe and formation of fibrils [16]. APP is a transmembrane gly-
coprotein separated into an intracellular C-terminal, Aβ transmembrane and N-terminal
extracellular domains. Its primary function is interneuronal communication, and once it
performs it, APP is degraded by α- and γ-secretase to a soluble, non-amyloid form, or by β-
and γ-secretase to insoluble Aβ1–40 and Aβ1–42 isoforms [16]. In animal models, elevated
levels of Aβ1–42 and p-Tau were correlated with cerebrovascular dysfunction, chronic hy-
poperfusion and worsened AD symptoms [148,149]. One of the most affected brain areas
in AD is the hippocampus, which is normally able to continue with adult neurogenesis.
Thus, a decline in neurogenesis could be used as a marker for AD progression in animal
models [150]. In fact, we demonstrated worsened long-term memory and anxiety in a rat
model of icvAβ1–42 concomitant with pinealectomy (AD with melatonin deficiency). These
behaviors are controlled by the hippocampus and corresponded with increased OS in the
structure [108].

Pro-inflammatory cytokines, such as interleukin-1β, become abundant during AD and
induce the expression of VEGF, yielding new blood vessels [18]. Although angiogenesis is
initiated around Aβ plaques, the process is non-productive, leading to the disassembly of
Aβ plaque-associated blood vessels and the phagocytic activity of microglia [151]. However,
there is conflicting evidence relating the cause of AD and whether there is an increase or
decrease in blood vessel density [151–158] (Table 2).
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Table 2. The role of Aβ in cerebral blood vessels.

AD Model Blood Vessels Protein Expression References

Aβ monomers in HUVEC and zebrafish ↑ capillary density - [151]

Tau overexpressing mice; 15 months old

↑ capillary density;
↑ angiogenesis;
↑ BBB permeability;
↓ CBF

↑ VEGF;
↑ uPAR;
↑MMP-9;
↑ PAI-1

[152]

AD patients − ↑ VEGF;
↑ TGF-β [153]

HMVECs + Aβ monomers ↓ angiogenesis ↑ VEGFR1-
↑ senescence [154]

APP-PSEN1/+ mice ↑ non-productive angiogenesis;
↓ capillary density around plaques ↑ VEGF [155]

Tg2576 mice ↓ capillary density around plaques ↓ GLUT1 [156]

AD patients; APP695 mice ↓ capillary density VEGF supplementation
improved cognitive function [157]

3xTG-AD mice ↑ capillary density;
↓ junction density − [158]

↑—indicates an increase in the process; ↓—indicates a decrease in the process.

Joe Steinman, Hong-Shuo Sun and Zhong-Ping Feng provide a reasonable explanation
for the discrepancies—“An overall measure of vessel density may indicate loss of vessels
due to holes [note: from plaque deposits], without accounting for the increase in vessels
surrounding holes” [159]. Although angiogenesis might not be beneficial for AD’s progres-
sion, it seems to alleviate some of the cognitive disabilities. For instance, one study showed
that AD patients and AD mouse models accumulated Aβ in arterioles and experienced
apoptosis of ECs [157]. When the same mouse model TgCRND8 was treated with VEGF, the
growth factor was able to rescue vascular loss. And, most importantly, it significantly im-
proved the behavior and memory of the subjects [157]. However, this observation could not
be repeated in vitro on Matrigel®, where Aβ maintained low vascular density regardless
of VEGF in tube formation assays, demonstrating the inability to always correlate in vivo
and in vitro studies. A natural way to suppress Aβ accumulation is through melatonin.
Besides its function as a radical scavenger, research shows that melatonin disrupts amyloid
fibril formation [20] and exhibits anti-angiogenic properties [160,161]. Thus, by hindering
Aβ plaque formation and reducing OS, melatonin deflects their role in non-productive
angiogenesis and endothelial senescence. Taken together, these observations support the
use of the hormone as an adjuvant therapy in AD.

