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Abstract: Mammalian SWI/SNF (mSWI/SNF) complexes are ATP-dependent chromatin remodeling
enzymes that are critical for normal cellular functions. mSWI/SNF enzymes are classified into
three sub-families based on the presence of specific subunit proteins. The sub-families are Brm- or
Brg1-associated factor (BAF), ncBAF (non-canonical BAF), and polybromo-associated BAF (PBAF).
The biological roles for the different enzyme sub-families are poorly described. We knocked down the
expression of genes encoding unique subunit proteins for each sub-family, Baf250A, Brd9, and Baf180,
which mark the BAF, ncBAF, and PBAF sub-families, respectively, and examined the requirement for
each in myoblast differentiation. We found that Baf250A and the BAF complex were required to drive
lineage-specific gene expression. KD of Brd9 delayed differentiation. However, while the Baf250A-
dependent gene expression profile included myogenic genes, the Brd9-dependent gene expression
profile did not, suggesting Brd9 and the ncBAF complex indirectly contributed to differentiation.
Baf180 was dispensable for myoblast differentiation. The results distinguish between the roles of the
mSWI/SNF enzyme sub-families during myoblast differentiation.

Keywords: SWI/SNF; myogenesis; Baf250A; Brd9; myogenin; gene regulation; chromatin remodeling

1. Introduction

SWI/SNF chromatin remodelers are ATP-dependent enzymes that alter nucleosome
structure to facilitate or prevent access of regulatory factors to the genome and are con-
served throughout the eukaryotic kingdom [1–4]. Early work in yeast determined that
genes encoding proteins involved in mating type switching (SWI) and in sucrose fermen-
tation (SNF) formed a multi-protein complex containing a DNA-dependent ATPase of
the SNF2 family [5,6]. Subsequent work in both yeast and human cells determined that
such complexes altered the structure of nucleosomes in an ATP-dependent manner and
promoted binding of transcription factors to the nucleosome [7–10]. Formal demonstration
of enzymatic activity followed [11]. Studies of SWI/SNF complexes in mammalian cells
revealed that significant diversity exists in the assembly of the complexes [12–16]. There
are two mutually exclusive ATPases, called Brahma (Brm) and Brahma-related gene 1
(Brg1 [17,18]). The original purifications of mammalian SWI/SNF complexes identified two
chromatographically separable fractions, originally termed “A” and “B”, that contained
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ATP-dependent nucleosome remodeling activity that tracked with the presence of the AT-
Pase protein [8–10]. These complexes were subsequently renamed Brg1- or Brm-associated
factor (BAF) and polybromo-associated BAF (PBAF), respectively, based not on the ATPase
responsible for enzymatic activity but on the presence of subunits that were unique to each
complex [19].

Additional work has shown that specific mSWI/SNF subunit proteins have different
splice forms, can be encoded by multiple genes that are differentially expressed among
tissue types or under different conditions, and consequently can be assembled into many
distinct complexes that differ in subunit composition and function. Based on the number
of identified subunits and their variants, in theory there can be thousands of combinations
that can constitute a mammalian SWI/SNF (mSWI/SNF) complex [12,13,16]. Nevertheless,
the diverse compositions of complexes could still be classified as members of the BAF or
PBAF families. More recently, a third sub-family of complex has been recognized, called
non-canonical BAF (ncBAF). ncBAF lacks some of the subunits that are common to BAF,
and PBAF and has other subunits not found in those two sub-families [20–24].

The catalytic activity of Brg1/Brm and homologs form other species share a common
mechanism by which ATP-hydrolysis powers alteration of the path and position of the
DNA around a nucleosome particle [1–4]. Consequently, the diversity of mSWI/SNF
complexes likely originated from the need to target the catalytic activity to different places
in the genome, as well as provide specialized functions.

Research related to mSWI/SNF contributions towards skeletal muscle differentiation
has been focused on the requirement and roles for the catalytic subunit. For instance,
ectopic expression of catalytically inactive Brg1 or Brm subunits inhibited differentiation,
prevented chromatin remodeling of several myogenic genes, and consequently decreased
their expression [25–31]. Brg1 and Brm have differential roles in regulating gene expression
during myogenesis. Brg1 is required for the transcription of myogenic genes at early stages
of differentiation, while Brm is required for Ccnd1 repression and cell cycle arrest that
precedes the activation of late muscle genes [31]. Core subunits shared by BAF, PBAF,
and ncBAF complexes have been also implicated in the development of heart and skeletal
muscle development during mouse embryogenesis [32–35]. Among these, the Baf60c
subunit has a critical role in targeting mSWI/SNF enzymes to myogenic promoters [27,30].
Baf53a, another core component of the three sub-families, and Snf5, a subunit shared
only by BAF and PBAF complexes, are also required for the transcriptional activation of
myogenic genes [36].

