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Abstract: Filamentous fungi are one of the most important producers of secondary metabolites.
Some of them can have a toxic effect on the human body, leading to diseases. On the other hand,
they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and im-
munosuppressants. A single fungus species in response to various signals can produce 100 or more
secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen
biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chro-
mosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes
are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon
consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes
driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances
can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis
of the available data on the “turning on” and “off” of the biosynthesis of secondary metabolites in
response to signals in filamentous fungi. To describe the ongoing processes, the model of “piano
regulation” is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain
sound from the “musical instrument of the fungus cell”, which is expressed in the production of a
specific secondary metabolite.

Keywords: secondary metabolites; biosynthetic gene clusters (BGCs); filamentous fungi; global
regulation; LaeA

1. Introduction

The production of secondary metabolites (SMs) is one of the most prominent bio-
chemical attributes of filamentous fungi (or moldy fungi, or molds), and has stimulated
extensive research on these microorganisms since the 1950s [1–3]. As a result of this, nu-
merous compounds have been discovered, some of which are capable of harming human
health, while others are able to heal people [4–7]. In parallel with the emergence of new
knowledge about the effects of these low-molecular-weight compounds on the human
body and the deciphering of their structures, investigations have been carried out that
aim to study the mechanism of action at the cellular level [8]. For example, targets for the
main classes of antibiotics have been identified, and the mechanisms for the emergence of
resistance in microorganisms against these drugs have been established [9–14]. In the late
1980s, in light of the emergence of the era of genetic engineering, the molecular basis of the
biosynthesis of secondary metabolites began to be studied [15]. In particular, the so-called
biosynthetic gene clusters (BGCs) responsible for the biosynthesis of the corresponding SMs
were discovered [16,17]. This knowledge made it possible to apply the strategy of reverse
genetics, i.e., going from gene to trait/phenotype, and search for an appropriate product
for “silent” or so-called “orphan” BGCs [18–20]. Currently, there are various techniques for
such genome-mining of BGCs [15,21–25]. Emerging knowledge about biosynthetic gene
clusters for the production of secondary metabolites, as well as a lot of difficulties associated
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with the “awakening” of silent BGCs, have led to the understanding, in numerous studies,
of the existence of a complex regulatory system for them [26–29]. Such regulation operates
in concert at several levels, starting with cluster-specific regulators, transcription factors
whose genes cluster within a particular BGC and regulate the expression of the same BGC,
ending with global regulators and chromatin-mediated regulation [30–33]. Due to the
presence of such a system of regulation, there is a relationship between the production of
SMs and the development of fungi [34]. The production of the corresponding SMs occurs
at certain stages of the development of the fungus; for example, the synthesis of pigments
occurs after the transition from the growth phase (trophophase) to the production phase
(idiophase) [35]. On the other hand, most fungal BGCs are silent under normal physio-
logical conditions and begin to work after receiving an appropriate environmental signal
that affects the regulatory system [36–38]. Composite pleiotropic events accompanying the
functioning of the fungal secondary metabolism are currently being studied using complex,
including multi-omics, approaches [39–41].

The existing fundamental knowledge of the biosynthesis and regulation of SMs in
filamentous fungi is extremely important, since, based on natural isolates, over the past
70–80 years, numerous industrial producers of pharmaceutically significant drugs, such
as antibiotics, statins, and immunosuppressants, have been created [2,42–44]. Numerous
works are also underway to create strains-producers of antitumor drugs that are syn-
thesized in fungi [45]. Such industrial producers have been obtained as a result of the
so-called classical strain improvement (CSI) methods associated with random mutagenesis
and screening for the production of targeted SMs [46,47]. Modern knowledge about the
organization of the regulatory machinery of secondary metabolism in the fungal cell makes
it possible to understand the molecular basis of the direction of mutational selection, lead-
ing to high-yield production of the target secondary metabolite [48]. To achieve this, the
original wild-type strains and improved producers are compared at the reference points
of improvement programs [49]. Understanding the changes that have taken place is im-
portant for the development of future approaches to the targeted genetic engineering of
high-yielding fungal producers of SMs [50,51].

Numerous reviews published by highly qualified researchers on the topic of secondary
metabolites have taken their rightful place in the classification [1,5,15,30,40,52–56]. How-
ever, it is becoming increasingly difficult to grasp such knowledge from various points
of view, starting with the structures of molecules, the organization of biosynthetic gene
clusters, and their regulation at various levels. And this gap between the volume of formal
numerical volumes of knowledge and the possibility of their perception by a person will
increase if they are not classified or ordered (packed) in a model. In this review, an attempt
is made to communicate knowledge related to the functioning and regulation of secondary
metabolism in filamentous fungi, as well as that related to the key changes that occur when
they are improved via classical methods [48,49,57–59]. For a more visual perception of
these processes, the model “regulation of the secondary metabolism of filamentous fungi
according to the piano principle” is proposed. This model aims to simplify the under-
standing of the numerous and complex processes of the signaling and regulation of the
biosynthesis of SMs in filamentous fungi and their changes in high-yielding industrial
producers. To achieve this, at the associative level, the processes occurring in the fungal cell
after the corresponding signal and leading to the production of one secondary metabolite
or another are compared with the impact, in which the corresponding sound is extracted
after pressing a specific piano key.

