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Abstract: 1,3,4-Oxadiazole derivatives are among the most studied anticancer drugs. Previous studies
have analyzed the action of different 1,3,4-oxadiazole derivatives and their effects on cancer cells.
This study investigated the characterization of two new compounds named 6 and 14 on HeLa and
PC-3 cancer cell lines. Based on the previously obtained IC50, cell cycle effects were monitored by
flow cytometry. RNA sequencing (RNAseq) was performed to identify differentially expressed genes,
followed by functional annotation using gene ontology (GO), KEGG signaling pathway enrichment,
and protein–protein interaction (PPI) network analyses. The tubulin polymerization assay was used
to analyze the interaction of both compounds with tubulin. The results showed that 6 and 14 strongly
inhibited the proliferation of cancer cells by arresting them in the G2/M phase of the cell cycle.
Transcriptome analysis showed that exposure of HeLa and PC-3 cells to the compounds caused a
marked reprograming of gene expression. Functional enrichment analysis indicated that differentially
expressed genes were significantly enriched throughout the cell cycle and cancer-related biological
processes. Furthermore, PPI network, hub gene, and CMap analyses revealed that compounds 14
and 6 shared target genes with established microtubule inhibitors, indicating points of similarity
between the two molecules and microtubule inhibitors in terms of the mechanism of action. They
were also able to influence the polymerization process of tubulin, suggesting the potential of these
new compounds to be used as efficient chemotherapeutic agents.

Keywords: oxadiazole; cancer; microtubule; chemotherapy; RNAseq

1. Introduction

In eukaryotic cells, microtubules, actin, and intermediate filaments play a pivotal role
in an array of biological processes. The tubulin gene family appeared early during evolu-
tion [1,2] since it is fundamental for the architecture of cells and central for cell division
and other biological features [3]. Thus, tubulins are extremely attractive as therapeutic
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targets in cancer [4]. Having a fundamental role in mitosis, microtubules are dynamic
machines able to organize themself in the formation of the mitotic spindle. Furthermore,
microtubules are involved in the transport of vesicles and movement of organelles, con-
tributing to organism and cell homeostasis [3,5]. Microtubules have a tubular structure
made up of polymers of αβ-tubulin heterodimers, which form 13 protofilaments [6]. These
characteristics make microtubules important targets for cancer therapy [7] leading to the
development of drugs known as microtubule targeting agents (MTAs). MTAs can display
an efficient killing activity in both solid and hematological cancers [6,8,9]. Among the
most famous MTAs are the taxane family, vinca alkaloids, and colchicine. They can be
divided into microtubule-stabilizing agents (MSAs) and microtubule-destabilizing agents
(MDAs). One of the main features of cancer cells is a hyperactive cell cycle activity, which
induces cells to proliferate in an uncontrolled way [10], and tubulin plays a critical role in
controlling mitosis. Consequently, tubulin has become a key target for drug development
in cancer research [6,8,11,12]. Using a combination of proteomics, transcriptomics, bio-
statistical analysis, and computational chemistry, we and others are trying to understand
how newly developed molecules can affect the behavior of cancer cells for therapeutic
purposes [13]. In previous studies, we explored the mechanism of action and molecular
targets of 1,3,4-oxadiazoles which showed antiproliferative activity in different types of
cancer cells [7]. We identified a molecule called 2j, which has been used as a lead com-
pound in further studies [14]. Furthermore, our recent research identified an array of
compounds in which the 1,3,4-oxadiazole ring has been changed to 1,3,4-thiadiazole (6)
and 1,3,4-selenadiazole (Table 1). Our recent findings uncovered the antiproliferative effect
of these two derivates, of which IC50s were calculated on HeLa and PC-3 cancer cell lines
(Table 2) [1]. In the current study, the anticancer activity of these two compounds was
investigated using biological and bioinformatic approaches.