mSWI/SNF complexes are also essential for myoblast proliferation. Brg1 and Snf5
subunits contribute to myoblast cell cycle progression, and knockout (KO) of Brg1 in pri-
mary myoblasts resulted in cell death [36,37]. Brg1 is essential for Pax7 expression, a master
transcription factor that supports myoblast proliferation and survival [37]. The regulation
of Pax7 expression is partially regulated by casein kinase 2-mediated phosphorylation
of Brg1 [38]. Moreover, short hairpin RNA (shRNA) knockdown (KD) of distinguishing
subunits of the BAF, ncBAF, and PBAF complexes in C2C12 myoblasts showed the differ-
ential contributions of each sub-family to myoblast proliferation. KD of specific subunits
of the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of
PBAF-specific subunits did not affect proliferation [39]. RNA-seq analyses from prolifer-
ating myoblasts knocked down for Baf250A (BAF complex) exhibited a reduction in Pax7
expression due to a decreased binding of Baf250A and impaired chromatin remodeling
at the promoter of this proliferation marker. The proliferation defect was reversed by
reconstituting Pax7 expression using a doxycycline-inducible lentiviral vector. Thus, the
work demonstrated that the BAF sub-family is required for myoblast proliferation via
regulation of Pax7 expression [39].

In the current work, we aimed to understand the specific contributions of BAF, ncBAF,
and PBAF enzymes to myoblast differentiation, using a similar strategy of shRNA-mediated
KD of the expression of the individual mSWI/SNF enzyme subunits that are specific to
the three sub-families (Baf250A, Brd9, and Baf180, respectively [39]). Our data show that
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the BAF complex is required for myoblast differentiation as it regulates the expression
of myogenin and other myogenic genes required to initiate and continue the myogenic
program. Mechanistic analyses determined that Baf250A is bound to the regulatory se-
quences controlling the expression of these genes. RNA-seq and subsequent GO analyses
of differentially expressed genes in Brd9 KD differentiating myoblasts did not identify
terms associated with skeletal muscle, suggesting that the ncBAF complexes contributed
to myogenesis indirectly. The PBAF sub-family was verified to be dispensable for my-
oblast differentiation as was previously reported [40–42]. Our work provides functional
and mechanistic details of the differential regulatory roles of the different sub-families of
mSWI/SNF enzyme complex during skeletal muscle differentiation and supports a role for
the BAF complex as an essential contributor to this process.

2. Results
2.1. The BAF Sub-Family of mSWI/SNF Complexes Is Required for Myoblast Differentiation
In Vitro

Evaluation of proliferating primary murine myoblasts and immortalized C2C12 my-
oblasts identified Brg1 as the relevant mSWI/SNF ATPase and the BAF sub-family of
mSWI/SNF complexes as the major contributors to maintenance of the proliferative state
by regulating the expression of Pax7 [37,39]. We continued our work to determine the roles
of the three families of mSWI/SNF complex in the differentiation of myoblasts in vitro.
We used a lentiviral system to KD specific subunit proteins that are unique for each of the
different sub-families of mSWI/SNF complexes and induced the myoblasts to differentiate.
Western blot analyses showed that differentiating C2C12 myoblasts transduced with lentivi-
ral particles containing shRNAs against Baf250A, Brd9, and Baf180, which encode subunits
that are unique to the BAF, ncBAF, and PBAF complexes, respectively, showed reduced
expression of these proteins (Figure 1). We then assessed the functional effects of these KDs
on myoblast differentiation using changes in fusion index as a quantitative measure of the
progression of myogenesis. Figures 2 and S1A show representative micrographs of control
and KD C2C12 myoblasts undergoing differentiation for 24, 48, 72, and 96 h that were
immunostained for myogenin and myosin heavy chain (MHC) expression, respectively.
Myogenin and MHC expression in wild-type (untreated) and scrambled sequence shRNA
(scr) controls were detected at 24 h after inducing differentiation; myoblast fusion was
detected as early as 48 h and peaked at 96 h (Figures 2A and S1A). Myoblasts partially
depleted of Baf250A (BAF complex; Figures 2B and S1B) failed to differentiate as shown by
a decrease in the expression of myogenin and MHC and a reduction in the fusion index
when compared to control cells at similar time points (Figures 2A and S1A). The KD of the
Brd9 subunit unique to the ncBAF complex (Figures 2C and S1C) resulted in a delay in the
differentiation progression, as shown by a decrease in expression of differentiation markers
and longer times required for these myoblasts to fuse. However, the Brd9 KD myoblasts
were able to differentiate within the 96 h analyzed (Figures 2C and S1C). Partial depletion of
Baf180 subunit that is unique to the PBAF complex had no effect on myogenesis, confirming
previous results from our group and others that showed that it is dispensable for skeletal
muscle differentiation (Figures 2D and S1D [40–42]). The data supports a fundamental role
for the BAF complex in myoblast differentiation.



Int. J. Mol. Sci. 2023, 24, 11256 4 of 18Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. Baf250A, Brd9, and Baf180 expression in wild-type (WT), shRNA scrambled (scr) control, 
and the indicated shRNA-mediated knockdowns in differentiating C2C12 myoblasts. Representa-
tive Western (top) and quantification (bottom) of Baf250A (A), Brd9 (B), and Baf180 (C) levels in 
differentiating cells after 48 h of differentiation. Data represents the mean ± SE of three independent 
biological replicates. GAPDH was used as the loading control. Quantification of each sample was 
compared to the corresponding wild-type (WT) sample, which was set to 1.0. *** p < 0.001. 