2. Main Types of Fungal Secondary Metabolites

Fungi are one of the most evolutionarily adapted organisms, which has allowed them
to occupy the majority of ecological niches suitable for existence on Earth over the past
billion years [60,61]. According to existing estimates, global fungal diversity is about an
order of magnitude greater than that of land plants [62,63]. One of the paramount assis-
tants to such adaptive expansion was the ability to produce wide-variable low-molecular
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compounds, the so-called secondary metabolites, in response to changes in the state of
both the organism itself and the environment [64–66]. These highly active molecules
have begun to play a trigger function, and are selected as keys to the locks of various
processes in the development of the organism itself, and its defense and/or attack against
surrounding organisms and other species via within- and between-species interaction.
More than 15,000 biologically active SMs are currently known to be produced by fungi
(which is approximately 50% of all known biologically active SMs from microorganisms),
some of which are used in pharmaceutical, agrochemical, and cosmetic products [52]. The
majority of these compounds belong to one of four classes obtained through the activity
of: (i) nonribosomal peptide synthetase (NRPS), (ii) polyketide synthase (PKS), (iii) ter-
pene cyclase (TC) for terpenoid production, or (iv) a number of enzymes for alkaloid
production (Figure 1).
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Figure 1. Chemical structures of the main types of secondary metabolites (SMs) produced by
filamentous fungi, based on the enzymatic activity of: (a) nonribosomal peptide synthetase (NRPS);
(b) polyketide synthase (PKS); (c) terpene cyclase (TPC) for terpenoid production; (d) a number of
enzymes for alkaloid production; (e) NRPS and PKS for production of NRPS/PKS hybrid; (f) NRPS
and TPC for production of NRPS/terpenoid; (g) PKS and TPC for production of PKS/terpenoid;
(h) enzymes for alkaloid production and TPC for production of alkaloid/terpenoid; (i) other enzymes
for production meroterpenoid with unique structures (MUS), or NRPS-independent siderophore
(NIS), or other types of molecules.

There are also a number of hybrid variants of fungal SMs, which are obtained due to
combinations of the main four biosynthetic strategies, for example, the NRPS/PKS hybrid,
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or meroterpenoids, such as NRPS/terpenoid, PKS/terpenoid, and alkaloid/terpenoid [67].
Finally, SMs of fungi are known that do not belong to any of the four major types, or their
hybrid derivatives, for example, the NRPS-independent siderophore (NIS) [68].

Typically, the molar mass of fungal SMs ranges from 140 to 1200 or more, with the
vast majority ranging from 250 to 600 (Table 1). Perhaps it is precisely these molecular
sizes that make it possible to create, on the one hand, a huge variety of chemical structures
(based, for the most part, on the atoms of H, C, O, N, P, and S), which, on the other hand,
can serve as small keys to the locks of macromolecular structures. These keys are uniquely
sharpened for a specific task, for opening a particular lock, which must be unlocked at a
strictly specific moment. More detailed information on the characteristics of representatives
of the main types of fungi secondary metabolites is presented in Table 1.

Table 1. Examples of the main types of fungal secondary metabolites: major producers, chemical
properties, and biological action.

Secondary
Metabolite Producer M Chemical Structures Effect Type References

Penicillin G Penicillium
chrysogenum 334
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Table 1. Cont.

Secondary
Metabolite Producer M Chemical Structures Effect Type References

Lovastatin
(Mevacor®, Merck

Research
Laboratories,

Rahway, NJ, USA)

Aspergillus
terrius 405
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Mitotoxin with  
antibiotic activity 

(fusidane-type antibiotic) 
Terpenoid [85,86] 

Cholesterol-lowering
drug PKS [75,76]

Compactin
(Mevastatin)

Penicillium
citrinum 391
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Patulin 
Aspergillus,  
Penicillium,  

Byssochlamys 
154 

 

Antibiotic  
(discontinued  

due to high toxicity) 
PKS [74] 

Lovastatin 
(Mevacor®, Merck 

Research Laborato-
ries, Rahway, NJ, 

USA) 

Aspergillus terrius 405 

 

Cholesterol-lowering drug PKS [75,76]  

Compactin 
(Mevastatin) 

Penicillium  
citrinum 

391 

 

Cholesterol-lowering feed-
stock for production of 

Pravastatin® 
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Citrinin P. citrinum 250 

 

Mycotoxin with antibiotic 
activity 

PKS [79,80] 

Griseofulvin 
Penicillium  

griseofulvum 
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Afidicolin 
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muscarius 
338 

 

Antitumor 
(under testing) 

Terpenoid [82]  