6.1. How Does Aβ Stimulate Cerebral Angiogenesis?

As Aβ is produced by β- and γ-secretase from APP, there have been attempts to reduce
Aβ production via enzyme inhibition. Unfortunately, this has led to dense and highly
branched blood vessels. Cameron et al. [151] demonstrated that treatment of HUVECs and
zebrafish with Aβ monomers and γ-secretase inhibitors increases the number of tip ECs and
suggested an alternative mechanism through Delta-Notch signaling. Tip cell formation is
supported by the interaction between EV-associated Delta like 4 (Dll4) and cell membrane-
localized Notch, which restricts excessive sprouting angiogenesis, ensuring that only a
limited number of cells will identify as tip cells and initiate new vessel formation [162]. Here,
NAD+’s role is to improve VEGF sensitivity of tip cells and stimulate their proliferation,
migration and ECM invasion, while hampering the transcriptional activity of Notch in the
nucleus of stalk cells. Therefore, the latter cannot assume the functions of a tip cell and
produce unnecessary sprouts [163]. Upon monomer binding to the Notch extracellular
domain (NEXT), the same is cleaved to Notch intracellular domain (NICD) by γ-secretase
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and suppresses tip cell formation and hypervascularization. In the case of AD, Aβ competes
with NEXT for proteolysis and counteracts the inhibition of neovascularization (Figure 5).
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Figure 5. Regulation of tip cell formation through Delta-Notch signaling. Under normal conditions,
Delta-Notch signaling serves in intercellular communication. Upon their binding, Notch is cleaved by
γ-secretase into an extracellular domain (NEXT) and an intracellular domain (NICD). The latter acts
as a transcription factor and inhibits genes involved in tip cell conversion in stalk cells. The amyloid
protein Aβ serves as a competitive inhibitor of Notch and distracts γ-secretase. As a result, NICD
cannot inhibit tip cell conversion of stalk cells and triggers non-productive angiogenesis. Created
with https://www.BioRender.com (accessed on 30 May 2023).

Excessive angiogenesis is observed with γ-secretase inhibitors [151], while immu-
nization against Aβ protects against amyloid-Notch-induced vessel formation [164]. This
non-productive angiogenesis exposes AD patients to a significant risk of cerebral amy-
loid angiopathy (CAA) [10,11,159]. CAA is usually caused by Aβ accumulation in the
small arteries and capillaries in the brain, leading to chronic hypoxia, microaneurysms
and dementia. As a confirmation, a study using magnetic resonance angiography showed
disturbed blood flow in an 11-month-old APP23 transgenic mouse AD model compared to
20-month-old WT mice [11]. The researchers could not detect Aβ accumulation in larger
arteries and assumed that the blood vessel disruption was due to soluble Aβ monomers.
On the other hand, Aβ monomers were shown to exhibit pro-angiogenic effects, while
Aβ oligomers triggered senescence in ECs through the p53/p21 pathway [155]. Aβ1–42
monomers or fibrils had no effect on p21; instead, they increased VEGFR1 and decreased
VEGFR2 expression. The overexpression of VEGFR1 readily induced senescence in brain
MVs. At the same time, siRNA against VEGFR1 prevented upregulation of p21 upon
Aβ1–42 oligomer treatment. While some studies have proposed that VEGF could be se-
questered in Aβ plaques, Alvarez-Vergara et al. [153] observed high expression of VEGF in
astrocytes surrounding Aβ plaques and an association between VEGF expression and the
protrusion of filopodia from endothelial cells in mouse models. The integrin αVβIII was
also concentrated around the plaques, indicating vascular remodeling. A similar conclusion
was drawn from single-nucleus transcriptome analysis of AD patients, which showed an
induction of a subpopulation of ECs with increased expression of growth factors and their
receptors [165]. In addition, the examined ECs acted as antigen-presenting cells by MHC-I,
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which typically indicates viral infections. It is reasonable for Aβ deposits to induce a
pro-inflammatory response, but why MHC-I is involved in this process remains unclear.