Figure 1. Baf250A, Brd9, and Baf180 expression in wild-type (WT), shRNA scrambled (scr) control,
and the indicated shRNA-mediated knockdowns in differentiating C2C12 myoblasts. Representa-
tive Western (top) and quantification (bottom) of Baf250A (A), Brd9 (B), and Baf180 (C) levels in
differentiating cells after 48 h of differentiation. Data represents the mean ± SE of three independent
biological replicates. GAPDH was used as the loading control. Quantification of each sample was
compared to the corresponding wild-type (WT) sample, which was set to 1.0. *** p < 0.001.

2.2. KD of Baf250A or Brd9 Elicited Differential Effects in Gene Transcription in Differentiating
C2C12 Myoblasts

We have previously shown that KD of subunits unique to the three different sub-
families of the mSWI/SNF complexes had minor effects on gene expression in proliferating
myoblasts [39]. In that report, one of the most striking results was the effect of Baf250A
KD in reducing the expression of Pax7, the master regulator of myoblast growth, which
partially explained the proliferation deficiency observed in those cells [39]. KD of Baf250A
also impaired myoblast differentiation, suggesting a primary role of the BAF complex in
this process. To better understand the phenotypes observed in myogenesis at a transcrip-
tional level, we performed RNA-seq analyses in differentiating myoblasts transduced with
scramble (Scr) shRNA and myoblast expressing shRNAs against Baf250A or Brd9 (Figure 3).
In all cases, the sequenced libraries had approximately 45 M total reads. Pearson coefficients
were >0.96 for the replicate RNA-seq datasets for each KD and are shown in Table S1. The
data were mapped to the mouse genome (mm10), and changes in gene expression were
determined. Table S2 shows the differentially expressed genes that showed significant
changes in both replicates for each shRNA (log2FoldChange < 1, padj < 0.05). Baf250A
KD resulted changes in the expression of 4729 genes when compared to control cells; of
these, 1844 genes were upregulated, and 2885 were downregulated. (Figure 3A, Table S2).
Brd9 KD affected 2483 genes, of which 879 were upregulated and 1604 downregulated
(Figure 3B, Table S2). In addition, we determined there were 2052 genes that were altered in
both Baf250A and Brd9 KD cells when compared to control, which represents ~83% of the
genes differentially regulated by Brd9. In contrast, only ~43% of the differentially regulated
genes in Baf250A KD cells were shared with those genes differentially regulated by Brd9
KD (Figure 3C). These results suggest that there are relatively few genes uniquely regulated
by Brd9 in differentiating myoblasts.
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Figure 2. Baf250A knockdown inhibited the differentiation of C2C12 cells. Representative light mi-
crographs of wild-type C2C12 myoblasts (A) or myoblasts transduced with scr (A), Baf250A (B), 
Brd9 (C), or Baf180 (D) shRNAs undergoing differentiation for 24, 48, 72, and 96 h. Cells were im-
munostained for myogenin. Bars = 100 µm. (E) Fusion indices were measured for the indicated sam-
ples at 24, 48, 72, and 96 h of differentiation. * p < 0.05, ** p < 0.01, **** p < 0.0001. 
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families of the mSWI/SNF complexes had minor effects on gene expression in proliferating 
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Figure 2. Baf250A knockdown inhibited the differentiation of C2C12 cells. Representative light
micrographs of wild-type C2C12 myoblasts (A) or myoblasts transduced with scr (A), Baf250A (B),
Brd9 (C), or Baf180 (D) shRNAs undergoing differentiation for 24, 48, 72, and 96 h. Cells were
immunostained for myogenin. Bars = 100 µm. (E) Fusion indices were measured for the indicated
samples at 24, 48, 72, and 96 h of differentiation. * p < 0.05, ** p < 0.01, **** p < 0.0001.