Fusidic acid 
(Fucidin®, 
Boehringer 
Ingelheim, 
Ingelheim, 
Germany) 

Fusidium  
coccineum 

517 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [83,84] 

Helvolic acid  
(Fumigacin) 

Aspergillus  
fumigatus 

569 

 

Mitotoxin with  
antibiotic activity 

(fusidane-type antibiotic) 
Terpenoid [85,86] 

Cholesterol-lowering
feedstock for
production of
Pravastatin®

PKS [77,78]

Citrinin P. citrinum 250
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Byssochlamys 
154 
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(Mevacor®, Merck 
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ries, Rahway, NJ, 
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Penicillium  
citrinum 

391 
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griseofulvum 
353 
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Afidicolin 
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338 

 

Antitumor 
(under testing) 
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Boehringer 
Ingelheim, 
Ingelheim, 
Germany) 

Fusidium  
coccineum 

517 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [83,84] 

Helvolic acid  
(Fumigacin) 

Aspergillus  
fumigatus 

569 

 

Mitotoxin with  
antibiotic activity 

(fusidane-type antibiotic) 
Terpenoid [85,86] 

Mycotoxin with
antibiotic activity PKS [79,80]

Griseofulvin Penicillium
griseofulvum 353
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ries, Rahway, NJ, 

USA) 
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Compactin 
(Mevastatin) 

Penicillium  
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391 
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353 

 

Antibiotic PKS [81] 
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338 

 

Antitumor 
(under testing) 

Terpenoid [82]  
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Boehringer 
Ingelheim, 
Ingelheim, 
Germany) 

Fusidium  
coccineum 

517 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [83,84] 

Helvolic acid  
(Fumigacin) 

Aspergillus  
fumigatus 

569 

 

Mitotoxin with  
antibiotic activity 

(fusidane-type antibiotic) 
Terpenoid [85,86] 

Antibiotic PKS [81]

Afidicolin Akanthomyces
muscarius 338
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Aspergillus,  
Penicillium,  

Byssochlamys 
154 

 

Antibiotic  
(discontinued  

due to high toxicity) 
PKS [74] 

Lovastatin 
(Mevacor®, Merck 

Research Laborato-
ries, Rahway, NJ, 

USA) 

Aspergillus terrius 405 

 

Cholesterol-lowering drug PKS [75,76]  

Compactin 
(Mevastatin) 

Penicillium  
citrinum 

391 

 

Cholesterol-lowering feed-
stock for production of 

Pravastatin® 
PKS [77,78] 

Citrinin P. citrinum 250 

 

Mycotoxin with antibiotic 
activity 

PKS [79,80] 

Griseofulvin 
Penicillium  

griseofulvum 
353 

 

Antibiotic PKS [81] 

Afidicolin 
Akanthomyces 

muscarius 
338 

 

Antitumor 
(under testing) 

Terpenoid [82]  

Fusidic acid 
(Fucidin®, 
Boehringer 
Ingelheim, 
Ingelheim, 
Germany) 

Fusidium  
coccineum 

517 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [83,84] 

Helvolic acid  
(Fumigacin) 

Aspergillus  
fumigatus 

569 

 

Mitotoxin with  
antibiotic activity 

(fusidane-type antibiotic) 
Terpenoid [85,86] 

Antitumor
(under testing) Terpenoid [82]

Fusidic acid
(Fucidin®,
Boehringer
Ingelheim,
Ingelheim,
Germany)

Fusidium
coccineum 517
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Aspergillus,  
Penicillium,  

Byssochlamys 
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Antibiotic  
(discontinued  

due to high toxicity) 
PKS [74] 

Lovastatin 
(Mevacor®, Merck 

Research Laborato-
ries, Rahway, NJ, 

USA) 

Aspergillus terrius 405 

 

Cholesterol-lowering drug PKS [75,76]  

Compactin 
(Mevastatin) 

Penicillium  
citrinum 

391 

 

Cholesterol-lowering feed-
stock for production of 

Pravastatin® 
PKS [77,78] 

Citrinin P. citrinum 250 

 

Mycotoxin with antibiotic 
activity 

PKS [79,80] 

Griseofulvin 
Penicillium  

griseofulvum 
353 

 

Antibiotic PKS [81] 

Afidicolin 
Akanthomyces 

muscarius 
338 

 

Antitumor 
(under testing) 

Terpenoid [82]  

Fusidic acid 
(Fucidin®, 
Boehringer 
Ingelheim, 
Ingelheim, 
Germany) 

Fusidium  
coccineum 

517 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [83,84] 

Helvolic acid  
(Fumigacin) 

Aspergillus  
fumigatus 

569 

 

Mitotoxin with  
antibiotic activity 

(fusidane-type antibiotic) 
Terpenoid [85,86] 

Antibiotic
(fusidane-type

antibiotic)
Terpenoid [83,84]

Helvolic acid
(Fumigacin)

Aspergillus
fumigatus 569
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Aspergillus,  
Penicillium,  

