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Abstract: The aggregation of amyloid-β (Aβ) peptides, particularly of Aβ1−42, has been linked to the
pathogenesis of Alzheimer’s disease. In this study, we focus on the conformational change of Aβ1−42

in the presence of glycosaminoglycans (GAGs) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) lipids using molecular dynamics simulations. We analyze the conformational changes that
occur in Aβ by extracting the key structural features that are then used to generate transition networks.
Using the same three features per network highlights the transitions from intrinsically disordered
states ubiquitous in Aβ1−42 in solution to more compact states arising from stable β-hairpin formation
when Aβ1−42 is in the vicinity of a GAG molecule, and even more compact states characterized
by a α-helix or β-sheet structures when Aβ1−42 interacts with a POPC lipid cluster. We show that
the molecular mechanisms underlying these transitions from disorder to order are different for the
Aβ1−42/GAG and Aβ1−42/POPC systems. While in the latter the hydrophobicity provided by the
lipid tails facilitates the folding of Aβ1−42, in the case of GAG there are hardly any intermolecular
Aβ1−42–GAG interactions. Instead, GAG removes sodium ions from the peptide, allowing stronger
electrostatic interactions within the peptide that stabilize a β-hairpin. Our results contribute to the
growing knowledge of the role of GAGs and lipids in the conformational preferences of the Aβ

peptide, which in turn influences its aggregation into toxic oligomers and amyloid fibrils.

Keywords: intrinsically disordered proteins; molecular dynamics simulations; transition networks;
amyloid-β; disorder-to-order transition

1. Introduction

Intrinsically disordered proteins (IDPs) are a class of proteins that do not exhibit a well-
defined three-dimensional structure in their native state. Instead, IDPs adopt an ensemble
of different conformations, which allows them to perform a variety of functions, such as
cell signaling, cell cycle control, and protein–protein interaction, but are also associated
with a variety of disease pathways. IDPs are able to bind to a wide range of interaction
partners and often undergo a disorder-to-order transition upon binding, which can lead
to the formation of new structures and the initiation of interaction-specific functions [1,2].
One heavily studied example of an IDP is the amyloid-β peptide (Aβ), which is involved in
the development of Alzheimer’s disease [3,4]. Aβ is a peptide that can form aggregates
called amyloid plaques in the brain, which are thought to contribute to the cognitive decline
associated with Alzheimer’s disease. As typical for an IDP, Aβ is able to bind to various
interaction partners, resulting in conformational changes in Aβ. For example, in a previous
study we showed that Aβ undergoes a disorder-to-order transition when in complex with
three 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids [5].

Molecular examination of Aβ aggregate samples from Alzheimer’s disease affected
patients have revealed a significant presence of charged polyelectrolytes, especially polysac-
charides, belonging to the class of glycosaminoglycans (GAGs) [6]. GAGs are long chains
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of repeating disaccharide units and are found in various tissues, including cartilage and the
extracellular matrix. They play a critical role in maintaining the structural integrity of these
tissues and also act as lubricants and shock absorbers [7–9]. Their elevated presence in Aβ
amyloid deposits suggests that GAGs may be involved in the formation and stability of
Aβ plaques. Biophysical studies have shown that GAGs promote aggregation, nucleation,
and formation of amyloid fibrils; however, the molecular details are not yet known [6].

Due to the wide conformational heterogeneity of IDPs such as Aβ, the experimental
characterization of their structures is a challenging task [10,11]. Experimental techniques
that can be applied to this goal usually average over a wide range of conformations,
e.g., nuclear magnetic resonance (NMR) spectroscopy, small angle X-ray scattering (SAXS),
cryo-electron microscopy, or single-molecule Förster resonance energy transfer (smFRET)
spectroscopy. Consequently, the structural information obtained by these techniques is
limited in the case of IDPs. Molecular dynamics (MD) simulations offer a complementary
approach for gaining insights into the structural properties of IDPs, as they allow for
the study of IDPs in a dynamic and spatiotemporal manner by simulating the motion
of individual atoms over time, thus providing a molecular-level understanding of their
conformational changes. Moreover, combining the MD approach with network-based
models, such as Markov state models (MSMs) or conformational transition networks (TNs),
yields a comprehensive understanding of the structural behavior of IDPs [12–16], as the
networks reveal the underlying mechanisms of molecular processes that are hidden within
the vast amounts of MD simulation data by generating human-interpretable networks that
help to illustrate the molecular processes under investigation [17–19]. The TN approach
pursued by our group is a solution for those who want a network model of protein motions
captured by MD simulations, including explicit modeling of the protein’s environment,
but do not need a method that sets up a master equation for the dynamics, since TNs rely
purely on geometric clustering to extract the crucial features of protein conformational
transitions (and not on kinetic clustering as in Markov state modeling) [20].

In this study we compare the conformational ensembles of Aβ under different external
conditions: Aβ alone in solution [15], Aβ in contact with a small lipid cluster consisting
of three POPC lipids [5], and Aβ in interaction with a GAG. For the GAG, we chose
a polymer involving sixteen chondroitin-4-sulfate subunits, which are the alternating
monosaccharides D-galactosamine (GalNAc) sulfated at position 4 and D-glucuronic acid
(GlcUA), resulting in -GalNAc(4S)-β(1→4)-GlcUA-β(1→3)-. In all simulations, Aβ was
modeled as the alloform having 42 amino acid residues (known as Aβ1−42). To compare
the conformational ensembles of Aβ under the different conditions, we created TNs based
on 4 or 6 µs MD data per system. In order to obtain TNs that are comparable with each
other, we used the same molecular features (or descriptors) to define the states of the
underlying transition matrix. To capture the conformational changes and identify possible
disorder-to-order transitions, we used the number of residues forming α-helical or β-sheet
structures as well as the N-to-C distance of the peptide. The resulting TNs confirmed that
Aβ in solution is an IDP that undergoes an unstructured-to-structured transition upon
interaction with either the POPC cluster or the GAG. However, the causes of the emergence
of structural order in Aβ are completely different, as shown here.

2. Results and Discussion
2.1. Transition Network of Aβ in Solution

The Aβ monomer in solution classifies as an IDP [21], thus its kinetics can be described
by a flat free-energy surface that consists of many local minima that are separated by
low-energy barriers [13,15]. In other words, the peptide does not exhibit a unique three-
dimensional folded structure that would be connected to a surface-dominating minimum
of low free energy, but has a low propensity towards forming α-helices or β-sheets. This
behavior is very well reflected by the TN in Figure 1. The most populated states belong
to the community of states colored in orange and yellow, which are aligned along the
horizontal axis (called x-axis in the following). These two communities represent states that



Int. J. Mol. Sci. 2023, 24, 11238 3 of 15

are primarily disordered with average descriptor values of (0.8, 0.1, 21.5) and (0.1, 0.1, 49.6),
respectively, which means that there are neither α-helices nor β-sheets present in these
Aβ conformations (first two descriptors) and the N-to-C distance varies, on average, be-
tween 21 and 50 Å. Thus, the most populated states only vary in their expansion, which
increases from left to right in the TN, while they adopt random coil structures, reflecting
the intrinsically disordered nature of the Aβ monomer in solution.