Table 1. 1,3,4-Thiadiazoles-2,5-disubstituted (6) and 1,3,4-selenadiazole analogues (14).
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Table 2. IC50 calculation of 1,3,4-Thiadiazoles-2,5-disubstituted (6) and 1,3,4-selenadiazole analogues
(14) on HeLa and PC-3 cell lines.

Compound X IC50 HeLa (µM) IC50 PC-3 (µM)
6 S 0.145 ± 0.06 0.176 ± 0.08
14 Se 0.005 ± 0.03 0.067 ± 0.06

2. Results
2.1. Cell Cycle Analysis

To understand the effect of the compounds 6 and 14 on the cell cycle, we used flow
cytometry. In order to highlight effects on the cell cycle, we used a concentration of 1 µM
for this set of experiments. The results showed that both compounds induced a strong
perturbation of the cell cycle, with cells almost totally arrested in the G2/M phase. We
observed the action of the compounds in a time course of 6, 12, and 18 h. Compound 14
was the strongest drug in both HeLa and PC-3 cells. Both compounds showed an initial
effect on the cell cycle as early as 6 h with a gradual increase in G2/M phase. On HeLa cells
after 18 h, both compounds showed a clear block with almost all cells in G2/M, while, on



Int. J. Mol. Sci. 2023, 24, 11263 3 of 18

PC-3 cells, the effect was evident but less pronounced. We may conclude that the tested
compounds mainly inhibit cancer cell proliferation by causing a mitotic block (Figure 1).
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Figure 1. (A). Cell cycle analysis of Hela treated with 6 and 14 at different time points. (B). Cell cycle
analysis of PC-3 cells after the administration of 6 and 14 at different time points.

2.2. Analysis of Gene Expression after Treatment of HeLa and PC-3 Cells with Compounds 6
and 14

To study the effect of thiadiazole derivatives on gene expression we focused our
attention on compounds 14 and 6 since they showed the strongest mitotic block effect in
both cell lines. Cells were treated with a concentration of 1 µM of the two compounds at
different time points (6, 12, and 18 h) and subjected to RNA sequencing. Gene expression
was calculated using RSEM and represented by FPKM. Differential expression analysis was
performed using edgeR. There was a total of 204 differentially expressed genes (DEGs) after
treatment of HeLa cells with compound 14 for 6 h and a total of 273 DEGs after treatment
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for 18 h. A total of 258 DEGs were detected after treatment of PC-3 cells with compound 14
for 6 h and 279 DEGs after 12 h. Treatment of HeLa cells with compound 6 for 6 h caused
282 DEGs and, after 18 h, 331 DEGs were detected (Figure S1A, Supplementary Materials).
A total of 241 DEGs were detected after 6 h of treatment of PC-3 cells with compound 6
and 122 after 12 h (Figure S1B, Supplementary Materials).

2.3. GO Enrichment and KEGG Pathway Analysis of DEGs

In order to understand the functions and further characterization of the DEGs, GO
and KEGG analysis were carried out using online tools (OmicShare tools). GO enrichment
analysis indicated that the biological processes regulated by compound 14 on both cell lines
were mainly related to the mitotic cell cycle, programed cell death, and apoptotic processes.
Molecular function analysis suggested that the most significant changes were at the level of
microtubule motor activity and cyclin-dependent protein serine/threonine kinase activity.
Accordingly, the most prominent cellular component analysis hits were microtubule, intra-
cellular components, and chromosome (Figure 2A). KEGG pathway analysis showed that
the differential genes were mainly involved in the following biological processes: regulation
of mitotic cell cycle phase transition, DNA damage checkpoint, microtubule-based process,
and positive regulation of cell death. The main signal pathways involved were cell cycle,
FoxO signaling pathway, apoptosis, and p53 signaling pathway. Similar results were noted
for compound 6. Enrichment analysis of GO for biological processes was mainly related to
the mitotic cell cycle, programed cell death, and apoptotic processes. Regarding the molec-
ular function analysis, the most significant annotation was binding, microtubule motor
activity, and cyclin-dependent protein serine/threonine kinase regulator activity. The most
prominent annotations in cellular components analysis were microtubule, intracellular
components, and chromosome (Figure 2B). KEGG pathway analysis showed that the DEGs
were mainly involved in mitotic cell cycle phase transition, regulation of cell cycle, DNA
damage checkpoint, microtubule-based process, and regulation of apoptotic process. The
main signal pathways involved were cell cycle, FoxO signaling pathway, apoptosis, and
p53 signaling pathway.
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2.4. PPI Network Construction and Hub Genes Screening for Compounds 14 and 6