Cells or animals can be genetically engineered with mutated APP or Tau proteins to
generate in vitro and in vivo models of AD. Alternatively, AD can be induced by exogenous
treatment with purified Aβ peptides. Even though, these peptides can be of various lengths
and modifications, once they are solubilized, they are not stable, and improper handling can
negatively impact the acquired results. Initially, the peptides turn into monomers, which
associate together, forming oligomers, and finally to amyloid plaques, and all of these
transitions are spontaneous in a water solution. Thus, the type of Aβ used for treatment
should be validated and explicitly stated in a study, because the cells’ response varies
depending on the applied Aβ form. Moreover, tissue samples acquired postmortem from
animal models or AD patients must be stored and prepared adequately as soon as possible
since many macromolecules can deteriorate and give false data in later examinations.

6.2. EVs Can Be Used as Biomarkers for Early AD Detection

EVs, and more specifically—exosomes, isolated from all sorts of AD model systems
are shown to carry Aβ (or APP) along with exosome markers such as Flotillin-1 and
Alix [166–169]. Moreover, some studies demonstrate a prion-like toxic activity of Aβ-
carrying exosomes, where shortly after being endocytosed, Aβ starts to propagate and
induce cell death [166,167,170]. Along these lines, many studies have attempted to use
EVs as biomarkers for early detection and prognosis of neurodegeneration. In a recent
study, Gallart-Palau et al. used brain EVs in the progressive course of AD and performed
a proteome-wide analysis [171]. They found damaged mitochondria, APP and prion
proteins (PrP) in EVs from the temporal lobe of AD patients due to impaired autophagy.
What is interesting is that they rebutted the hypothesis that PrP and APP together exhibit
neurotoxicity. Instead, their results show a co-upregulation of both PrP and APP at the
preclinical stage of the disease, where PrP binds with APP and helps to sequester it
in brain EVs (in agreement with another study [172]). Unfortunately, this protective
mechanism deteriorates and is inefficient at the clinical stage of AD [171]. Nevertheless,
these and many other studies demonstrate the role of EVs in disease progression and their
potential as biomarkers [168,173–175]. It is unclear whether the size of EVs determines
their mode of distribution between neuronal cells. Gabrielli and colleagues propose a
mechanism according to which small EVs are endocytosed and spread their pathologic
cargo trans-synaptically, whereas larger EVs move along the surface of axons, jump between
connected neurons, and finally activate a signal and/or become internalized at synaptic
sites [174]. In AD, hypoxia impedes the autophagy in neurons, causing the release of
EVs carrying dysfunctional mitochondria and APP. While these hypoxic EVs can exhibit
pro-neurodegenerative function, they can also supply mediators of hypoxia adaptation,
angiogenesis and protein quality control [176].

6.3. The Role of Endothelial Progenitor Cells (EPCs) as a Biomarker and Potential Therapeutic
Target in AD

There is increasing evidence that points to the alteration and dysfunction of the cerebral
vasculature as an important factor in assessing the pathophysiology of AD, and this process
may contribute to the onset of neurodegeneration, inflammation, Aβ accumulation and
tau phosphorylation [177,178]. The so called two-hit vascular hypothesis proposed by
Zlokovic and co-workers [179] suggested that damage in the cerebral vasculature (hit
one) induces the accumulation of Aβ in the brain (hit two). In this respect, endothelial
progenitor cells (EPCs) appear as a possible biomarker for early detection of AD as well
as a therapeutic target given their role in maintaining the vasculature. EPCs, which are a
rare population of cells originated from the bone marrow [180], circulate in the peripheral
blood and have a capacity to repair or replace the damaged vessels. The most characteristic
surface markers of EPCs are CD34, VEGF receptor 2 (VEGFR-2), and CD133. There are
two different types of EPCs: (a) early-outgrowth EPCs (e-EPCs), circulatory angiogenic
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cells, or colony-forming unit endothelial cells (CFU-EC), which take part in the process of
network formation and the repair of injured endothelial cells in a paracrine way by secreting
different angiogenic factors; and (b) late-outgrowth EPCs (l-EPCs), endothelial outgrowth
cells, or endothelial colony-forming cells, which improve angiogenesis by differentiating
into mature endothelial cells [181]. In addition to their different functionality, both types of
EPCs can be recognized by their appearance in vitro. Whereas e-EPCs appear after a few
days in culture and form colonies with spindle-shaped cells around them, l-EPCs appear
after 2–3 weeks in culture and present a cobblestone shape [182].