Byssochlamys 
154 

 

Antibiotic  
(discontinued  

due to high toxicity) 
PKS [74] 

Lovastatin 
(Mevacor®, Merck 

Research Laborato-
ries, Rahway, NJ, 

USA) 

Aspergillus terrius 405 

 

Cholesterol-lowering drug PKS [75,76]  

Compactin 
(Mevastatin) 

Penicillium  
citrinum 

391 

 

Cholesterol-lowering feed-
stock for production of 

Pravastatin® 
PKS [77,78] 

Citrinin P. citrinum 250 

 

Mycotoxin with antibiotic 
activity 

PKS [79,80] 

Griseofulvin 
Penicillium  

griseofulvum 
353 

 

Antibiotic PKS [81] 

Afidicolin 
Akanthomyces 

muscarius 
338 

 

Antitumor 
(under testing) 

Terpenoid [82]  

Fusidic acid 
(Fucidin®, 
Boehringer 
Ingelheim, 
Ingelheim, 
Germany) 

Fusidium  
coccineum 

517 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [83,84] 

Helvolic acid  
(Fumigacin) 

Aspergillus  
fumigatus 

569 

 

Mitotoxin with  
antibiotic activity 

(fusidane-type antibiotic) 
Terpenoid [85,86] 

Mitotoxin with
antibiotic activity

(fusidane-type
antibiotic)

Terpenoid [85,86]

Paclitaxel
(Taxol®)

Aspergillus
fumigatus 854
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Paclitaxel  
(Taxol®) 

Aspergillus  
fumigatus 

854 

 

Antitumor (the most-used 
natural anticancer drug) 

Terpenoid [87,88] 

Cephalosporin P1 A. chrysogenum 575 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [89,90] 

Aspernigerin Aspergillus niger 433  

 

Cytotoxic  
(vs. tumor cell lines) 

Alkaloid [91,92] 

Camptothecin 
P.chrysogenum  

A. terreus  
Alternaria sp.  

348 

 

Antitumor 
(topoisomerase I inhibitor) 

Alkaloid [92–95] 

Penicidone B Penicillium sp. 387  

 

Antitumor  Alkaloid [92,96] 

Chaetominine Chaetomium sp. 402  

 

Antitumor Alkaloid [92,97,98] 

Pneumocandin B0 Glarea lozoyensis 1065 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
caspofungin 
(Cancidas®) 

NRPS/PKS [99,100] 

Antitumor (the
most-used natural
anticancer drug)

Terpenoid [87,88]
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natural anticancer drug) 
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Cephalosporin P1 A. chrysogenum 575 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [89,90] 

Aspernigerin Aspergillus niger 433  

 

Cytotoxic  
(vs. tumor cell lines) 

Alkaloid [91,92] 

Camptothecin 
P.chrysogenum  

A. terreus  
Alternaria sp.  

348 

 

Antitumor 
(topoisomerase I inhibitor) 

Alkaloid [92–95] 

Penicidone B Penicillium sp. 387  

 

Antitumor  Alkaloid [92,96] 

Chaetominine Chaetomium sp. 402  

 

Antitumor Alkaloid [92,97,98] 

Pneumocandin B0 Glarea lozoyensis 1065 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
caspofungin 
(Cancidas®) 

NRPS/PKS [99,100] 

Antibiotic
(fusidane-type

antibiotic)
Terpenoid [89,90]

Aspernigerin Aspergillus niger 433
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Paclitaxel  
(Taxol®) 

Aspergillus  
fumigatus 

854 

 

Antitumor (the most-used 
natural anticancer drug) 

Terpenoid [87,88] 

Cephalosporin P1 A. chrysogenum 575 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [89,90] 

Aspernigerin Aspergillus niger 433  

 

Cytotoxic  
(vs. tumor cell lines) 

Alkaloid [91,92] 

Camptothecin 
P.chrysogenum  

A. terreus  
Alternaria sp.  

348 

 

Antitumor 
(topoisomerase I inhibitor) 

Alkaloid [92–95] 

Penicidone B Penicillium sp. 387  

 

Antitumor  Alkaloid [92,96] 

Chaetominine Chaetomium sp. 402  

 

Antitumor Alkaloid [92,97,98] 

Pneumocandin B0 Glarea lozoyensis 1065 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
caspofungin 
(Cancidas®) 

NRPS/PKS [99,100] 

Cytotoxic
(vs. tumor cell lines) Alkaloid [91,92]

Camptothecin
P.chrysogenum

A. terreus
Alternaria sp.

348
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Paclitaxel  
(Taxol®) 

Aspergillus  
fumigatus 

854 

 

Antitumor (the most-used 
natural anticancer drug) 

Terpenoid [87,88] 

Cephalosporin P1 A. chrysogenum 575 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [89,90] 

Aspernigerin Aspergillus niger 433  

 

Cytotoxic  
(vs. tumor cell lines) 

Alkaloid [91,92] 