Figure 1. Transition network of the Aβ monomer in solution. For state assignment, three descriptors
are used: (i) the number of residues forming α-helical structure (Nα), (ii) the number of residues
forming β-sheet structure (Nβ), (iii) the N-to-C distance (dNC). The layout of the TN is such that dNC

increases from left to right along the x-axis, Nβ increases in positive y-direction, and Nα increases
with negative y-direction. The nodes are colored according to their community membership, and the
average descriptor values (Nα, Nβ, dNC) of the communities are given. For the highest-populated
node per community, a representative structures is shown as cartoon (β-sheets in yellow, α-helices in
purple) with the N- and C-termini being indicated by blue and red spheres, respectively.

Communities shown in black with descriptor values (0.1, 6.7, 6.5), blue with (0.1, 5.5, 25.2),
and pink with (0.1, 4.1, 45.3) represent the states with increasing amounts of β-sheets
(second descriptor value) as they move toward the top of the network. In contrast, the states
exhibiting α-helical structures are located towards the bottom of the network, and are
contained within the community shown in green with descriptor values (6.1, 0.1, 48.7).
However, the states containing β-sheets or α-helices are only sparsely populated compared
to the completely random-coil communities shown in orange and yellow. This is even better
seen from the distribution of the descriptor values, which are shown in Figure S1 along with
the averages and variances in Table S1 in the Supplementary Materials. The population of
the different communities is provided in Table S2.

In summary, the arrangement of the states of the TN allows to impose a coordinate
system onto its layout, where the N-to-C distance is on the x-axis with increasing values
from left to right, and the secondary structure is resolved along the y-axis, with disordered
states at y ≈ 0, increasing amounts of β-sheet structures for y > 0, and increasing α-helical
structures for y < 0. It has to be stressed that this layout mainly arose from the Force Atlas 2
optimization and was only slightly adjusted for visualization.
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2.2. Transition Network of Aβ in the Presence of a GAG Molecule

In order to study the conformational change of Aβ in the presence of a sulfated
GAG compared to Aβ alone, we calculated the TN using the same three descriptors as
before. The resulting TN is shown in Figure 2. Also the coloring of the communities
has been chosen as for the Aβ monomer in solution to highlight the shift in community
population. Thus, nodes that were displayed in a certain color in Figure 2 are displayed in
that color again, with the descriptor values serving as the basis for the color assignment.
However, depending on the existence and population of the various states, the relevant
communities may appear in somewhat different parts of the TN than in the TN of the
Aβ-only system. Nonetheless, the coordinate system is still the same, i.e., increasing N-to-C
distances correspond to an increase along the horizontal axis, while states with increasing
amounts of β-sheets are found in the positive y-direction, and in the opposite direction,
there are very few sparsely populated states exhibiting α-helical structures.

Figure 2. Transition network of the Aβ in the presence of a GAG molecule. The nodes are colored
according to their community membership, and the average descriptor values (Nα, Nβ, dNC) of the
communities and a representative snapshot are provided. The color of the communities was chosen
as in Figure 1, so that states with the same or similar descriptor values are represented with the same
color as in the Aβ-only system. See the caption of Figure 1 for further explanations of the graphical
representation of the TN.

The TN for the Aβ-GAG system looks quite different from that for the Aβ-only system.
First, there is a drastic shift in the state population away from the disordered states,
which are now presented by only one community, shown in yellow and with average
descriptor values of (0.0, 0.3, 55.3). These disordered states are hardly populated with
Aβ-GAG. Instead, the most populated states belong to the community shown in blue,
which has average descriptor values of (0.0, 10.5, 26.3) and thus contains structures of
intermediate compactness and a substantial amount of β-sheets. The community to the
left shown in black with average descriptor values of (0.0, 11.3, 7.8) represents states
with comparable β-sheet propensity, yet higher compactness. However, these states are
only sparsely populated (Table S2). To the right of the blue-colored community, there is
the community shown in pink with average descriptor values of (0.0, 8.4, 44.0), which
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also harbors β-sheet rich states, yet with large N-to-C distances. The population of this
community is between those of the highest populated community shown in blue and the
black-colored community. All three communities involve Aβ structures where about one
fourth of the residues is part of a β-hairpin structure, as the representative structures in
Figure 2 show, which mainly differ in the orientation of the N- and C-terminals with respect
to each other. At the very top of the TN, mainly above the blue community, there are
states combined into the community shown in purple, which are not present in the Aβ-only
system. With average descriptor values of (0.9, 17.5, 27.6), these are states with even higher
amounts of β-sheet structures. Here, about 42% of the Aβ residues are involved in β-sheet
formation, which is accomplished by a β-sheet with three strands, where the third strand
aligns with the previously mentioned β-hairpin.

In summary, compared to the TN of the Aβ-only system, there is a significant pop-
ulation shift away from disordered states, towards states with considerable amounts of
β-sheets (Figure S1 and Table S1), which results from the formation of a stable β-hairpin.
This drastic change in secondary structure is astonishing, as Aβ was rarely in direct contact
with the GAG, as the time-averaged distance matrix in Figure 3A shows. This molecular
avoidance is understandable, given that both molecules are negatively charged (3− and
16−, respectively). Nevertheless, the contact map of Aβ-GAG interactions with populations
shown only up to the maximum value of ≈8.5% (Figure S2) identify the positively charged
Aβ residues Arg5 (in particular) and Lys16 as preferred binding sites for GAG. All other
interactions that appear in the contact matrix simply result from their proximity to Arg5 and
Lys16. The preference of GAG binding to arginine compared to lysine has been reported
previously for other proteins [22]. However, these sparsely populated interactions are not
sufficient to explain the GAG-induced structural changes in Aβ, and further reasons are
given below.

Figure 3. Intermolecular contact maps for Aβ interacting with (A) a GAG molecule and (B) three
POPC lipids. The interactions are separated into residue–monosaccharide interactions for the Aβ-
GAG system and residue–lipid interactions for the Aβ-POPC system. Two interaction partners were
considered to be in contact if in a given frame of the trajectory they are closer than 10 Å. The resulting
number of contacts were normalized with respect to the total number of time frames per trajectory,
yielding a contact probability (see color scale on the right).

2.3. Transition Network of Aβ Interacting with a POPC Cluster

To put the TN of the Aβ-GAG system into perspective, we also generated the TN of Aβ
in interaction with three POPC lipids. In our previous study, we showed that under these
conditions the Aβ monomer undergoes a disorder-to-order transition, which is facilitated
by interactions between hydrophobic residues of Aβ and the lipid tails (Figure 3B) [5]. Here
we use the simulations of that study to calculate the TN using the same three descriptors
as before, resulting in the TN shown in Figure 4. The structures of the Aβ peptide in
contact with POPC differ significantly from those of the Aβ-only system, resulting in many
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new states. For this reason, direct mapping of the color code of the communities was
not possible. Nevertheless, the coloration was chosen to be as close as possible to the
previous representations. Again, the communities were distributed along the three axes
dNC (positive x-axis), Nβ (positive y-axis), and Nα (negative y-axis).