Gene ontology (GO) analysis of these differentially expressed genes identified func-
tional categories. GO analyses of Baf250A KD differentiating myoblasts determined a
deficiency in the expression of genes related to chromatin regulation and nucleosome
assembly, which would be expected if a chromatin remodeling enzyme were compromised.
Other terms included response to interferon-β and muscle development and structure
(Figure 3D). Upregulated genes were related to reproductive system development, ossifi-
cation, and extracellular matrix organization (Figure 3D). Increases in bone-specific gene
expression upon inhibition of muscle-specific gene expression are consistent with the ca-
pacity of C2C12 cells to differentiate along osteoblast lineage when exposed to appropriate
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signaling and may implicate Baf250A as a regulator both lineages [43]. Genes involved
in ECM and the extracellular environment are known to be regulated by Brg1 [44–47].
Brd9 KD myoblasts showed decreased expression of genes involved in responses to virus,
response to interferon-β signaling, and chromatin regulation, similar to the results from the
Baf250A KD (Figure 3E). Notably, terms related to muscle formation or function were absent,
suggesting that only Baf250A, and by extension the BAF complex, regulates muscle-specific
genes. The top terms describing genes with enhanced expression upon Brd9 KD were
related to ribonucleoprotein and ribosomal synthesis and extracellular matrix organiza-
tion (Figure 3E), demonstrating some overlap with the terms upregulated in response to
Baf250A KD.
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Figure 3. Changes in gene expression dependent on Baf250A or Brd9 knockdown. Volcano plots
displaying differentially expressed genes between scr control and Baf250A (A) or Brd9 (B) knockdown
C2C12 cells at 48 h of differentiation. The y−axis corresponds to the mean log10 expression levels
(p values). The red and blue dots represent the up- and downregulated transcripts in knockdown
cells (false-discovery rate (FDR) of <0.05), respectively. The gray dots represent the expression levels
of transcripts that did not reach statistical significance (FDR of >0.05). (C) Venn diagram showing the
overlapping differentially expressed genes between the differentiating myoblasts knocked down for
the Baf205A and Brd9 subunits. GO term analysis of differentially expressed genes in differentiating
C2C12 cells knocked down for Baf250A (D) or Brd9 (E). Cut-off was set at 2.0 of the −log (adjusted
p value). See Table S2 for the complete list of genes.
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2.3. BAF Complex-Mediated Regulation of Myogenic Genes

Dpf2, alternately known as Requiem and Baf45D [48,49], is another mSWI/SNF
subunit that, like Baf250A, is specific to the BAF complex [20]. The shRNA-mediated KD of
Dpf2 in C2C12 cells was achieved (Figure S2); these cells were compromised for myogenic
differentiation as judged by myogenin and MHC staining and fusion index determinations
(Figures S2 and S3), mirroring what was observed upon Baf250A KD.

We then validated expression of a few myogenic genes by quantitative reverse tran-
scriptase PCR (qRT-PCR), in cells knocked down for Baf250A or Dpf2. We quantified
steady-state mRNA levels of the differentiation markers myogenin (Myog), muscle specific
creatine kinase (Ckm), caveolin 3 (Cav3), and myosin heavy chain IIb (MyHCIIb). We de-
tected a significant decrease in the amount of each myogenic transcript in cells knocked
down for Baf250A or Dpf2 (Figure 4).
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determined by qRT-PCR. Proliferating samples are represented by open bars. Samples differenti-
ated for 48 h are represented by shaded bars. Among the differentiated samples, black represents 
wild type (WT) cells, gray represents scr shRNA treated cells, light and dark pink represent different 
shRNAs used for Baf250A KD, and light and dark blue represents different shRNAs used for Dpf2 
KD. mRNA levels were normalized against expression from the Eef1A1 gene, which was used as a 
control. For each gene, the data were normalized against expression in proliferating control cells, 
which was set at 1.0, and represent the mean ± SE for three independent experiments. ** p < 0.01, *** 
p < 0.001, **** p < 0.0001. 

It is well established that the mSWI/SNF ATPases can be localized by ChIP methods 
to regulatory sequences controlling the expression of myogenic genes and that knock-
down or inhibitors of the bromodomains located in the ATPase proteins can inhibit bind-
ing to target sequences [40]. Since the BAF complex is required for myoblast differentia-
tion and activation of myogenic gene expression, we would predict that KD of BAF com-
plex-specific subunits would deleteriously impact binding of the BAF enzyme to myo-
genic gene regulatory sequences. The data showed that there was a significant decrease in 
Baf250A binding to myogenic gene regulatory sequences in cells partially depleted of this 
subunit (Figure 5A). KD of the Dpf2 subunit similarly decreased binding to the myogenic 
gene regulatory sequences tested (Figure 5B).  

Figure 4. The expression of myogenic genes is impaired in differentiating myoblasts knocked
down for the BAF complex subunits Baf250A and Dpf2. Steady-state mRNA levels of (A) Myogenin,
(B) muscle-specific creatine kinase (Ckm), (C) Caveolin 3 (Cav3), and (D) myosin heavy chain II
(MhcIIb) determined by qRT-PCR. Proliferating samples are represented by open bars. Samples
differentiated for 48 h are represented by shaded bars. Among the differentiated samples, black
represents wild type (WT) cells, gray represents scr shRNA treated cells, light and dark pink represent
different shRNAs used for Baf250A KD, and light and dark blue represents different shRNAs used for
Dpf2 KD. mRNA levels were normalized against expression from the Eef1A1 gene, which was used as
a control. For each gene, the data were normalized against expression in proliferating control cells,
which was set at 1.0, and represent the mean ± SE for three independent experiments. ** p < 0.01,
*** p < 0.001, **** p < 0.0001.