To gain a better understanding of cross-regulation of DEGs, a PPI network was es-
tablished using an online visualization system. PPI network analysis for compound 14
indicated that the top 15 genes ranked as hub were PLK1, TUBA1A, CDK1, AURKA,
CDC20, PCNA, CCVA2, CCNB1, CDKN1A, EGR1, JUN, TP53, FOXO4, CTNNB1, and
CDK2 (Figures 3 and 4). For compound 6, the top 15 genes were TUBB4B, CDK1, PLK1,
MCM5, AURKA, AURKB, CDK6, CDK2, CCND1, STAT1, CDKN1A, EGR1, TP53, BRCA1,
and SUMO1 (Figures 5 and 6). From our results, it is important to note that both of our
compounds are closely related to genes and proteins involved in the microtubule network
of the cell, such as the TUB family of proteins.
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2.5. Comparison of Gene Expression Changes Caused by Compounds 6 and 14 with Gene
Expression Profiles Induced by Treatment of Cancer Cells with Known Drugs

The DEGs obtained from the HeLa and PC-3 cells treated, respectively, with com-
pounds 6 and 14 were compared to the gene expression profiles available in the CMap
database and Drugbank, where the same cell lines were treated with known drugs
(Figures 7 and 8). The results depicted indicate that our compounds are both related to
anti-tubulin drugs that are already known and used in the treatment of different types of
cancer diseases. For example, compound 14 caused downregulation of the TUBA4A, TUBB,
and TUBA1A genes, which is also closely related to the function of other drugs, such as
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vincristine, vinblastine, and colchicine (Figure 7). Likewise, compound 6 behaves similarly
to 14 and other commercially available anti-tubulin drugs (Figure 8).
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nodes represents the degree of the genes; red represents the upregulation and green represents the
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In fact, comparative analysis indicated that compounds 6 and 14 caused gene expres-
sion changes similar to those caused by microtubule inhibitors, strongly suggesting that
both compounds could act as novel microtubule inhibitors (Table 3).

Table 3. Pharmacologic perturbagens connected with molecules 6- and 14-induced DEGs.

Name Belongs to Score
fenbendazole Tubulin inhibitor 99.81
oxibendazole Tubulin inhibitor 99.81
flubendazole Tubulin inhibitor 99.8
mebendazole Tubulin inhibitor 99.78

14

vincristine Tubulin inhibitor 99.68
mebendazole Tubulin inhibitor 99.87

vindesine Tubulin inhibitor 99.87
fenbendazole Tubulin inhibitor 99.82
oxibendazole Tubulin inhibitor 99.81

6

flubendazole Tubulin inhibitor 99.8

2.6. qRT-PCR Validation of Hub Genes

To validate the data elaborated in silico, HeLa and PC-3 cells were treated with
compounds 6 and 14 and subjected to reverse transcription and qRT-PCR analysis. We
focused the analysis on tubulin genes and, according to qRT-PCR results, the hub genes
confirmed the results produced by the edgeR system, and the expression levels of the
selected genes in the HeLa and PC-3 cells were consistent with the results of bioinformatic
analysis. Compared to the control group, the expression of TUBA1A, TUBA4A, TUBA4B,
and TUBB was downregulated (Figure 9).
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2.7. Molecular Docking Studies