Figure 4. Transition network of Aβ in complex with three POPC lipids. The color of the communities
was chosen as in Figure 1, so that states with the same or similar descriptor values are represented
with the same color as in the Aβ-only system. However, the communities shown here in pink and
green are not found in either the Aβ-only or Aβ-GAG systems. See the caption of Figure 1 for further
explanations of the graphical representation of the TN.

As for the Aβ-only system, there is a community colored orange that harbors disor-
dered states with average descriptor values of (2.1, 0.1, 24.8). The underlying states have
slight deviations in their N-to-C distance, with increasing values from left to right. How-
ever, they are less expanded than the states of the yellow-colored community found for the
Aβ-only and Aβ-GAG systems, which is not present here. Moreover, some of the Aβ-POPC
states belonging to the orange-colored community feature some α-helical structure, which
is also different from the corresponding Aβ-only community. These states are located
towards the bottom of the community, since, as before, the y-axis distinguishes between
α-helical and β-sheet structures. Another difference is that the disordered states are only
sparsely populated in the Aβ-POPC system. Here, the two most populated communities
are the ones colored black and blue, which have average descriptor values of (0.6, 8.7, 3.1)
and (0.3, 4.9, 21.3), respectively, and thus mainly contain compact states with considerable
β-sheet content. On the opposite side along the y-axis, at the bottom of the TN, there is a
distinct cluster of states shown in green with average descriptor values of (15.7, 0.3, 24.6).
This community exhibits high amounts of α-helical structures. These states are infrequently
visited, but their spatial separation, determined using the Force Atlas 2 algorithm based on
their low connectivity with other communities, suggests that this community corresponds
to a local minimum in the free-energy landscape, separated from the other communities by
a high-energy barrier. The rightmost community along the x-axis, colored pink, exhibits the
states with the largest N-to-C distance of the peptide in the Aβ-POPC system, as indicated
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by the average descriptor values of (8.4, 5.0, 33.0). The first two descriptors indicate that the
states of this community feature both an α-helix and a β-sheet. This structural finding, as
also the location of this community in the TN, suggests that these states are intermediates
between the β-sheet-rich states of the blue community and the α-helical-rich states of the
green community. The fact that the pink community is also next to the orange community
results from the projection of the TN onto a two-dimensional plane. In a third dimension,
the orange community would appear closer to the viewer.

Comparison of this TN to the TN of the Aβ-only system highlights the conformational
change of Aβ towards folded states when in complex with lipids, as also revealed by the
descriptor distributions (Figure S1 and Table S1) and community populations (Table S2).
One can see a notable shift in the state population towards more compact states; the
current TN has its maximum extension in the y-direction, while for the Aβ-only system
the maximum TN extension is in the x-direction. Such a change in TN geometry did
not occur in the Aβ-GAG system where Aβ remained very expanded and only adopted
β-sheet structures but not α-helices. The change of TN geometry for the Aβ-POPC system
also reveals a change in the underlying free-energy surface, from being rather flat with
many local minima (Aβ-only and Aβ-GAG) towards multiple definite energy basins of
(semi-)folded Aβ conformations.

2.4. Interactions in the Aβ-GAG System

In order to understand the conformation switching of Aβ in presence of the GAG, we
investigated their molecular interactions as well as the impact of the GAG on the water
dynamics and Na+ distribution. As already mentioned, the GAG induces the structural
change in Aβ with hardly any direct interactions between the peptide and the GAG.
Thus, the mode of interaction differs notably to that of the Aβ–POPC interactions, as the
comparison between the two contact maps in Figure 3 shows. In the case of the Aβ-GAG
system, only some of the positively charged side chains of Aβ, in particular Arg5 and
the neighbored residue His6, are in direct contact with the GAG for about 9% of the time.
In contrast, the contact map of the Aβ-POPC system shows that some of the hydrophobic
residues interact with POPC during the whole course of the simulation, which causes the
conformation switching in Aβ [5].

Since Aβ and the GAG do not interact directly with each other, the effect of the GAG on
the peptide must therefore be indirect. We considered two possibilities for this, which both
could arise due to the high negative charge of the GAG: (i) a change in the water ordering
and dynamics, and (ii) a change in the Na+ ion distribution. To address (i), we determined
the water structure in close proximity to Aβ using the translational and orientational order
parameters T and Q (see Equations (2) and (3)). Table 1 shows the ensemble and time
average for both quantities considering all water molecules in the vicinity (i.e., within 10 Å)
of the Aβ peptide. As one can see, the order parameters for the water surrounding Aβ
show no significant difference between the Aβ-only and Aβ-GAG simulations. This also
applies to the water around the GAG molecule. Furthermore, the results did also not
change considerably when reducing the radius of the water molecules to be considered
in the calculation to 5 Åwithin the solutes. To probe the dynamics of the water molecules,
we used the lifetimes of the H-bonds formed between water and either Aβ or the GAG
(see Equations (4) and (5)). The results, also listed in Table 1, show that in either system
and for either molecule, the values for the stretching exponent β are about 0.5, reflecting
that the relaxation of the H-bonds deviates from exponential behavior, which is caused
by interactions between water and Aβ or the GAG. The deviation is strongest for the
GAG and smallest for Aβ in the Aβ-GAG system, which suggests that the presence of
the GAG molecule weakens the Aβ-water interactions. However, the differences in the
water dynamics between the molecules are only minor, as confirmed by the lifetimes of the
H-bonds. Interestingly, the lifetime of the H-bonds formed between the GAG and water is
an intermediate of that of Aβ in different environments, i.e., the high negative charge of the
GAG does not slow down the water dynamics. Overall, we did not find noteworthy effects
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of the GAG on the water structure and dynamics around Aβ that would explain its drastic
change in conformation.

Table 1. Translational and rotational order parameters T and Q of water in the vicinity (<10 Å) of
Aβ and the GAG molecule, as well as the average stretching exponents β and mean lifetimes 〈τ〉 of
H-bonds formed between water and Aβ or the GAG.