Camptothecin 
P.chrysogenum  

A. terreus  
Alternaria sp.  

348 

 

Antitumor 
(topoisomerase I inhibitor) 
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Penicidone B Penicillium sp. 387  

 

Antitumor  Alkaloid [92,96] 

Chaetominine Chaetomium sp. 402  

 

Antitumor Alkaloid [92,97,98] 

Pneumocandin B0 Glarea lozoyensis 1065 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
caspofungin 
(Cancidas®) 

NRPS/PKS [99,100] 

Antitumor
(topoisomerase I

inhibitor)
Alkaloid [92–95]

Penicidone B Penicillium sp. 387

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 45 
 

 

Paclitaxel  
(Taxol®) 

Aspergillus  
fumigatus 

854 

 

Antitumor (the most-used 
natural anticancer drug) 

Terpenoid [87,88] 

Cephalosporin P1 A. chrysogenum 575 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [89,90] 

Aspernigerin Aspergillus niger 433  

 

Cytotoxic  
(vs. tumor cell lines) 

Alkaloid [91,92] 

Camptothecin 
P.chrysogenum  

A. terreus  
Alternaria sp.  

348 

 

Antitumor 
(topoisomerase I inhibitor) 

Alkaloid [92–95] 

Penicidone B Penicillium sp. 387  

 

Antitumor  Alkaloid [92,96] 

Chaetominine Chaetomium sp. 402  

 

Antitumor Alkaloid [92,97,98] 

Pneumocandin B0 Glarea lozoyensis 1065 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
caspofungin 
(Cancidas®) 

NRPS/PKS [99,100] 

Antitumor Alkaloid [92,96]

Chaetominine Chaetomium sp. 402
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(Taxol®) 

Aspergillus  
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854 

 

Antitumor (the most-used 
natural anticancer drug) 
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Cephalosporin P1 A. chrysogenum 575 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [89,90] 
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Cytotoxic  
(vs. tumor cell lines) 
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Camptothecin 
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348 
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Chaetominine Chaetomium sp. 402  

 

Antitumor Alkaloid [92,97,98] 
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lipopeptides), 

feedstock for production of 
caspofungin 
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NRPS/PKS [99,100] 

Antitumor Alkaloid [92,97,98]

Pneumocandin B0 Glarea lozoyensis 1065
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Paclitaxel  
(Taxol®) 

Aspergillus  
fumigatus 

854 

 

Antitumor (the most-used 
natural anticancer drug) 

Terpenoid [87,88] 

Cephalosporin P1 A. chrysogenum 575 

 

Antibiotic  
(fusidane-type antibiotic) 

Terpenoid [89,90] 

Aspernigerin Aspergillus niger 433  

 

Cytotoxic  
(vs. tumor cell lines) 

Alkaloid [91,92] 

Camptothecin 
P.chrysogenum  

A. terreus  
Alternaria sp.  

348 

 

Antitumor 
(topoisomerase I inhibitor) 

Alkaloid [92–95] 

Penicidone B Penicillium sp. 387  

 

Antitumor  Alkaloid [92,96] 

Chaetominine Chaetomium sp. 402  

 

Antitumor Alkaloid [92,97,98] 

Pneumocandin B0 Glarea lozoyensis 1065 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
caspofungin 
(Cancidas®) 

NRPS/PKS [99,100] 

Antibiotic
(echinocandins,
lipopeptides),
feedstock for
production of
caspofungin
(Cancidas®)

NRPS/PKS [99,100]

Echinocandin B Aspergillus
nidulans 1060
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Echinocandin B 
Aspergillus  

nidulans 
1060 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
anidulafungin (Eraxis®, 

Pfizer Medical 
Information, New York, 

NY, USA) 

NRPS/PKS [99,101] 

Fusarin C Fusarium sp.  

 

Mycotoxin,  
potent mutagen (affects 

agricultural crops)  
NRPS/PKS [102] 

Chaetoglobosin A 
Penicillium  
expansum 

529 

 

Antitumor 
(binds to actin filaments) 

NRPS-PKS [102–104] 

Cyclosporin A 
Tolypocladium  

inflatum 
1203 

 

Immunosuppressant 
(agonist of immunophilin) 

NRPS/PKS [105] 

Aculene A  
Aspergillus  
aculeatus 

315 

 

Function unknown 
NRPS/terpenoi

d 
[67,106,107] 

Proversilin C 
Aspergillus  
versicolor 

439 

 

 
 

Antitumor 
NRPS/terpenoi

d 
[67,108] 

Antibiotic
(echinocandins,
lipopeptides),
feedstock for
production of
anidulafungin
(Eraxis®, Pfizer

Medical Information,
New York, NY, USA)

NRPS/PKS [99,101]
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Echinocandin B 
Aspergillus  

nidulans 
1060 

 

Antibiotic (echinocandins, 
lipopeptides), 

feedstock for production of 
anidulafungin (Eraxis®, 

Pfizer Medical 
Information, New York, 

NY, USA) 

NRPS/PKS [99,101] 

Fusarin C Fusarium sp.  