It is well established that the mSWI/SNF ATPases can be localized by ChIP methods
to regulatory sequences controlling the expression of myogenic genes and that knockdown
or inhibitors of the bromodomains located in the ATPase proteins can inhibit binding
to target sequences [40]. Since the BAF complex is required for myoblast differentiation
and activation of myogenic gene expression, we would predict that KD of BAF complex-
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specific subunits would deleteriously impact binding of the BAF enzyme to myogenic gene
regulatory sequences. The data showed that there was a significant decrease in Baf250A
binding to myogenic gene regulatory sequences in cells partially depleted of this subunit
(Figure 5A). KD of the Dpf2 subunit similarly decreased binding to the myogenic gene
regulatory sequences tested (Figure 5B).
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mised if Baf250A or Dpf2 levels were reduced by KD (Figure 6A). In contrast, the Baf170 
subunit is required to initiate the formation of the core complex that can exist in the ab-
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Figure 5. Effect of KD of BAF complex components on the binding of specific subunits to myogenic
gene regulatory sequences. ChIP-qPCR showing binding of Baf250A (A) and Dpf2 (B) to the Myogenin
promoter, the muscle creatine kinase enhancer (Ckm-E), the Caveolin 3 (Cav3) promoter, the myosin
heavy chain II (MhcIIb) promoter, and the immunoglobulin H promoter (IgH; negative control) in
proliferating and 48 h differentiating C2C12 myoblasts. Proliferating samples are represented by
open bars. Samples differentiated for 48 h are represented by shaded bars. Among the differentiated
samples, black represents wild type (WT) cells, gray represents scr shRNA treated cells, light and dark
pink represent different shRNAs used for Baf250A KD, and light and dark blue represents different
shRNAs used for Dpf2 KD. Data are the mean ± SE for three independent experiments. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.

Prior work examining how mSWI/SNF complexes that belong to different sub-families
assemble in solution has determined that the BAF-specific subunits, Baf250A and Dpf2,
join after the “core” subunits are assembled into a sub-complex. The ATPase subunits
join subsequently and are among the last of the subunits to join the complex [20]. We
investigated whether KD of Baf250A or of Dpf2 proteins would impact the binding of
the Brg1 ATPase that is critical for catalytic function. As expected, Brg1 binding was
compromised if Baf250A or Dpf2 levels were reduced by KD (Figure 6A). In contrast, the
Baf170 subunit is required to initiate the formation of the core complex that can exist in
the absence of Baf250A or Dpf2 [20]. We investigated whether or not Baf170 was bound to
myogenic regulatory sequences in the presence of Baf250A or Dpf2 KD. We repeated the
ChIP analysis for Baf170 and determined that its binding was also compromised at the
target sequences (Figure 6B). KD of either BAF-specific subunit therefore compromises the
ability of the BAF complex to interact with target sequences and does not support the idea
that a partial BAF complex can stably bind.
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Figure 6. Binding of Brg1 and Baf170 to myogenic gene regulatory sequences is compromised
upon KD of Baf250A or Dpf2. ChIP-qPCR showing binding to the indicated sequences of (A) Brg1
and (B) Baf170 in proliferating and differentiating C2C12 myoblasts. Proliferating samples are
represented by open bars. Samples differentiated for 48 h are represented by shaded bars. Among
the differentiated samples, black represents wild type (WT) cells, gray represents scr shRNA treated
cells, light and dark pink represent different shRNAs used for Baf250A KD, and light and dark blue
represents different shRNAs used for Dpf2 KD. Binding in untransduced, differentiating C2C12 cells
was shown for comparison. Binding to the IgH gene is shown as a negative control. Data are the
mean ± SE for three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3. Discussion

Cell and tissue lineage determination and differentiation are complex processes that
rely on the tight regulation of gene expression by transcription factors, chromatin re-
modeling enzymes, and other co-regulatory proteins. Transcriptional regulators can be
expressed in a tissue-specific manner to modulate the expression of tissue-specific genes
to allow cells to differentiate into tissues and organs and to enable the growth and devel-
opment of eukaryotes. Among these proteins, chromatin remodelers of the mSWI/SNF
family drive developmental events that enable cells to proliferate and differentiate [50–54].
These enzymes utilize the energy released from ATP hydrolysis to modify the structure of
nucleosomes and the chromatin environment at specific loci, depending on the cellular re-
quirements [55–57]. The mSWI/SNF complex has been divided into three different families
based on their subunit composition, though they are sometimes separated by the presence
of the catalytic subunits, Brg1 or Brm [10,20,58].

In this work, we expanded our studies on the specific biological roles of the three sub-
families of the mSWI/SNF complex by examining myoblast differentiation. Myogenesis is
characterized by the expression of myogenic regulatory factors (MyoD, MRF4, MYF5 and
myogenin) that bind to consensus E-boxes at the promoters and enhancers of myogenic
genes [55,59–61]. These cooperate with the family of myocyte enhancer factor 2 (MEF2)
proteins and other transcription factors to promote the expression of a downstream cascade
of myogenic genes [62,63]. Recruitment of the mSWI/SNF enzymes by these transcription
factors is required for activation of myogenic genes expressed both early and late in the
differentiation process [26–28,30,31,64].