Molecule T Q β 〈τ〉/[ps]

Aβ-only 0.37 0.44 0.555 16.45

Aβ in Aβ-GAG 0.34 0.44 0.565 14.54

GAG in Aβ-GAG 0.34 0.38 0.499 15.39

To assess whether the negative charge has considerable effects on the distribution of
the ions in the system, we calculated the radial distributions, g(r), of Na+ and Cl− with
respect to the negatively and positively charged Aβ residues in the Aβ-only and Aβ-GAG
system. For the latter, we also determined the ion distribution around the GAG molecule.
While the Cl− distributions are not noteworthily affected by the GAG, the Na+ distribution
changed dramatically. Panels A and B of Figure 5 show the results for the carboxyl groups
of residues Glu22 and Asp23 for Aβ in the two systems, while all other distributions are
shown in Figures S3–S6 in the Supplementary Materials. Comparison of these distributions
reveals that in the Aβ-GAG system, the interaction between these two residues and the
surrounding sodium ions is an order of magnitude smaller compared to the simulation of
Aβ alone. This is a result of the strong attraction between the negatively charged COO−

and OSO−3 groups of the GAG and Na+ (Figure S7, discussed in detail in our previous work
on GAGs [23]), making the peptide a less favorable interaction partner. The withdrawal
of Na+ from Aβ descreens the electrostatic interactions between the peptide residues,
which enables a strong attraction between Glu22/Asp23 and Lys28. This is visible from
intrapeptide residue–residue contact maps shown in Figure 5C,D for the Aβ-only and
Aβ-GAG system, respectively. The salt bridge between Glu22/Asp23 and Lys28 in the
Aβ-GAG system results in a β-hairpin, which was already mentioned when discussing the
TN of that system, which shows as strong contacts perpendicular to the diagonal that reflect
the neighboring contacts along the sequence. In the Aβ-only system, such a perpendicular
trace of contacts is only slightly visible, resulting from short-lived interactions. Otherwise
the peptide is devoid of interactions beyond i, i + 3 along the sequence (i referring to the
residue number), which is in line with the observation from the TN of the Aβ-only system.

In summary, the effect of the GAG on Aβ results from notably changing the distribution
of the sodium ions in the vicinity of the peptide, as these ions are strongly attracted by the
GAG. As a consequence, the formation of intrapeptide salt bridges is facilitated, in particular
between residues Glu22/Asp23 and Lys28, which is further stabilized by subsequent β-
hairpin formation. There are no notable direct interactions between the GAG and Aβ
nor relevant effects of the GAG on the water order and dynamics, which could serve as
alternative explanations for the conformational changes in Aβ in the presence of the GAG.
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Figure 5. The radial distributions g(r) of Na+ (red) and Cl− (black) relative to the carboxyl groups of
the side chains of Glu22 and Asp23 of Aβ in (A) the Aβ-only system and (B) the Aβ-GAG system.
The intrapeptide contacts between the Aβ residues in (C) the Aβ-only system and (D) the Aβ-GAG
system. Two interaction partners were considered to be in contact if in a given frame of the trajectory
they are closer than 10 Å. The resulting number of contacts were normalized with respect to the total
number of time frames per trajectory, yielding a contact probability.

2.5. Discussion

First, we discuss the TN of the Aβ-only system, which is a prime example of what
one would expect the TN of an IDP to look like. This TN is characterized by the presence
of many states, most of which have small populations and many connections to other
states, corresponding to a broad but flat free-energy landscape. Furthermore, the vast
majority of states belongs to Aβ conformations that are purely random coils and vary
only in their spatial expansion. Upon running the Force Atlas 2 optimization algorithm of
Gephi, the states differing mainly in their N-to-C distance aligned along one axis, which we
assigned as the x-axis. The second axis in our TN representation, the y-axis, turned out to
represent the change in secondary structure, with positive y-values being associated with
more β-sheet structure and negative y-values with more α-helical structures. Translating
the TN to a free-energy surface, one can conclude that the peptide populates a shallow
energy basin corresponding to random-coil structures and large N-to-C distance variations.
Free-energy states with a defined secondary structure are rarely visited and quickly return
to the disordered states.

The TN of Aβ together with a GAG differs significantly from that of Aβ alone. The TN
was calculated using the same three descriptors as before, and the automatically assigned
layout of the nodes along the x- and y-axes did not change either. The TN clearly revealed
that Aβ undergoes a structural change in the presence of the GAG. While Aβ can still
adopt fully extended structures in the presence of the GAG, the most populated states are
found for more compact and more β-sheet rich structures. These structures contain a very
stable β-hairpin maintained by the presence of a salt bridge between Glu22/Arg23 and
Lys28, which is made possible by a descreening of the electrostatic interaction between
these residues due to a shift in the local sodium ion concentration away from the peptide.
These ions are instead attracted to the strongly negatively charged GAG. This distinct
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structural switching of Aβ in the presence of a GAG agrees with the experimental finding
that in the presence of GAGs, the random-coil to amyloidogenic β-sheet transition of Aβ is
accelerated, leading to a more rapid fibril formation [6]. This observation is of biological
relevance because GAGs are important components of the extracellular space, where they
can be located on the cell surface or within the extracellular matrix. There, they exist in
two forms: covalently attached to the protein core of proteoglycans or as independent
macromolecules. Studies have revealed a close connection between GAGs and amyloid
fibrils extracted from humans. Evidence indicates that GAGs actively participate in the
formation and stabilization of amyloid fibrils [9,24,25]. Here, we show for the first time
how GAGs can cause a structural change in Aβ from a random coil to a β-sheet structure.
This structural change is even more remarkable considering that Aβ and the GAG show
almost no direct interaction with each other and only GAG-induced changes in the local
peptide environment trigger a conformational change in Aβ.

Some of these observations should be investigated in further studies. We chose the
protonation state of Aβ to correspond to the physiological conditions of the extracellular
space, i.e., about pH 7.4. At this pH, the three histidine residues of Aβ can be assumed to
be neutral (the pKa value of the free His is 6.0). On the other hand, the local environment
of His6, His13, and His14 can change their pKa value. Moreover, it is known that aging
and Alzheimer’s disease can decrease the pH of the extracellular brain space to below
7 [26]. Therefore, it would be justified to simulate other protonation states of Aβ as we have
already carried out for Aβ in solution [27,28], which resulted in random coil to β-sheet
formation at the isoelectric point of Aβ (pI of 5.3) due to altered intrapeptide electrostatics.
We expect that modeling the histidine residues as His+, which would yield neutral Aβ,
would increase the interaction between the GAG and Aβ. This in turn would increase
the local Na+ concentration around Aβ since it would now be in close proximity to the
GAG molecule, while neutral Aβ would have a higher preference to form β-sheets. It
will therefore be interesting to observe how these different forces affect the behavior of
the peptide. Moreover, the observation that the GAG-induced decrease in sodium ion
concentration near Aβ leads to structural changes in the peptide should also be further
investigated by a titration simulation in which the concentration (and also the type of salt)
is gradually increased, starting at zero, to determine the dependence of the Aβ structure
on the salt. It is known from experiments that both the type and concentration of salts,
particularly the type of cation, have significant effects on the rate of aggregation and the
morphology of the resulting Aβ fibrils [29,30], but the effects of the salts on the peptide
monomer are still unknown.