In a previous study, Arnst et al. confirmed that the cavity in colchicine microtubule
composed of the three α-helices of Ala12, Asn206, and Leu227 was the docking site of
this drug, which was also a potential domain of drug targeting due to its special spatial
configuration [15]. Docking results showed that compound 14 and compound 6 could
bind this site (Figure 10). Compared with compound 6 (LibDockScore, 100.56), compound
14 exhibited a higher docking score (LibDockScore, 115.39). Additionally, compound
14 inserted the entire molecule into the cavity with 1,4-dihydroindeno [1,2-b]pyrrole as
the insertion site (Figure 10A). On the other hand, compound 6 inserted the cavity by
chlorophenyl so that 1,4-dihydroindeno [1,2-b]pyrrole did not play an important role
in binding (Figure 10B). In compound 14, nitrogen atoms in selenadiazole were more
likely to produce hydrogen bonds during the interaction in which the electronegativity
of selenium atoms was weaker than that of sulfur atoms. Moreover, hydrogen bonds
were critical for conformation and binding activity in ligand–receptor interaction. The
interaction graph showed that nitrogen atoms in selenadiazole of molecule 14 formed
hydrogen bonds with GLY143, producing π-sigma bonds with ALA12 and π-π stacked
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bonds with TYR224 with 1,4-dihydroindeno [1,2-b]pyrrole as the insertion site in molecular
conformation. In addition, chlorine atoms on the benzene ring formed a halogen bond
with ASN101 (Figure 11A). Compound 6 forced molecules to form π-π stacked bonds with
TYR224 by chlorophenyl insertion through hydrogen bonding between sulfur atoms of
thiadiazole and ALA12 and halogen bonds formed between chlorine atoms on benzene
rings and GLN11 and GLN15 (Figure 11B).
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2.8. Compounds 6 and 14 Interact with the Tubulin Polymerization Process

To further confirm that compounds 6 and 14 interact with tubulin assembly, a tubulin
polymerization assay was performed. Figure 12 shows how paclitaxel, 6, and 14 affect
the process of tubulin polymerization. In particular, the action of compound 6, which
shows a higher speed in the nucleation process than the already known paclitaxel, [16]
is surprising. Compound 14 also shows remarkable speed in the nucleation process and
earlier plateau phase attainment. These results confirmed that both compounds significantly
increase the polymerization of tubulin compared with the control. Moreover, compared to
paclitaxel at equimolar concentrations, compound 6 in particular could bind with higher
affinity by increasing the rate of polymerization, resulting in stabilization in less time.
Therefore, compounds 6 and 14 could interact with the same binding site as paclitaxel and
be considered as MTAs.
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paclitaxel, 6, and 14 (10 µM). Then, tubulin polymerization was assessed by measuring absorbance
every 30 s for a total of 60 min.
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3. Discussion

Cancer remains one of the greatest challenges in the world of research and it is still
one of the leading causes of death worldwide [17]. Currently, the main strategies to fight
cancer are chemotherapy, radiotherapy, and surgery. Chemotherapy and radiotherapy have
strong side effects, which can cause secondary pathologies and worsen the clinical picture
of patients. For these reasons, researchers are trying to develop new anticancer drugs
able to target specifically tumor cells while sparing normal cells, eliminating unwanted
toxicities [18]. Thanks to the capacity of organizing the cytoskeleton and mitotic spindle,
microtubules are crucially required for cell survival [19]. Given the higher mitotic index
of cancer compared with normal cells, tubulin is a very well-known molecular target in
cancer therapy, leading to the development of tubulin inhibitors [8]. Recently, MTAs are
emerging as strong anticancer drugs both for the capacity to suppress tubulin aggregation
into microtubules, causing apoptosis, and to inhibit angiogenesis [11,14,20].