 

Mycotoxin,  
potent mutagen (affects 

agricultural crops)  
NRPS/PKS [102] 

Chaetoglobosin A 
Penicillium  
expansum 

529 

 

Antitumor 
(binds to actin filaments) 

NRPS-PKS [102–104] 

Cyclosporin A 
Tolypocladium  

inflatum 
1203 

 

Immunosuppressant 
(agonist of immunophilin) 

NRPS/PKS [105] 

Aculene A  
Aspergillus  
aculeatus 

315 

 

Function unknown 
NRPS/terpenoi

d 
[67,106,107] 

Proversilin C 
Aspergillus  
versicolor 

439 

 

 
 

Antitumor 
NRPS/terpenoi

d 
[67,108] 

Mycotoxin,
potent mutagen

(affects agricultural
crops)

NRPS/PKS [102]

Chaetoglobosin A Penicillium
expansum 529
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aculeatus 

315 

 

Function unknown 
NRPS/terpenoi

d 
[67,106,107] 

Proversilin C 
Aspergillus  
versicolor 

439 

 

 
 

Antitumor 
NRPS/terpenoi

d 
[67,108] 

Antitumor
(binds to actin

filaments)

NRPS-
PKS [102–104]

Cyclosporin A Tolypocladium
inflatum 1203
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Proversilin C 
Aspergillus  
versicolor 

439 

 

 
 

Antitumor 
NRPS/terpenoi

d 
[67,108] 

Immunosuppressant
(agonist of

immunophilin)
NRPS/PKS [105]

Aculene A Aspergillus
aculeatus 315
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315 

 

Function unknown 
NRPS/terpenoi

d 
[67,106,107] 

Proversilin C 
Aspergillus  
versicolor 

439 

 

 
 

Antitumor 
NRPS/terpenoi

d 
[67,108] 

Function unknown NRPS/
terpenoid [67,106,107]

Proversilin C Aspergillus
versicolor 439
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3. Biosynthesis of Fungal Secondary Metabolites in Response to Signals

In most cases, under normal physiological conditions during the trophophase, fungal
SMs are not synthesized (Figure 2a) [35]. However, under the influence of certain internal
or external signals, cellular mechanisms are triggered, leading to the synthesis of one
corresponding (target) SM or another (Figure 2b) [1,15,134].

Low-molecular-weight compounds, including SMs, are one of the main methods
of communication between microorganisms [135–137]. If a civilized person uses several
thousand words for everyday communication, then microorganisms “speak” the language
of several hundred low-molecular-weight compounds [138,139]. Thus, in the composition
of the microbiome, individual species can “carry on new conversations”, producing SMs
that are not detected in the composition of a monoculture [140].

The SMs of microorganisms play a significant ecological role [36,141]. They can be
used as weapons and armor in cases of a confrontation between microorganisms [142]. On
the other hand, the SMs of fungi can serve as important agents at the stages of infection in
plant and animal cells [143–148]. Furthermore, fungal SMs can serve as communication
molecules [149–151], playing a significant role in the fungal “communicome” [152,153].
Fungi use other low-molecular-weight molecules than bacteria for quorum sensing, such
as tyrosol, farnesol, and butyrolactone-I [149,154]. Along with this, fungal SMs can inhibit
the quorum sensing systems of competing microorganisms [149,155].

In response to low levels of iron in the environment, fungi synthesize siderophores,
special compounds with a high affinity for iron ions [156]. They are secreted into the exter-
nal environment to chelate trace amounts of iron; the resulting complexes of siderophores
with iron have an increased affinity for special cellular receptors, as a result of which the
necessary iron enters the cell [157]. The synthesis of siderophores is also important in the
pathogenesis of a number of fungi [147].

Fungal SMs are capable of manipulating plant community (plant microbiome) dy-
namics by inhibiting or facilitating the establishment of co-habituating organisms and
mediating fungal–bacterial, fungal–fungal, and fungal–animal interactions associated with
the plant community [158]. The production of SMs in fungi is influenced by environmental
factors; for example, their production in fungi that have lived for hundreds and thousands
of years in lichens is affected by light, UV radiation, altitude, temperature fluctuations, and
seasonality [159].
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duction of corresponding SMs. As an example, changes in the production of SMs in Penicillium 
chrysogenum are given: (a) Under normal physiological conditions (in the absence of specific envi-
ronmental signals) and at an early stage of fungal cell development (trophophase stage), most SMs 
are not produced. (b) In response to a specific signal, the corresponding SM is synthesized. The 
green color shows known SMs of P. chrysogenum, which, in principle, can be synthesized by the cell 
(representing its biosynthetic capacity), but are not produced at a particular moment. The red color 
shows the currently produced SMs in response to the signal; the antibiotic penicillin G, synthesized 
in response to an external signal, is given as an example. 
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Figure 2. Biosynthesis of secondary metabolites (SMs) in response to signal exposure. The arrival of a
specific signal (from the external environment or the internal signal of the cell) leads to the production
of corresponding SMs. As an example, changes in the production of SMs in Penicillium chrysogenum
are given: (a) Under normal physiological conditions (in the absence of specific environmental signals)
and at an early stage of fungal cell development (trophophase stage), most SMs are not produced.
(b) In response to a specific signal, the corresponding SM is synthesized. The green color shows
known SMs of P. chrysogenum, which, in principle, can be synthesized by the cell (representing its
biosynthetic capacity), but are not produced at a particular moment. The red color shows the currently
produced SMs in response to the signal; the antibiotic penicillin G, synthesized in response to an
external signal, is given as an example.
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4. Biosynthetic Gene Clusters (BGCs) for the Production of Fungal
Secondary Metabolites