The TN of Aβ interacting with three POPC lipids also revealed a disordered-to-ordered
transition in Aβ. However, certain differences exist compared to the Aβ-GAG system. First,
Aβ forms a complex with the lipids over the whole time of the simulation. This leads to
more compact peptide structures; fully extended structures did not occur anymore. Second,
Aβ can also adopt α-helical structures and not only β-sheet-rich states. Either folded state is
facilitated by hydrophobic interactions between the peptide and the lipids. The TN revealed
that the α-helical structures populate a community that is somewhat separated from the
other communities, which allowed us to conclude that the α-helical states correspond to a
separate local minimum in a multi-funnel free-energy landscape. Thus the interaction with
the POPC lipids not only shifts the main energy basin towards more compact configurations
with structure formation, but also leads to a rougher free-energy landscape. The results
of these simulations are consistent with a large body of experimental studies that attest to
a central role for lipids in amyloid aggregation and disease development. Lipids are an
integral component of many amyloid deposits in vivo, where their presence can influence
fibril nucleation, morphology, and mechanical properties [31]. It was demonstrated that
the toxicity of Aβ aggregates correlates with the amount of their β-sheet content, which,
in turn, is increased by lipids present during Aβ aggregation [32]. With respect to helical Aβ
structures, this appears to be the prerequisite for membrane incorporation of Aβ [33–37].



Int. J. Mol. Sci. 2023, 24, 11238 11 of 15

3. Materials and Methods
3.1. Molecular Dynamics Simulations

In all simulations, Aβ was simulated as Aβ1−42 with the histidine residues modeled
as neutral and no terminal capping groups, leading to an overall peptide charge of 3−.
The three systems of only Aβ, Aβ plus GAG, and Aβ with three POPC lipids (henceforth
called Aβ-only, Aβ-GAG, and Aβ-POPC, respectively) were simulated using the GRO-
MACS simulation package [38]. Since two of the three systems were originally part of
different studies [5,15,19], some of the MD simulation settings (but not the force field
parameters and ion concentration) differ slightly between the simulations. While this
is not ideal, these differences appear to be negligible given the remarkable results pre-
sented below. In each simulation, the Aβ peptide was modeled using the CHARMM36m
force field [39]. It has been found in previous studies that the CHARMM36m force field
is best suited for modeling both monomeric Aβ [15] as well as amyloid aggregation [40].
CHARMM36m is a polypeptide force field that can be combined with the original force field
CHARMM36 [41] for modeling the POPC lipids. For the GAGs, we used the parameters
as available through the Glycan Reader & Modeler module [42–44] of the CHARMM-GUI
web server [45], as in our previous studies of GAGs alone and in interaction with multiple
Aβ16−22 peptides [23,46]. The preparation of the systems followed the same standard
protocol: First the solute(s) were placed in the simulation box, which was then filled with
TIP3P water molecules [47] together with Na+ and Cl− ions to neutralize the systems and
achieve a physiological salt concentration of 150 mM. After equilibration of the systems,
each of them was simulated under NpT conditions at 1 bar, which was accomplished using
a Parrinello–Rahman pressure coupling scheme [48]. The simulations of Aβ-GAG and
Aβ-POPC were carried out at 310 K using a Nosé–Hoover thermostat [49,50], while the Aβ
system was simulated at 300 K using a velocity rescaling thermostat [51]. In the case of the
Aβ-GAG and Aβ-POPC, the simulations were carried out for 4 µs involving 1 × 4 µs and
2 × 2 µs, respectively, while the Aβ system was simulated for 1 × 6 µs. All simulations
were achieved under periodic boundary conditions in all directions and the particle-mesh
Ewald method [52] was used for calculating the electrostatic interactions. The cutoffs for
van der Waals and Coulomb interaction calculations in real space were both set to 12 Å.
The minimum distance between any solute atom and any face or edge of the simulation
box was set to 12 Å. All MD simulations were run on the supercomputer JURECA [53].

3.2. Transition Networks

In order to construct a TN, one chooses a set of n features that describe the process
under study. These features are evaluated by descriptor functions { fi} that act on a given
conformation x(t) and project the 3N-dimensional phase space onto an n-dimensional state
S(t)

x(t) 7→ S(t) = [ f1(x(t)), f2(x(t)), . . . , fn(x(t))]. (1)

Here, x(t) is the conformation of an MD simulation at time t and N is the number of
particles within the conformation. A crucial point in constructing a TN is the choice of
descriptor functions. As discussed in our previous work [19,20], the number and type
of descriptors have a huge impact on the resulting TN. While the choice of the type of
descriptor functions is closely related to the process under study, the ideal number of
descriptors is often up to trial and error. Choosing fewer descriptors yields a simpler
TN, though more information is lost due to the projection onto a low-dimensional space.
On the contrary, choosing more descriptors might yield a TN that is too complex to be
intuitively interpreted. Here we decided to use the same three descriptor functions for the
studied systems, which allows easy comparison between them. To describe the process of
conformation switching of Aβ, we chose (i) the number of residues adopting an α-helical
structure (Nα), (ii) the number of residues adopting a β-sheet structure (Nβ), and (iii) the
distance between N- and C-terminus, called the N-to-C distance (dNC, in Å) as a measure
of compactness of the peptide. The TNs were calculated with ATRANET, which is a Python
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package developed by our group. The software has been optimized to handle large amounts
of MD data with many different descriptor functions to choose from, while still providing
a dynamic framework to easily add custom descriptor functions [19,20]. ATRANET is
available at https://github.com/strodel-group/ATRANET (accessed on 1 May 2023).

The transition matrix created by ATRANET can be visualized with the network analy-
sis and visualization software Gephi 0.10 [54,55]. For the layout of the networks we chose
the Force Atlas 2 algorithm, which is a force-driven algorithm that takes into account the
connectivity of pairs of nodes and their relative degree. As a result, nodes that have more
transitions between them are displayed closer to each other. Thus, a large spacial separation
in the layout of the TN corresponds to a large distance between the respective states in the
high-dimensional phase space. Additionally, we chose the size of the nodes to be propor-
tional to their diagonal entries in the transition matrix as a state with more self-transitions
is more stable (i.e., has a lower free energy), while nodes with fewer self-transitions reflect
higher-energy states. For visualization purposes, the depicted sizes are adjusted based
on the minimum and maximum values for each network on a linear scale from 1 to 10.
In the following, the size of the nodes will also be referred to as the population of the states.
In addition, we used Gephi’s modularity class feature to divide the network into local
communities, which makes it easier to identify groups of nodes that are strongly connected
and have high similarity between states. In terms of a free-energy perspective, the states of
a community belong to the same energy basin of an underlying multi-funnel free-energy
landscape [56].

3.3. Analysis of Water around the Solutes

To elucidate possible effects of the water solvating the peptide or the GAG, we ana-
lyzed the water structure and dynamics around the solutes. For determining the water
structure, we used the translational order parameter T and orientational order parameter
Q [57]. The translational order parameter is given by

T =
1
ζc

∫ ζc

0
|g(ζ)− 1|dζ (2)

where g refers to the oxygen–oxygen radial distribution function (RDF) and ζ = r · ρ1/3

is a dimensional variable dependent on the radial distance r and the density of the water-
oxygen atoms (ρ = NO/V). The parameter ζc = 2.8 is chosen such that g(ζc) ∼ 0. The
order parameter T can be used to measure whether or not long-range interactions are
present in a medium. For an ideal gas, the RDF is equal to 1 and hence T = 0. In the case
of a crystal, the RDF is different from 1 even for large distances, so T is large in a system
with long-range order. The orientational parameter Q measures the ability of neighboring
water molecules to produce tetrahedral arrangements. It is given by

Q = 1− 3
8

3

∑
j=1

4

∑
k=j+1

(
cos ψjk +

1
3

)2
(3)

where ψjk is the angle between neighboring O atoms j and k with central atom i. The
value of Q can range from 0 to 1, where 0 corresponds to a random distribution of water
molecules and 1 to a perfect tetrahedral arrangement.