1,3,4--Oxadiazoles derivatives have been shown to possess cytostatic and cytotoxic
activity against cancer cell lines [21]. Mechanistically, their anticancer activity has been
linked to inhibition of the epidermal growth factor receptor (EGFR) [21,22], vascular
endothelial growth factor receptor (VEGFR) [23], or telomerase [24]. In this new study, we
investigated the effect on the cancer cell cycle and gene expression of two 1,3,4 oxadiazole
derivatives, compound 6 and 14 [1]. Flow cytometry experiments in HeLa and PC-3 cells
showed that, after six hours from the beginning of treatments, both molecules are able
to cause a decrease in cells residing in the G1 phase of the cell cycle and an increase in
cells in S phase. A block in G2/M phase is observed after 18 h in HeLa and 12 h in PC-3
cells (Figure 1). There is a slight difference between the two cell lines in terms of cell cycle
effects. HeLa respond better to treatment than PC-3, with a sharper peak of cells in G2/M.
This could be explained by the fact that HeLa possess a faster and higher growth rate than
PC-3. In fact, HeLa cells are known for their rapid proliferation and fast cell cycle, whereas
PC-3 cells, although cancer cells, may exhibit some cell cycle alterations related to their
metastatic nature. Drugs that modify the structure of microtubules destabilize normal cell
functions and cell division, causing programed cell death and/or cell cycle arrest [25,26].
To understand whether the effects of compounds 14 and 6 were accompanied by changes
in gene expression, HeLa and PC-3 cells were exposed for 18 h to a low concentration of
the molecules (1µM) and subjected to RNA sequencing analysis. The results indicated
that there were hundreds of genes activated or repressed in both HeLa and PC-3 cell lines.
Notably, the number of DEGs appears to be slightly lower in PC-3 lines than in HeLa lines,
results that are in line with what was obtained in the flow cytometry experiment in which
the effect on the cell cycle appeared to be less pronounced in HeLa, especially regarding
compound 6.

GO and KEGG analyses showed that the compounds induced gene changes associ-
ated with microtubule motor activity and binding, as well as cyclin-dependent protein
serine/threonine kinase activity (Figure 2). KEGG pathway analysis showed that a large
fraction of DEGs were involved in DNA damage checkpoint and in the activation of cell
death mechanism, including p53 signaling.