One of the revolutionary discoveries in understanding the molecular basis of the
biosynthesis of SMs was the identification of so-called biosynthetic gene clusters
(BGCs) [160–163]. It turned out that in order to create a particular natural product, mi-
croorganisms and plants have an appropriate set of genes that are in relative proximity in
a particular region of the chromosome (clustered) and are jointly regulated [164]. Thus,
the genes responsible for the stages of biosynthesis of a particular SM are either “silent”
together or jointly upregulated [26]. The architecture of metabolism itself leads to the
maximization of biosynthetic diversity in fungi [165]. For example, a number of BGCs
have biased ecological distributions, consistent with niche-specific selection [165]. Several
thousand BGCs are currently known in fungi; it is assumed that their numbers range from
100,000 to millions [1,160,166].

There are several main types of BGC organization responsible for the biosynthesis of
the corresponding types of SMs in fungi (Figures 1 and 3). In most cases, BGCs contain:
(i) one or more genes for backbone, or core, enzymes (synthase or synthetase) responsible
for the production of the core structure of SMs, and (ii) a number of genes that encode
tailoring enzymes for modifying the core compound to obtain a variety of products [1]. The
type of core enzyme (or combination thereof) determines the type of secondary metabolite.
The BGC can also assemble genes encoding: (iii) transporters, (iv) proteins that mitigate
toxic properties, (v) pathway-specific transcription factors, and (vi) genes with as-yet
unknown function (Figure 3) [167].

4.1. BGCs with Backbone (or Core) Genes for Megasynthases NRPS or PKS

To create two among the four main types of secondary metabolites, fungi use megasyn-
thases, large modular enzymes such as NRPS, nonribosomal peptide synthetase [170], or
PKS (polyketide synthase) [171] (Figure 1a,b and Figure 3a). In these modular enzymes,
catalytic domains with a number of functions, required for the polymerization of (i) amino
acids, including non-proteinogenic acids (in the case of NRPS), or (ii) acyl groups, from
acetyl-CoA to malonyl-CoA (in the case of PKS), are assembled into one huge polypeptide
chain [172,173]. As a result, individual megasynthases are responsible for 10–50 or more
catalytic activities [15]. In a number of bacteria (~10% of cases), polymerization units do
not have a modular organization, and catalytic domains are mainly encoded by individ-
ual proteins [174]. It is thought that such non-modular polymerization systems for the
production of SMs in bacteria served as a prototype for the development of the modular
megasynthases NRPS and PKS [174].

Each module of NRPS is a functional building block responsible for incorporating
and modifying a single amino acid unit, which can be either canonical proteinogenic
(i.e., used in ribosomal synthesis) or non-canonical non-proteinogenic (i.e., never used in
ribosomal synthesis) [175,176]. A typical NRPS module consists of: (i) the adenylation
(A) domain, for amino acid recognition and activation; (ii) the peptidyl carrier protein
(PCP) domain, for transferring an activated amino acid from the A-domain to its cofactor,
4′-phosphopantetheine; and (iii) the condensation (C) domain, to catalyze peptide bond
formation [177]. Along with this, the module may contain a set of optional domains with
catalytic functions of methyltransferase (MT), β-ketoacyl reductase (KR), epimerase (E),
etc. [178]. Specificity of the recognition of one amino acid or another is achieved due to the
substrate-binding center of the adenylation domain of the corresponding module [179,180].
In this regard, the term “nonribosomal” code was introduced, referring to the correspon-
dence of 10 amino acid residues in the substrate binding site of the adenylation domain
of a particular NRPS module with a specific proteinogenic or non-proteinogenic amino
acid [181,182]. More than 500 non-proteinogenic amino acids have now been found in fungi,
many of which are used for non-ribosomal peptide synthesis [183,184]. In addition, for
the biosynthesis of a number of non-proteinogenic amino acids themselves, an additional
BGC is required [185]. Adding such a significant number of “building block” types to the
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canonical 20 proteinogenic amino acids (the number of which is strictly limited by genetic
coding and the rigidly fixed roles of tRNA and aminoacyl-tRNA synthetizes) makes it
possible to drastically expand the range of created low-molecular-weight structures [183].
Fundamentally new structures emerging as a result of the use of new building materials on
the NRPS platform provide an advantage to the organisms that produce them, and can also
be applied to obtain medically significant natural products [186–188].
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Figure 3. Some examples of the organization of biosynthetic gene clusters (BGCs) for the production
of secondary metabolites (SMs) in fungi. (a) BGCs for production of SMs based on so-called “cen-
tral” gene, which encodes one type of megasynthase or another: (i) NRPS (nonribosomal peptide
synthetase), (ii) PKS (polyketide synthase), or (iii) NRPS-PKS hybrid. (b) “Early” and “late” BGCs
for production of cephalosporin C in Acremonium chrysogenum [168]. (c) BGCs for production of
lovastatin in Aspergillus terreus: P450—cytochrome P450 [169]. (d) BGCs for production of terpenoid
SM: TPC—terpene cyclase. (e) BGCs for production of meroterpenoid with unique structure. BGC
for production of biscognienyne B is given as an example [125]. (f) BGC for production of kojic
acid in Aspergillus oryzae [133]. Gene loci for enzymes of the biosynthetic pathways of the SMs are
colored in red; gene loci for protein transporters of biosynthetic products are colored in blue; gene
locus for protecting the microorganism from the produced secondary metabolite is colored in green;
gene locus for the specific regulator of this biosynthetic pathway is colored in white; locus for gene
with unknown function is colored in brown. Genes for backbone enzymes (NRPS, PKS, and TPC)
responsible for the production of the core structure of SMs are colored in red.