Here, we demonstrated that the BAF sub-family of mSWI/SNF enzymes, physically
defined by the presence of the Baf250A and Dpf2 subunits, specifically mediates activation
of the myogenic gene expression program. Knockdown of either protein inhibited myoblast
differentiation, expression of representative myogenic marker genes, and binding of not just
those subunits but other mSWI/SNF subunits at myogenic gene regulatory sequences. GO
term analysis of genes that were downregulated in differentiating myoblasts subjected to
Baf250A KD identified categories related to muscle development and structure, providing
corroborating evidence that the BAF sub-family of mSWI/SNF enzymes contributes to
myoblast differentiation. Our prior studies showed that the BAF sub-family was predom-
inantly responsible for myoblast proliferation and for expression of the Pax7 regulator
of myogenic proliferation and viability [39]. This suggests an essential role for the BAF
sub-family from at least the point of myoblast specification through myoblast formation.

In contrast, KD of the Brd9 subunit, which is specific to the ncBAF complex, had a
more modest effect on myoblast differentiation, and analysis of RNA-seq data did not
identify terms related to muscle differentiation and function, suggesting that the impact
of ncBAF complex disruption on myoblast differentiation is indirect. We speculate that
the effects of Brd9 KD on myoblast differentiation are due to dysregulation of ribosomal
biogenesis and rRNA processing, as seven of the top ten GO terms identified from the
pool of genes upregulated in Brd9 KD cells related to rRNA, ribosomes, and translation.
mSWI/SNF proteins recently have been linked to altered translational efficiency in cancer
cells via direct mechanisms and via inhibition of mSWI/SNF protein function by chemical
inhibitors [65,66]; it is possible that altering the gene expression and the processing of
ribosome components also promotes altered translational efficiency.

The Baf180 protein, which is unique to the PBAF sub-family of mSWI/SNF enzymes,
was not required for myoblast differentiation. The work here complements prior cell culture
and in vivo studies indicating Baf180 is dispensable for myogenesis [40–42]. Prior work
also demonstrated that Baf180, and by extension the PBAF complex, was dispensable for
myoblast proliferation and for activation of the Pax7 regulator of myoblast proliferation [39].

There is a paucity of information on the functional distinctions between the different
sub-families of mSWI/SNF enzymes in development. We have presented evidence that
the BAF sub-family is primarily responsible for maintaining myoblasts in the proliferative
state via activation of the Pax7 gene [39] and for initiating lineage-specific gene expression
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during differentiation. Similarly, there is a requirement for the BAF sub-family, but not
the PBAF sub-family, in adipogenic differentiation [41]. In contrast, PBAF subunits are
required for osteoblast differentiation [67,68], though the contribution of the ncBAF and
BAF sub-families of enzymes is not clear. Baf250A is also required for cardiac precursor
cell differentiation and for proper heart formation [69–72], but PBAF-specific subunits,
including Baf180 and Baf200, are also required for heart formation [73–75]. This suggests
that there are either separable requirements for the two sub-families or there is an unchar-
acterized mechanism of cooperation. Baf250A has also been implicated in neural stem cell
proliferation and differentiation during cortical development [76], early embryo develop-
ment, and ES cell differentiation [77–79]. However, the requirement for other mSWI/SNF
sub-families was not determined for these processes. ncBAF was reported to regulate
pluripotency in mouse ES cells [23], and the Brd9 component of ncBAF was required for
pigment specific gene expression during melanocyte differentiation [80], but little else is
known outside the context of cancer. At present, general conclusions about the roles of the
different sub-families are not possible.

Studies addressing the mechanism of action of the mSWI/SNF chromatin remod-
elers suggest there may be stepwise assembly of the enzyme at target sequences. For
instance, in proliferating myoblasts, the p38 kinase phosphorylates the BAF60c subunit
of the chromatin remodeler and enables its association with MYOD and recruitment to
myogenic gene promoters [30,64]. The phosphorylated BAF60c-MYOD complex acts as a
scaffold that brings additional subunits of the mSWI/SNF complex to the myogenic loci
to make chromatin accessible [30]. Later studies by Mashtalir et al. demonstrated that the
components of the three different families are recruited sequentially and that the catalytic
subunit is among the last components to associate in order to ultimately modulate gene
expression programs [20]. Whether this programmed and organized association of the
chromatin remodeler components is maintained on chromatin and/or in different tissues
remains to be elucidated. However, results from this study and our prior studies suggest
that knockdown of Baf250A or of Brg1, inhibition of Brg1 with the bromodomain inhibitor
PFI-3, or inhibition of Brg1 with the calcineurin inhibitor FK506 inhibits the binding of other
mSWI/SNF subunits [39,40,81,82], suggesting that stable subcomplexes of different config-
urations of mSWI/SNF enzymes with chromatin are not detectable by conventional ChIP
methods. Additional work will be needed to distinguish between the possibility of stepwise
assembly of mSWI/SNF enzymes on chromatin and binding of a pre-formed complex.