PPI network analysis demonstrated that compound 14 affected TUBA1A, CDK1, and
TP53 expression (Figures 3 and 4). On the other hand, compound 6 modified TUBB4B,
STAT1, and BRCA1 expression (Figures 5 and 6). All these genes are involved in cru-
cial biological processes. Some mutants of TUBA1A were unable to assemble properly
into a microtubule polymer, thus resulting in tubulin deficiency involving cell cycle ab-
normalities. Such abnormalities may contribute to the development of tubulinopathies,
neurodevelopmental disorders, and carcinogenesis [27]. For these reasons, TUBA1A is a
therapeutic target of some tubulin inhibitors already available, such as Taxol, nocodazole,
and vincristine. TUBB4B, another member of the TUBA1A family, is a prognostic marker
in endometrial, liver, and thyroid cancers. It has been shown that the downregulation of
TUBB4B is crucial for the initiation of epithelial–mesenchymal transition (EMT), which is
necessary for metastasis, although TUBB4B expression is upregulated in metastatic colorec-
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tal cancer lesions identified in sentinel lymph nodes [28]. Furthermore, it has been observed
that, in colon cancer cells, TUBB4B influences cell polarity and controls focal adhesions [28].
Another gene affected by compound 14 was TP53; mutations on this gene affect activation
of cell proliferation, suppression of DNA repair, and apoptosis. Therefore, dysregulations
of TP53 levels lead to accelerated cell progression in several types of cancer, including
prostate cancer and cervical cancer [29,30]. The CDK1 protein altered by compound 14
also has an important active role in cell cycle progression [31]. Much research has shown
that dysregulation of CDK1 results in more aggressive tumor development, increased cell
proliferation, and chromosomal instability. Compared with other kinases, altered CDK1
levels have more significant effects on cell progression. In addition, CDK1 has been found
in several tumor types, such as ovarian carcinoma, liver carcinoma, breast carcinoma,
colorectal carcinoma, and prostate cancer. Regarding BRCA1 affected by compound 6, it
has been seen that BRCA1 and BRCA2 pathogenic variants are associated with prostate
cancer risk [32]. The BRCA1 gene provides instructions to produce a protein that acts
as a tumor suppressor. Tumor suppressor proteins help prevent cells from growing and
dividing too rapidly or uncontrollably. BRCA1 is involved in repair processes of damaged
DNA by contributing to the stability of genetic information in cells. In addition, BRCA1
also regulates the expression of other tumor suppressors, proteins that regulate cell divi-
sion, and plays an important role in embryonic development. Another gene affected by
compound 6 was STAT1, which, in different tumor types (including prostate cancer), acts
as a tumor suppressor and oncogene. Patients with localized prostate cancer who have
high STAT1 expression have longer cancer-specific survival times, whereas patients with
advanced prostate cancer who have low STAT1 expression experience early biochemical
recurrence [33]. In addition, STAT1 abnormalities have been associated with increased
resistance to docetaxel therapy against prostate cancer. Thus, it is evident that compounds
6 and 14 were capable of altering some of the most important tumor cellular processes
and, in particular, cell proliferation. Therefore, based on the affected genes and the previ-
ous discussion, we evaluated the interactions of compounds 6 and 14 with known drugs.
Both compounds showed similarities with drugs acting as tubulin inhibitors (Table 3).
For instance, we found a significant similarity of compound 14 with fenbendazole (FZ).
A recent study showed that FZ exhibits moderate microtubule depolymerizing activity
against human cancer cells but possesses a potent antitumor effect in vivo and in vitro [34].
Furthermore, compound 6 showed a similarity of action to mebendazole. The latter has
been evaluated in recent studies as a clinical candidate for use in the treatment of prostate
cancer in synergy with docetaxel [35]. The binding of compounds 6 and 14 to tubulin
and their mechanism of action were studied by deducing their crystal structure using
RCSB PDB [15]. Both compounds showed binding specificity for a specific site in tubulin
(Figure 10); however, molecule 14 exhibited a higher docking score for this site compared to
molecule 6. This could be explained by the fact that, differently from compound 6, molecule
14 acts inserting the entire structure in the cavity with 1,4-dihydroindeno [1,2-b]pyrrole
(Figure 10A). Compound 6 inserts the cavity by chlorophenyl and 1,4-dihydroindeno [1,2-
b]pyrrole does not exhibit a pivotal role in the binding (Figure 10B). In agreement with
these observations, both compounds were able to interfere with the tubulin polymerization
process. Tubulin is a key component in tumor progression and both of our compounds were
able to destabilize it to an even greater degree to paclitaxel at equimolar concentrations.
Although the compounds appear to bind with higher affinity to the colchicine binding site,
they behave as MSAs and mimic the action of paclitaxel. The observation that compounds
6 and 14 bind to the colchicine site on the tubulin beta chain but stabilize microtubules in a
paclitaxel-like manner presents an interesting paradox. To analyze this phenomenon, it is
necessary to consider the structural and functional implications of their binding, as well
as the potential conformational changes induced by the compounds. The colchicine site
is traditionally associated with destabilization of microtubule assembly. Colchicine itself,
for example, binds to this site and prevents the addition of tubulin subunits, leading to
microtubule depolymerization [36,37]. In the case of compounds 6 and 14, while binding to