EPCs as prognostic markers—The number of EPCs and their ability to form CFU-EC
colonies has been proposed as a possible marker of vascular function in AD [183]. In a
clinical study of AD patients, Kong and co-workers [184] observed reduced numbers of
circulating EPCs compared to healthy patients and that lower numbers of EPCs correlated
with greater cognitive impairment. In addition, EPCs from moderate and severe AD
showed functional alterations in culture (such as reduced adhesion and migration capacity)
compared to mild AD and controls [183,185].

EPCs as therapeutic target—Additionally to the analysis of the number of EPCs in AD,
the therapeutic potential of these cells has also been suggested in different animal models.
For instance, when e-EPCs were injected intravenously into repeated scopolamine (SCO)-
induced cognitive impaired rats, it resulted in improved learning and memory, attenuation
of Aβ plaque deposition, as well as suppression of Aβ and p-tau levels. Similarly, when
l-EPCs were injected intravenously into APP/PS1 transgenic mice, researchers observed
an enhanced penetration of exogenous EPCs into the brain compared to controls. Sub-
sequently, if l-EPCs were injected directly into the hippocampus of the same transgenic
mouse model [186], they could lead to up-regulation of tight junction proteins (such as
zonula occludens-1, occludin, and claudin-5) in the BBB, increasing microvessel density and
promoting angiogenesis in the hippocampus and cortex. In addition, EPCs also showed an
anti-apoptotic effect, promoting neuronal survival in the hippocampus. Other effects of
EPC transplantation were the inspected reduction in the area and intensity of Aβ plaques
in the hippocampus and cerebral cortex and significantly improved learning and memory
in AD mice (APP/PS1). Recently, transfected EPCs that release antibodies against Aβ and
reduce its aggregation have been generated [187]. Therefore, EPCs are postulated as a good
therapeutic option for pathologies that present BBB alterations.

7. Therapeutic Approaches to Endothelial Senescence and Dysfunction

Understanding the underlying mechanism of aging and neurodegenerative diseases
will one day provide us with the means to treat them. Along with DNA damage, OS,
and insufficient or disturbed blood flow, behavioral and social cues guiding unhealthy
lifestyle choices also accelerate the aging process. It is urban knowledge that chronic
stress with high cortisol levels, high-calorie food, lack of exercise, etc. worsens life quality
and expectancy. As presented in this review, regular exposure to hormetic stress can
substantially improve vascular fitness, while properly controlled angiogenesis could delay
both aging and neurodegenerative processes. Indeed, many approaches entail exercise and
caloric restriction (CR) as therapies for vascular health instead of drug treatment.

7.1. Exercise Improves CBF, Vascular Function and Cognitive Performance

Angiogenesis in the brain microvasculature can improve tissue oxygenation, but if
done improperly, it can provoke vascular leakage and neurodegeneration. A way to ensure
positive angiogenesis is exercise, which stimulates eNOS by increasing the CBF [188] and
potentially reduces OS by hypoxia-mediated inhibition of oxidative phosphorylation. In
addition, aerobic exercise increases energy consumption (mimicking CR), while alleviating
basal membrane dysfunction [189] and age-related behavior changes [190].