4. Materials and Methods
4.1. Antibodies

Hybridoma supernatants were obtained from the Developmental Studies Hybridoma
Bank (University of Iowa) against myogenin (F5D, deposited by W. E. Wright) and anti-
myosin heavy chain (MHC; MF20, deposited by D. A. Fischman). Mouse anti-Brg1 (G-7;
sc-17796) and normal rabbit IgG (sc-2027) were from Santa Cruz Biotechnologies (Dallas,
TX, USA). The rabbit anti-Brd9 antibody was from Invitrogen (Waltham, MA, USA) (PA5-
113488). The mouse anti-Brd9 antibody (1H8, CBMAB-0174-YC) was from Creative Biolabs
(Shirley, NY, USA). The rabbit anti-PBRM (Baf180, A0334), -Baf250A (A16648), -vinculin
(A2752), -Dpf2 (A13271), and -GAPDH (A19056) antibodies were from Abclonal Technolo-
gies (Woburn, MA, USA). Secondary antibodies used for Western blot were HRP-conjugated
anti-mouse and anti-rabbit (31430 and 31460, respectively) and for immunofluorescence
were the goat anti-rabbit IgG Alexa Fluor Plus 594 and the goat anti-mouse IgG Alexa
Fluor Plus 488 (A32740 and A32723, respectively) that were obtained from Thermo Fisher
Scientific (Waltham, MA, USA).

4.2. Cell Culture

C2C12 and HEK293T cells were purchased from ATCC (Manassas, VA, USA) and
were maintained at sub-confluent densities in proliferation media containing Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and
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1% penicillin–streptomycin in a humidified incubator at 37 ◦C with 5% CO2. Differentiation
of C2C12 cells was initiated after cells reached 80% confluence. Cell differentiation was
induced with differentiation media (DMEM supplemented with 2% horse serum, 1%
insulin–transferrin–selenium-A supplement (Invitrogen) and 1% penicillin–streptomycin)
in a humidified incubator at 37 ◦C with 5% CO2. Samples of differentiated myoblasts were
processed after 48 h of induction of differentiation, a time when early and late myogenic
gene expression has been initiated and differentiation is in progress.

4.3. Virus Production for shRNA Transduction of C2C12 Cells

Mission plasmids (Sigma, Kawasaki, Japan) encoding for two different shRNAs against
specific subunits of the three sub-families of mSWI/SNF complexes BAF (Baf250A, Dpf2),
ncBAF (Brd9), and PBAF (Baf180) (Table S3) were isolated by using the pure yield plasmid
midiprep system (Promega, Madison, WI, USA) following the manufacturer’s instructions.
The shRNA (15 µg) and the packing vectors pLP1 (15 µg), pLP2 (6 µg), and pSVGV (3 µg)
were transfected using lipofectamine 2000 (Thermo Fisher Scientific) into HEK293T cells
for lentiviral production. After 24 and 48 h, the supernatants containing viral particles
were collected and filtered using a 0.22 µm syringe filter (Millipore, Burlington, MA, USA).
Proliferating C2C12 myoblasts were transduced with lentivirus in the presence of 8 µg/mL
polybrene and selected with 2 µg/mL puromycin (Invitrogen).

4.4. RT-qPCR Gene Expression Analysis

RNA was purified from three independent biological replicates of proliferating and
differentiated C2C12 myoblasts with TRIzol (Invitrogen) following the manufacturer’s
instructions. cDNA synthesis was performed with 500 ng of RNA as template, random
primers, and SuperScript III reverse transcriptase (Invitrogen) following the manufacturer’s
protocol. Quantitative RT-PCR was performed with Fast SYBR green master mix on the
ABI StepOne Plus Sequence Detection System (Applied Biosystems, Foster City, CA, USA)
using the primers listed in Table S4. The delta threshold cycle value (∆CT) was calculated
for each gene and represents the difference between the CT value of the gene of interest
and that of the Eef1A1 reference gene.

4.5. RNA-Sequencing Analysis

Duplicate samples for RNA sequencing were purified from 48 h differentiating C2C12
myoblasts with TRIzol (Invitrogen) following the manufacturer’s instructions. Sample qual-
ity and concentration was determined at the Molecular Biology Core Lab at the University
of Massachusetts Chan Medical School, Fragment Analyzer services. RNA library prepara-
tion and sequencing was performed by the BGI Americas Corporation (Cambridge, MA,
USA). Briefly, libraries were sequenced using the BGISEQ-500 platform, and reads were fil-
tered to remove adaptor-polluted, low quality, and high content of unknown base (N) reads.
About 99% raw reads were filtered out as clean reads, which were then mapped to mouse
reference genome mm10 using HISAT. Transcripts were reconstructed using StringTie [83],
and novel transcripts were identified using Cufflinks [84]. All transcripts were then com-
bined together and mapped to mm10 reference transcriptome using Bowtie2 [85]. Gene
expression levels were calculated using RSEM [86]. DEseq2 [87] and PoissonDis [88] al-
gorithms were used to detect differentially expressed genes (DEGs). GO analysis using
DAVID (https://david.ncifcrf.gov/tools.jsp; accessed on 1 October 2022) was performed
on DEGs to cluster genes into function-based and pathway-based categories.