Int. J. Mol. Sci. 2023, 24, 11263 14 of 18

the colchicine site, they show a stabilizing effect on microtubules. This suggests that their
binding induces a different set of effects than colchicine. Indeed, binding of compounds
6 and 14 to the colchicine site may induce conformational changes in the structure of the
surrounding tubulin, affecting the overall stability of the microtubule assembly. These
compounds could potentially enhance tubulin–tubulin interactions within the microtubule
reticulum, leading to increased stability rather than destabilization. It is important to
consider that compounds 6 and 14 bind to the colchicine site differently from colchicine
itself by only partially sharing the same amino acids. They interact with tubulin through
unique molecular interactions and could induce specific structural rearrangements that
promote microtubule stabilization. The specific binding modes of these compounds within
the colchicine site may have a significant impact on their functional results. The above
would demonstrate the similarity of our compounds in colchicine binding and tubulin
stabilization function with paclitaxel, which is also supported by immunofluorescence data
showing malformation of the microtubule complex during mitosis (Figure S3, Supplemen-
tary Materials). Thus, the binding of compounds 6 and 14 to the colchicine site and the
paclitaxel-like stabilization of microtubules suggest unique interactions and conformational
changes that differ from traditional destabilizers, such as colchicine. Further investigation
into their binding modes and structural effects on tubulin will be invaluable in unraveling
the exact molecular mechanism underlying their stabilizing behavior. Despite these dif-
ferences, perturbation of the tubulin–microtubule dynamic equilibrium leads to the same
final result: metaphase arrest of cell division and induction of apoptosis.

In conclusion, this research showed that compound 6 and 14 target tubulin, pertur-
bating normal cell cycle progression and causing the downregulation of genes involved
in a spectrum of key biological processes. In the near future, we will conduct in vivo
experiments to evaluate the efficacy of compounds 6 and 14 in reducing or arresting tumor
growth and systemic effects in mouse models. This could initiate preclinical and clinical
trials to compare their anticancer activity to current chemotherapeutic drugs targeting
microtubules.

4. Materials and Methods
4.1. Cell Culture

HeLa (cervical carcinoma) and PC-3 (prostate adenocarcinoma) cell lines (ATCC,
Rockville, Gaithersburg, MD, USA) were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco, Grand Island, NY, USA). DMEM was supplemented with 10% of fetal
bovine serum (FBS), 100 µg/mL streptomycin (Gibco), 1% of L-glutamine, and 100 units/mL
of penicillin. Then, cells were incubated at 37 ◦C with 5% of CO2 in a humified incubator.

4.2. Cell Cycle Analysis

In order to understand the effect of compound 6 and compound 14 on cancer cells,
we performed a cell cycle analysis. Both tumor cell lines were seeded on 6 cm dishes
so as to achieve 50% confluence. After 24 h, cells were treated at a 1 µM concentration
of compound 6 and compound 14 at different time points. After that, supernatant was
aspired and discarded and cells were detached using trypsin and collected after having
been centrifuged at 3000 rpm for five minutes. Then, the pellet was washed with cold PBS.
Consequently, cells were fixed with 70% of cold ethanol on a vortex so as to break apart a
cluster of cells and incubated o/n at −20 ◦C. Later, the pellet was resuspended in 0.4 mL
propidium iodide staining solution (4ABiotech, Co., Ltd, Beijing, China) and incubated for
30 min at RT. Then, samples were acquired using BD FACS CANTO II and the next analysis
was performed using Modfit LTTM software.

4.3. RNA-Seq Library Construction and Sequencing

HeLa and PC-3 cells in the exponential phase of growth were plated into a 6-well
culture plate according to the phenotype and population doubling of every cell line. Then,
molecules 14 and 6 were added at a final concentration of 1 µM and cells were incubated
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from 6 to 18 h. After that, cells were collected at different time points. The RNeasy MINI
Kit (Qiagen, Shanghai, China) was used for extraction of total RNA from cells. The Agilent
2100 Bioanalyzer system (Agilent, Co., Ltd., Shanghai, China) was employed to evaluate the
quality of the extracted total RNA. Oligo (dT) magnetic beads were used for the isolation
of poly(A) tail-containing mRNAs. Following that, the mRNAs were cut off randomly
to establish a sequencing library with the mRNA fragments. After purification with the
magnetic beads, 150–200 bp fragments were obtained to construct a PE150 library and
perform sequencing with the HiSeq 500 Sequencer. Library construction and sequencing
were undertaken by Novogene Co., Ltd., Beijing, China.