In an eight-week comparative study between old sedentary and exercised male rats,
moderate exercise decreased the mean arterial blood pressure in favor of the trained
group [188]. It also improved CBF, VEGF, eNOS expression, capillary density and astrocyte
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growth [188,191,192]. Furthermore, malondialdehyde (MDA—a marker for lipid peroxi-
dation) levels were reduced in the exercised aged group [188]. Exercise also reduced the
levels of fibrin and fibrinogen in old mice, improving the activity of neurovascular units
(microvascular ECs, basement membrane, pericytes and astrocytes) [189]. Increased CBF,
by regular treadmill running, prevented the loss of BDNF, which usually leads to learning
and memory deficiencies [190]. Aerobic running on a treadmill or cycling induces EV
secretion before reaching an anaerobic state [193]. In contrast, Brahmer et al. collected EV
samples of athletes before, during and after cycling to exhaustion [194]. They observed a
significant increase in CD63+ EVs post exercise (at the highest lactate levels), with some
also carrying CD105 and CD146 (markers for ECs). Thus, exercise itself rather than the
intensity influences EV release. The EV release is very likely to be Ca2+-dependent, and
since muscle activation leads to Ca2+ flux, this could be a potential cause of EV accumu-
lation [195]. Meanwhile, Ca2+ signaling is impaired in senescent ECs and impedes the
contraction of vascular smooth muscle cells in mesenteric arteries of aged (24–26 month old)
mice [196]. Taken together, these findings support speculation that the increase in plasma
Ca2+ due to exercise could improve the vasomotor control of the arteries. Furthermore,
exercise-induced moderate hypoxia causes metabolic conversion to anaerobic glycolysis,
securing NAD+ availability when the TCA cycle and the ETC are subdued. The resulting
buildup of lactate provokes the expression of VEGFR2 in ECs [197] and stimulates repara-
tive angiogenesis in ischemic tissues [198]. Furthermore, lactate secreted by skeletal muscle
can travel through the blood and bind to the lactate receptor HCAR1, enriched in cells
lining the brain’s blood vessels, inducing VEGF expression and cerebral angiogenesis [191].
This was positively impacted by high-intensity interval training (HIIT) or lactate injections
and led to increased capillary density in the brain of WT mice and not in HCAR1-KO.
The authors linked this effect with the activation of ERK1/2 and Akt, which are upstream
positive regulators of VEGF [191]. In general, physical activity improves physical and
cognitive function by enhancing CBF and reducing OS, neuroinflammation and vascular
dysfunction, and positively impacts AD’s symptoms.

7.2. Caloric Restriction Reduces OS and Vascular Aging

Already, Ciceron has suggested that moderate eating and exercise are key factors for
longevity. Therefore, caloric restriction (CR) could be beneficial for people, as it activates
autophagy and triggers the cells to recycle and renew themselves [199]. Under CR, high
temperatures or excessive competition, C. elegans undergoes a dramatic metamorphosis
into a dauer form. In this state, the worms close their mouth apparatus, switch their
metabolism from the TCA cycle to gluconeogenesis and seize their development until food
becomes available. The incredible thing is that dauers live at least twice as long compared
to adult worms [200]. This is one of the reasons why C. elegans is the go-to system when
studying senescence. However, the restricted activity of mitochondria ultimately leads to
their deterioration [94]. In a recent study, mice meeting their caloric needs but consuming
less protein and branched fatty acids had lower adiposity, higher metabolic rates and
lifespans [201]. The authors attributed this to lower activation of mTORC1 by amino and
fatty acids, rather than CR itself. With aging, mTORC1 is upregulated, which correlates
with eNOS uncoupling and O2

•− generation, which are significantly reduced in senescent
ECs treated with rapamycin (an mTOR inhibitor) [202] and in old mice under CR diet [203].
A detailed review by Christopher R. Martens and Douglas R. Seals describes other stress-
induced cellular mechanisms inhibited in senile ECs—NO synthesis mediated by AMPK
and SIRT1, autophagy (detailed review of autophagy factors promoting longevity [204]),
and ECM stiffening through elastin proteolysis by MMP-9 and AGEs-induced inflammation
of the arterial wall that can be ameliorated by CR [205]. Furthermore, the activity of SIRTs as
histone deacetylases, hence, the epigenetic regulation of senescence and aging, is promoted
by CR [178]. Although there is substantial evidence that CR can reduce and delay the
deteriorating effects of aging and maintain our longevity, more controlled research is
necessary to establish good CR protocols accounting for personal needs.
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7.3. Role of Resveratrol in the Vascular Biology and Senescence Process