4.6. Western Blot Analyses

C2C12 myoblasts were washed with PBS and solubilized with RIPA buffer (10 mM
piperazine-N,N-bis(2-ethanesulfonic acid), pH 7.4, 150 mM NaCl, 2 mM ethylenediamine-
tetraacetic acid (EDTA), 1% Triton X-100, 0.5% sodium deoxycholate, and 10% glycerol)
containing protease inhibitor cocktail (Thermo Fisher Scientific). Protein content was de-
termined by Bradford [89]. Samples (20 µg) were prepared for SDS-PAGE by boiling in
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Laemmli buffer. The resolved proteins were electro-transferred to PVDF membranes (Milli-
pore). The proteins of interest were detected with the specific antibodies as indicated in the
figure legends and above, followed by species-specific peroxidase conjugated secondary
antibodies and chemiluminescent detection (Tanon, Abclonal Technologies).

4.7. Immunocytochemistry Analyses

C2C12 myoblasts (control and KDs) were fixed overnight in 10% formalin–PBS at
4 ◦C. Cells were washed with PBS and permeabilized for 10 min with PBS containing 0.2%
Triton X-100. Immunocytochemistry was performed using the hybridoma supernatants
from the Developmental Studies Hybridoma Bank (University of Iowa) against myogenin
and MHC. Samples were developed with the universal ABC kit (Vector Labs, Newark, CA,
USA) following the manufacturer’s protocol.

4.8. Calculation of Fusion Index

The fusion index was calculated as the ratio of the nuclei number in C2C12 myocytes
with two or more nuclei vs. the total number of nuclei as previously described [90]. Edges
and regions that did not show good cell adhesion were discarded from the analysis. Three
independent biological replicates were grown in 24-well plates, and cells were induced
to differentiate as described above. Quantitative analysis was performed using ImageJ
software v.1.8 ([91,92] National Institutes of Health, Bethesda, MD, USA).

4.9. Chromatin Immunoprecipitation Assays

Chromatin immunoprecipitation assays were performed as previously described [37,
39,81,82,90]. Briefly, differentiating (48 h) C2C12 myoblasts were cross-linked with 1%
formaldehyde (Ted Pella Inc., Redding, CA, USA) for 10 min at room temperature. Formalde-
hyde quenching was carried out with 125 mM glycine for 5 min. Crosslinked myoblasts
were washed twice with ice-cold phosphate-buffered saline (PBS) supplemented with
protease inhibitor cocktail and lysed with 1 mL of ice-cold buffer A (10 mM Tris HCl
(pH 7.5), 10 mM NaCl, 0.5% NP-40, 0.5 µM dithiothreitol (DTT), and protease inhibitors)
by incubation on ice for 10 min. The nuclei were pelleted by centrifugation at 3000× g,
washed with 1 mL of buffer B (20 mM Tris HCl (pH 8.1), 15 mM NaCl, 60 mM KCl, 1 mM
CaCl2, and 0.5 µM DTT). DNA was sheared by incubating the nuclei in 100 µL of buffer
B supplemented with 1000 units of micrococcal nuclease (M0247S; NEB) for 30 min at
37 ◦C; the reaction was stopped by adding 5 µL of 0.5 M EDTA. Nuclei were pelleted and
resuspended in 400 µL of ChIP buffer (100 mM Tris HCl (pH 8.1), 20 mM EDTA, 200 mM
NaCl, 0.2% sodium deoxycholate, 2% Triton X-100, and protease inhibitors), sonicated for
10 min (medium intensity, 30 s on/30 s off) in a Bioruptor UCD-200 system (Diagenode,
Denville, NJ, USA), and centrifuged at 21,000× g for 5 min. The length of the fragmented
chromatin was between 200 and 500 bp as analyzed on agarose gels. ChIP was performed
by incubating specific antibodies against Brg1, Brd9, Baf170, Dpf2, or Baf250A with each
sample for 2 h at 4 ◦C. Anti-IgG ChIPs were included as negative controls. Immunocom-
plexes were recovered with 20 µL of magnetic Dynabeads (Thermo Fisher Scientific) after an
overnight incubation at 4 ◦C. Three sequential washes with low-salt ChIP buffer followed
with one final high-salt washing step were performed to eliminate unspecific binding.
Complexes were eluted in 100 µL of elution buffer (0.1 M NaHCO3, 1% SDS) for 30 min
at 65 ◦C, incubated with 1 µL of RNAse (0.5 mg/mL) for 30 min at 37 ◦C, and reverse
cross-linked by addition of 6 µL of 5M NaCl and 1 µL of proteinase K (1 mg/mL) overnight
at 65 ◦C. DNA was purified using a ChIP DNA Clean & Concentrator kit (Zymo Research,
Irvine, CA, USA). Bound DNA fragments were analyzed by quantitative PCR using SYBR
green master mix. Quantification was performed using the fold enrichment threshold cycle
method 2∆(CT sample – CT IgG), and data are shown relative to the results determined for the
IgG control. The primer sequences are listed in Table S4.
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4.10. Statistical Analysis

Statistical analysis was performed using Kaleidagraph (Version 4.1) or Graph Pad
Prism 7.0b. Multiple data point comparisons and statistical significance were determined
using one-way analysis of variance (ANOVA). Experiments where p < 0.05 were considered
statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241411256/s1. Reference [93] is cited in the Supplementary
Materials.
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