4.4. Identification of Differentially Expressed Genes

All data generated from the sequencer were converted to raw reads. In order to ensure
the quality and reliability of data analysis, clean reads were obtained by removing the raw
reads that contained adapters or unknown bases or had low quality. The clean reads were
compared to the reference sequences before calculating the expression levels of genes and
transcripts via RSEM. Intergroup differential expression analysis was conducted using
edgeR.

4.5. GO Functional Annotation Classification and KEGG Enrichment Analysis

Key biological pathways associated with the DEGs were discovered via functional
enrichment analysis. The Gene Ontology (GO) database was used for categorizing the
selected DEGs by the involved biological processes, cellular components, and molecular
functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) was applied in the signaling
pathway enrichment, annotation, and analysis of DEGs. GO functional enrichment analysis
and KEGG pathway enrichment analysis were both carried out by online tools.

4.6. Protein–Protein Interaction (PPI) Networks and Hub Gene Analysis

To further investigate the mechanisms of the antitumor activity of 14 and 6 on the
molecular level, a protein–protein interaction (PPI) network was set up using the STRING
database, while an interaction network of DEGs was established based on the results of
differential expression analysis and the interaction pairs available in the STRING database.
In addition, the CytoHubba plugin of Cytoscape was used for the screening of central
nodes in the network, and the genes with the top 15 Matthews correlation coefficient (MCC)
values were considered as hub genes.

4.7. Connectivity Map and Drugbank Analysis of DEGs

The Connectivity Map (CMap) is a database of chemical interventions developed by
the Broad Institute. The CMap database contains 7000 expression profiles that involve over
1300 compounds and it can be used for searching information of medications having similar
effects to reveal the functional connections among SMCs, genes, and the morbid state. To
recognize possible targets and the mechanism of action, highly correlated small-molecule
drugs can be identified through comparative analysis by searching the CMap database for
the upregulated and downregulated differential genes and the detection of similar small
molecules with DrugBank database.

4.8. qRT-PCR Validation of DEGs

To verify the RNA-seq results, eight DEGs, identified by the sequencer, were isolated
from different signaling pathways to form a qRT-PCR primer. Before the qRT-PCR, reverse
transcription was performed to synthesize complementary DNAs (cDNAs) using the
isolated RNAs. GAPDH was used as the reference gene and the relative expression level of
every gene was determined using the 2∆∆CT method.
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4.9. Molecular Docking Verification

AutoDock is a suite of molecular docking tools designed to predict interactions be-
tween ligands and bio-macromolecular targets. It allows changes in conformation of small
molecules and it evaluates molecular docking based on free energy changes. In this study,
the microtubule proteins having a crystal structure were sourced from the PDB data down-
loaded from RCSB (extraction code: 5H7O). Ligands and water molecules were removed
from the proteins, while 14 and 6 were used for the verification of molecular docking
between the ligands and the microtubule proteins via AutoDock4.2.6. The docking results
were subjected to PyMOL analysis.

4.10. Tubulin Polymerization Assay

The tubulin polymerization assay was performed using the kit provided by Cytoskele-
ton (BK006P, Cytoskeleton, Denver, CO, USA). Absorbance was recorded at 340 nm at
37 ◦C for 60 min with fixed acquisitions every 30 s. The assay was performed by incu-
bating equimolar concentrations of tubulin with paclitaxel, compound 6, and compound
14. Tubulin without molecule was used as a negative control. After 60 min, the optical
density of tubulin polymerization was recorded by reading the absorbance with the spec-
trophotometer. The experiments were performed in triplicate (Figure S2, Supplementary
Materials).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241411263/s1.
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