In general antioxidants such as reduced glutathione (GSH) and melatonin inhibit cell
senescence by reducing reactive oxygen species (ROS) generation [206]. Resveratrol (3,5,40-
trihydroxystilbene) (R), which is a non-flavonoid polyphenolic compound and derivative of
stilbene, exhibits its pleotropic function also by decreasing ROS production and improving
the antioxidant levels [207]. As mentioned above, EPCs are critical circulating components
of the endothelium and are identified as key factors in endothelial repair. In this respect,
resveratrol treatment can reverse EPC dysfunction by decreasing oxidative stress and
increasing proliferation and capillary-like structure formation, and, by increasing the
angiogenic factors like (NO), can reverse stress-induced senescence [208].

8. Conclusions

The study of angiogenesis in the context of endothelial senescence, aging and
Alzheimer’s disease has revealed their intricate complexity and heterogeneity. Even though,
senescent cells can trigger inflammation, they can also support tissue renewal in the adult
organism. Their dual role depends on the time, place and degree of their accumulation. The
induction and outcome of endothelial senescence can vary across different cell types, but it
underlies vascular dysfunction and subsequent non-productive angiogenesis and vascular
leakage. Short hormetic stress employed on blood vessels by hypoxia, metabolism switch
or high shear stress can reduce OS and improve EC responsiveness to angiogenic stimuli
and cognitive function. Identifying universal senescence markers remains a challenge, and
careful selection and consideration of their limitations are crucial for accurate research
conclusions. Furthermore, senile ECs secrete SASP factors that can accelerate aging and
neurodegeneration through induced inflammation. As a key SASP component, EVs can
be used as biomarkers for the early detection of AD, and the development of standard-
ized repositories for SASP markers could enhance their application and reproducibility.
Furthermore, studying neurodegenerative diseases and angiogenesis, researchers must
choose suitable models and consider factors such as the type of Aβ peptide and endothelial
cell line since the responses can vary significantly. Innovative in vitro and in vivo models
could provide more physiologically relevant insights. Addressing these considerations will
contribute to advancing our understanding of endothelial senescence and related processes.
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ATM Ataxia-telangiectasia mutated protein kinase
Aβ Beta-amyloid protein
BAECs Bovine Aortic Endothelial Cells
BBB Blood-Brain Barrier
BH4 Tetrahydrobiopterin
CAA Cerebral Amyloid Angiopathy
CBF Cerebral Blood Flow
CR Caloric Restriction
CVD Cardio Vascular Disease
DDR DNA Damage Response
Dll4 Delta-like 4 protein
ECM Extracellular Matrix
ECs Endothelial cells
eNOS Endothelial nitric oxide synthase
EPO Erythropoietin
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GLUT1 Glucose Transporter 1
GSH Glutathione
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HIF Hypoxia-inducible factor
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KO Knock-out
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PAI-1 plasminogen activator inhibitor
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PHD Prolyl hydroxylases
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ROS Reactive Oxygen Species
SASP Senescence-Associated Secretory Phenotype
SA-β-Gal Senescence-Associated β-galactosidase
SCs Senescent cells
sen-ECs Senescent endothelial cells
SIRT Sirtuins
SOD Superoxide dismutase
TCA Three Carboxylic Acid cycle
uPA(R) urokinase plasminogen activator/uPA receptor
VEGF Vascular Endothelial Growth Factor
VEGFR1(2) Vascular Endothelial Growth Factor Receptor 1(2)
WSS Wall Shear Stress
WT Wild Type
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