To probe the dynamics of the water in the first solvation shell, we made use of the
lifetimes of the hydrogen bonds (H-bonds) between water and the solutes (Aβ or GAG).
To this end, we performed short simulations of 100 ns for the Aβ and Aβ-GAG system,
using the same parameters as described above but writing out data every 0.5 ps to resolve
the H-bond lifetimes. These simulations were analyzed in terms of the H-bond existing
function h(t0 + t), which is either 1 or 0 at a given time, depending on whether or not a
specific H-bond is present. To improve statistics, multiple time origins t0 are used in the
calculation and the average is taken over all time origins and possible H-bonds. The mean

https://github.com/strodel-group/ATRANET
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H-bond lifetime 〈τ〉 can then be determined by calculating the autocorrelation function of
the averaged h(t0 + t) and fitting a stretched exponential function to it:

c(t) = exp

{(
− t

τ

)β
}

(4)

where c(t) refers to the autocorrelation function, τ is the lifetime, and β is the stretching fac-
tor. From this, the mean lifetime 〈τ〉 can be calculated via integration, which is analytically
solved by the gamma function Γ:

〈τ〉 = τ

β
Γ
(

1
β

)
(5)

4. Conclusions

We constructed the transition networks (TNs) revealing the conformational preferences
and conversions of the amyloid β-peptide Aβ1−42 (here simply called Aβ) under different
conditions: as a single peptide in solution, Aβ in the presence of the GAG chondroitin-4-
sulfate with sixteen subunits, and Aβ in complex with three POPC lipids. For defining
the states of each TN, we chose the same three descriptors: (i) the number of residues
with an α-helical structure, (ii) the number of residues with a β-sheet structure, (iii) the
peptide distance from end-to-end. Using the same descriptors allows direct comparison
of the resulting TNs and identification of changes in the underlying free-energy surfaces
between the different systems. Moreover, the choice of a low-dimensional projection of the
phase space due to using only three descriptors allows a very intuitive interpretation of the
resulting TNs and directly visualizes the conformation switching of Aβ. In particular, we
have shown how the interaction of Aβ with a GAG or POPC lipids leads to a transition
from disorder to order of the intrinsically disordered monomer. Taking advantage of the
similarities of the transition network layout, we can infer a shift of the main basin of
the underlying free-energy surface from disordered conformations with large end-to-end
separations to more compact conformations with high amounts of β-sheet. The overall
increase in β-sheet-rich structures could, in turn, serve as a nucleus for amyloid aggregation
and the formation of toxic oligomers. Our findings contribute to the growing body of
knowledge on the role of GAGs and lipids in Aβ aggregation and the development of
Alzheimer’s disease.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241411238/s1.

Author Contributions: Conceptualization, B.S.; methodology, M.S. and B.S.; software, M.S.; formal
analysis, M.S.; validation, M.S. and B.S.; investigation, M.S.; data curation, M.S. and S.S.; visualization,
M.S.; writing—original draft preparation, M.S.; writing—review and editing, M.S., S.S., and B.S.;
supervision, B.S.; project administration, B.S.; funding acquisition, B.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge computing time on the supercomputer JURECA at
Forschungszentrum Jülich under grant name IDP.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code for the analysis of the MD simulations is available at https:
//github.com/strodel-group/ATRANET (accessed on 1 May 2023). The trajectory files are available
from the authors upon request.

Acknowledgments: The authors thank Anna Jäckering for fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/ijms241411238/s1
https://www.mdpi.com/article/10.3390/ijms241411238/s1
https://github.com/strodel-group/ATRANET
https://github.com/strodel-group/ATRANET


Int. J. Mol. Sci. 2023, 24, 11238 14 of 15

References
1. Uversky, V.N.; Kulkarni, P. Intrinsically disordered proteins: Chronology of a discovery. Biophys. Chem. 2021, 279, 106694.

[CrossRef]
2. Perdigão, N.; Heinrich, J.; Stolte, C.; Sabir, K.; Buckley, M.; Tabor, B.; Signal, B.; Gloss, B.; Hammang, C.; Rost, B.; et al. Unexpected

features of the dark proteome. Proc. Natl. Acad. Sci. USA 2015, 112, 15898–15903. [CrossRef] [PubMed]
3. Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [CrossRef]

[PubMed]
4. Nguyen, P.H.; Ramamoorthy, A.; Sahoo, B.R.; Zheng, J.; Faller, P.; Straub, J.E.; Dominguez, L.; Shea, J.E.; Dokholyan, N.V.; De

Simone, A.; et al. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s
Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem. Rev. 2021, 121, 2545–2647. [CrossRef]

5. Fatafta, H.; Kav, B.; Bundschuh, B.F.; Loschwitz, J.; Strodel, B. Disorder-to-order transition of the amyloid-β peptide upon lipid
binding. Biophys. Chem. 2022, 280, 106700. [CrossRef]

6. Iannuzzi, C.; Irace, G.; Sirangelo, I. The Effect of Glycosaminoglycans (GAGs) on Amyloid Aggregation and Toxicity. Molecules
2015, 20, 2510–2528. [CrossRef]

7. Snow, A.D.; Wight, T.N. Proteoglycans in the pathogenesis of Alzheimer’s disease and other amyloidoses. Neurobiol. Aging 1989,
10, 481–497. [CrossRef]

8. Ancsin, J.B. Amyloidogenesis: Historical and modern observations point to heparan sulfate proteoglycans as a major culprit.
Amyloid 2003, 10, 67–79. [CrossRef]

9. Van Horssen, J.; Wesseling, P.; Van Den Heuvel, L.P.; De Waal, R.M.; Verbeek, M.M. Heparan sulphate proteoglycans in
Alzheimer’s disease and amyloid-related disorders. Lancet Neurol. 2003, 2, 482–492. [CrossRef] [PubMed]

10. Eliezer, D. Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2009, 19, 23–30. [CrossRef]
11. Kragelund, B.B.; Skriver, K. Intrinsically Disordered Proteins: Methods and Protocols; Springer: New York, NY, USA, 2020.
12. Löhr, T.; Kohlhoff, K.; Heller, G.; Camilloni, C.; Vendruscolo, M. A kinetic ensemble of the Alzheimer’s Aβ peptide. Nat. Comput.

Sci. 2021, 1, 71–78. [CrossRef]
13. Strodel, B. Energy Landscapes of Protein Aggregation and Conformation Switching in Intrinsically Disordered Proteins. J. Mol.

Biol. 2021, 433, 167182. [CrossRef]
14. Fatafta, H.; Samantray, S.; Sayyed-Ahmad, A.; Coskuner-Weber, O.; Strodel, B. Chapter Five—Molecular simulations of IDPs:

From ensemble generation to IDP interactions leading to disorder-to-order transitions. In Dancing Protein Clouds: Intrinsically
Disordered Proteins in the Norm and Pathology, Part C; Uversky, V.N., Ed.; Academic Press: Cambridge, MA, USA, 2021. [CrossRef]

15. Paul, A.; Samantray, S.; Anteghini, M.; Khaled, M.; Strodel, B. Thermodynamics and kinetics of the amyloid-β peptide revealed
by Markov state models based on MD data in agreement with experiment. Chem. Sci. 2021, 12, 6652–6669. [CrossRef]

16. Chakraborty, D.; Straub, J.; Thirumalai, D. Energy landscapes of Aβ monomers are sculpted in accordance with Ostwald’s rule of
stages. Sci. Adv. 2023, 9, eadd6921. [CrossRef]

17. Rao, F.; Caflisch, A. The Protein Folding Network. J. Mol. Biol. 2004, 342, 299–306. [CrossRef]
18. Barz, B.; Wales, D.J.; Strodel, B. A Kinetic Approach to the Sequence–Aggregation Relationship in Disease-Related Protein

Assembly. J. Phys. Chem. B 2014, 118, 1003–1011. [CrossRef] [PubMed]
19. Schäffler, M.; Khaled, M.; Strodel, B. ATRANET – Automated generation of transition networks for the structural characterization

of intrinsically disordered proteins. Methods 2022, 206, 18–26. [CrossRef]
20. Illig, A.M.; Strodel, B. Performance of Markov State Models and Transition Networks on Characterizing Amyloid Aggregation

Pathways from MD Data. J. Chem. Theory Comput. 2020, 16, 7825–7839. [CrossRef]
21. Roche, J.; Shen, Y.; Lee, J.H.; Ying, J.; Bax, A. Monomeric Aβ1–40 and β1–42 Peptides in Solution Adopt Very Similar Ramachandran

Map Distributions That Closely Resemble Random Coil. Biochemistry 2016, 55, 762–775. [CrossRef] [PubMed]
22. Joseph, P.; Sawant, K.; Iwahara, J.; Garofalo, R.; Desai, U.; Rajarathnam, K. Lysines and Arginines play non-redundant roles in

mediating chemokine-glycosaminoglycan interactions. Sci. Rep. 2018, 8, 12289. [CrossRef] [PubMed]
23. Samantray, S.; Olubiyi, O.O.; Strodel, B. The Influences of Sulphation, Salt Type, and Salt Concentration on the Structural

Heterogeneity of Glycosaminoglycans. Int. J. Mol. Sci. 2021, 22. [CrossRef] [PubMed]
24. Diaz-Nido, J.; Wandosell, F.; Avila, J. Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases.

Peptides 2002, 23, 1323–1332. [CrossRef] [PubMed]
25. Gruys, E.; Ultee, A.; Upragarin, N. Glycosaminoglycans are part of amyloid fibrils: Ultrastructural evidence in avian AA amyloid

stained with cuprolinic blue and labeled with immunogold. Amyloid 2006, 13, 13–19. [CrossRef] [PubMed]
26. Decker, Y.; Németh, E.; Schomburg, R.; Chemla, A.; Fülöp, L.; Menger, M.D.; Liu, Y.; Fassbender, K. Decreased pH in the aging

brain and Alzheimer’s disease. Neurobiol. Aging 2021, 101, 40–49. [CrossRef]
27. Olubiyi, O.O.; Strodel, B. Structures of the Amyloid β-Peptides Aβ1-40 and Aβ1–42 as Influenced by pH and a D-Peptide. J. Phys.

Chem. B 2012, 116, 3280–3291. [CrossRef]
28. Liao, Q.; Owen, M.C.; Bali, S.; Barz, B.; Strodel, B. Aβ under stress: The effects of acidosis, Cu2+-binding, and oxidation on

amyloid β-peptide dimers. Chem. Commun. 2018, 54, 7766–7769. [CrossRef]
29. Klement, K.; Wieligmann, K.; Meinhardt, J.; Hortschansky, P.; Richter, W.; Fändrich, M. Effect of Different Salt Ions on the

Propensity of Aggregation and on the Structure of Alzheimer’s Aβ(1-40) Amyloid Fibrils. J. Mol. Biol. 2007, 373, 1321–1333.
[CrossRef]

http://doi.org/10.1016/j.bpc.2021.106694
http://dx.doi.org/10.1073/pnas.1508380112
http://www.ncbi.nlm.nih.gov/pubmed/26578815
http://dx.doi.org/10.1126/science.1566067
http://www.ncbi.nlm.nih.gov/pubmed/1566067
http://dx.doi.org/10.1021/acs.chemrev.0c01122
http://dx.doi.org/10.1016/j.bpc.2021.106700
http://dx.doi.org/10.3390/molecules20022510
http://dx.doi.org/10.1016/0197-4580(89)90108-5
http://dx.doi.org/10.3109/13506120309041728
http://dx.doi.org/10.1016/S1474-4422(03)00484-8
http://www.ncbi.nlm.nih.gov/pubmed/12878436
http://dx.doi.org/10.1016/j.sbi.2008.12.004
http://dx.doi.org/10.1038/s43588-020-00003-w
http://dx.doi.org/10.1016/j.jmb.2021.167182
http://dx.doi.org/10.1016/bs.pmbts.2021.06.003
http://dx.doi.org/10.1039/D0SC04657D
http://dx.doi.org/10.1126/sciadv.add6921
http://dx.doi.org/10.1016/j.jmb.2004.06.063
http://dx.doi.org/10.1021/jp412648u
http://www.ncbi.nlm.nih.gov/pubmed/24401100
http://dx.doi.org/10.1016/j.ymeth.2022.07.013
http://dx.doi.org/10.1021/acs.jctc.0c00727
http://dx.doi.org/10.1021/acs.biochem.5b01259
http://www.ncbi.nlm.nih.gov/pubmed/26780756
http://dx.doi.org/10.1038/s41598-018-30697-y
http://www.ncbi.nlm.nih.gov/pubmed/30115951
http://dx.doi.org/10.3390/ijms222111529
http://www.ncbi.nlm.nih.gov/pubmed/34768961
http://dx.doi.org/10.1016/S0196-9781(02)00068-2
http://www.ncbi.nlm.nih.gov/pubmed/12128089
http://dx.doi.org/10.1080/13506120500535768
http://www.ncbi.nlm.nih.gov/pubmed/16690495
http://dx.doi.org/10.1016/j.neurobiolaging.2020.12.007
http://dx.doi.org/10.1021/jp2076337
http://dx.doi.org/10.1039/C8CC02263A
http://dx.doi.org/10.1016/j.jmb.2007.08.068


Int. J. Mol. Sci. 2023, 24, 11238 15 of 15

30. Wang, H.; Wu, J.; Sternke, R.; Zheng, W.; Mörman, C.; Luo, J. Multivariate effects of pH, salt, and Zn ions on Aβ40 fibrillation.
Commun. Chem. 2022, 5, 171. [CrossRef]

31. Sanderson, J. The Association of Lipids with Amyloid Fibrils. J. Biol. Chem. 2022, 298, 102108. [CrossRef]
32. Zhaliazka, K.; Matveyenka, M.; Kurouski, D. Lipids uniquely alter the secondary structure and toxicity of amyloid beta 1–42

aggregates. FEBS J. 2023, 290, 3203–3220. [CrossRef]
33. Coles, M.; Bicknell, W.; Watson, A.A.; Fairlie, D.P.; Craik, D.J. Solution Structure of Amyloid β-Peptide(1–40) in a Water–Micelle

Environment. Is the Membrane-Spanning Domain Where We Think It Is? Biochemistry 1998, 37, 11064–11077. [CrossRef]
[PubMed]

34. Shao, H.; Jao, S.; Ma, K.; Zagorski, M.G. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of
Alzheimer’s disease. J. Mol. Biol. 1999, 285, 755–773. [CrossRef]

35. Jarvet, J.; Danielsson, J.; Damberg, P.; Oleszczuk, M.; Gräslund, A. Positioning of the Alzheimer Abeta(1-40) peptide in SDS
micelles using NMR and paramagnetic probes. J. Biomol. NMR 2007, 39, 63–72. [CrossRef] [PubMed]

36. La Rosa, C.; Scalisi, S.; Lolicato, F.; Pannuzzo, M.; Raudino, A. Lipid-assisted protein transport: A diffusion-reaction model
supported by kinetic experiments and molecular dynamics simulations. J. Chem. Phys. 2016, 144, 184901. [CrossRef] [PubMed]

37. Sciacca, M.F.; Lolicato, F.; Tempra, C.; Scollo, F.; Sahoo, B.R.; Watson, M.D.; García-Viñuales, S.; Milardi, D.; Raudino, A.; Lee, J.C.;
et al. Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered
Proteins. ACS Chem. Neurosci. 2020, 11, 4336–4350. [CrossRef]

38. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [CrossRef]

39. Huang, J.; Rauscher, S.; Nawrocki, G.; Ting, R.; Feig, M.; de Groot, B.; Grubmüller, H.; MacKerell, A. CHARMM36m: An
Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods 2017, 14, 71–73. [CrossRef]

40. Samantray, S.; Yin, F.; Kav, B.; Strodel, B. Different force fields give rise to different amyloid aggregation pathways in molecular
dynamics simulations. J. Chem. Inf. Model. 2021, 60, 6462–6475. [CrossRef]

41. Pastor, R.W.; MacKerell, A.D. Development of the CHARMM Force Field for Lipids. J. Phys. Chem. Lett. 2011, 2, 1526–1532.
[CrossRef]

42. Jo, S.; Song, K.C.; Desaire, H.; MacKerell, A.D.; Im, W. Glycan reader: Automated sugar identification and simulation preparation
for carbohydrates and glycoproteins. J. Comput. Chem. 2011, 32, 3135–3141. [CrossRef]

43. Park, S.J.; Lee, J.; Patel, D.S.; Ma, H.; Lee, H.S.; Jo, S.; Im, W. Glycan Reader is improved to recognize most sugar types and
chemical modifications in the Protein Data Bank. Bioinformatics 2017, 33, 3051–3057. [CrossRef]

44. Park, S.J.; Lee, J.; Qi, Y.; Kern, N.R.; Lee, H.S.; Jo, S.; Joung, I.; Joo, K.; Lee, J.; Im, W. CHARMM-GUI Glycan Modeler for modeling
and simulation of carbohydrates and glycoconjugates. Glycobiology 2019, 29, 320–331. [CrossRef] [PubMed]

45. Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008,
29, 1859–1865. [CrossRef]

46. Samantray, S.; Strodel, B. The Effects of Different Glycosaminoglycans on the Structure and Aggregation of the Amyloid-β (16–22)
Peptide. J. Phys. Chem. B 2021, 125, 5511–5525. [CrossRef]

47. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for
simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

48. Parrinello, M.; Rahman, A. Polymorphic Transitions in Single-Crystals—A New Molecular-Dynamics Method. Mol. Phys. 1981,
52, 7182–7190. [CrossRef]

49. Nosé, S. Molecular-Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255–268. [CrossRef]
50. Hoover, W.G. Canonical Dynamics—Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [CrossRef]

[PubMed]
51. Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [CrossRef]
52. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys.

1993, 98, 10089–10092 . [CrossRef]
53. Krause, D.; Thörnig, P. JURECA: Modular supercomputer at Jülich Supercomputing Centre. J. Large-Scale Res. Facil. JLSRF 2018,

4, A132. [CrossRef]
54. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings

of the Third International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009.
55. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]
56. Chebaro, Y.; Ballard, A.J.; Chakraborty, D.; Wales, D.J. Intrinsically Disordered Energy Landscapes. Sci. Rep. 2015, 5, 10386.

[CrossRef]
57. Giovambattista, N.; Debenedetti, P.G.; Sciortino, F.; Stanley, H.E. Structural order in glassy water. Phys. Rev. E 2005, 71, 061505.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s42004-022-00786-1
http://dx.doi.org/10.1016/j.jbc.2022.102108
http://dx.doi.org/10.1111/febs.16738
http://dx.doi.org/10.1021/bi972979f
http://www.ncbi.nlm.nih.gov/pubmed/9693002
http://dx.doi.org/10.1006/jmbi.1998.2348
http://dx.doi.org/10.1007/s10858-007-9176-4
http://www.ncbi.nlm.nih.gov/pubmed/17657567
http://dx.doi.org/10.1063/1.4948323
http://www.ncbi.nlm.nih.gov/pubmed/27179503
http://dx.doi.org/10.1021/acschemneuro.0c00588
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1038/nmeth.4067
http://dx.doi.org/10.1021/acs.jcim.0c01063
http://dx.doi.org/10.1021/jz200167q
http://dx.doi.org/10.1002/jcc.21886
http://dx.doi.org/10.1093/bioinformatics/btx358
http://dx.doi.org/10.1093/glycob/cwz003
http://www.ncbi.nlm.nih.gov/pubmed/30689864
http://dx.doi.org/10.1002/jcc.20945
http://dx.doi.org/10.1021/acs.jpcb.1c00868
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1080/00268978400101201
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://www.ncbi.nlm.nih.gov/pubmed/9895674
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1063/1.464397
http://dx.doi.org/10.17815/jlsrf-4-121-1
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1038/srep10386
http://dx.doi.org/10.1103/PhysRevE.71.061505
http://www.ncbi.nlm.nih.gov/pubmed/16089741

	Introduction
	Results and Discussion
	Transition Network of A in Solution
	Transition Network of A in the Presence of a GAG Molecule
	Transition Network of A Interacting with a POPC Cluster
	Interactions in the A-GAG System
	Discussion

	Materials and Methods
	Molecular Dynamics Simulations
	Transition Networks
	Analysis of Water around the Solutes

	Conclusions
	References