PKS can have, as in the case of NRPS, a complex multi-module structure (type I
noniterative PKS) where a single module from a huge enzyme with multiple modules is
used to attach the next building block [189,190]. Such enzymes function as a modular linear
conveyor line, in which each active site is used only once [191]. However, in fungi, the most
common PKS is the iterative type (type I iterative PKS and type II PKS), which, instead
of one large megaenzyme, consists of only one module that reuses necessary catalytic
domains in a cyclic fashion [192]. After attaching a building block, the polymerization
product is transferred to the beginning of the module to attach the next building block, and
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so on [193]. Such enzymes function as an iterative assembly line in which each active site
of the core domains is used as many times as needed to attach the building blocks [194].

Typically, a single PKS module contains three core (minimal) domains: (i) the acyl
transferase (AT) domain selects the building blocks to add to the product and transfers them
to (ii) the acyl transfer protein (ACP) domain, which loads them for the polymerization
product, and (iii) the ketoacyl synthase (KS) domain, which is required for the decarboxyla-
tion condensation of the extendable unit (usually malonyl-CoA or methylmalonyl-CoA)
with the acyl thioether [195]. There is also iterative AT-less and ACP-less type III PKS
in fungi, which is a homodimer with a molecular weight of about 40 kDa and combines
all the activities from the essential type I and II PKS domains [196]. Along with min-
imal domains, the module may contain a set of optional (or tailoring) domains with
catalytic functions of thioesterase (TE), methyltransferase (MT), dehydratase (DH), enoyl
reductase (ER), β-ketoacyl reductase (KR), etc. [195]. Depending on the presence and
number of reducing domains in PKS, they are subdivided into: (i) NR-PKS—non-reducing
PKS, the products of which are true polyketides; (ii) PR-PKS—partially contracting PKS;
and (iii) FR-PKS—fully reducing PKS, the products of which are fatty acid derivatives. As
a result of this diversity of intramodular organization, PKS, along with NRPS, produce an
enormously diverse array of natural products in fungi [197].

There are also known cases when more than one corresponding megasynthase is
used for the production of NRPS-driven (Figure 1a) or PKS-driven (Figure 1b) secondary
metabolites by fungi. For example, two PKSs are used during lovastatin biosynthesis, one
of which, LovB nonaketide synthase (EC:2.3.1.161), uses nine building blocks based on
acetyl-CoA or manoyl-CoA, and the other, LovF diketide synthase (2-methylbutanoate
polyketide synthase; EC: 2.3.1.244), uses two such building blocks [198]. Accordingly, the
lovastatin BGC encodes two PKS genes (Figure 3c). There are also numerous examples of
BGCs in fungi encoding both NRPS and PKS. This is discussed in more detail in Section 4.3.

4.2. BGCs with Backbone (or Core) Gene for Terpene Cyclase

Terpene cyclase (TPC) is used as the core enzyme for the biosynthesis of the third
among the four major types of fungal secondary metabolites, terpenoids
(Figures 1c and 3d) [199]. In most cases, TPC clusters in the same BGC as its downstream
modification enzymes (Figure 3d) [200].

TPCs form the hydrocarbon backbones of terpenoids, which are then modified by
tailoring enzymes to produce final natural products [201]. Depending on the initial gen-
eration of the carbocation, class I TPK and class II TPK are distinguished [202]. TPC is a
catalytic complex that produces cyclic terpenoids from their linear precursors [203]. Ter-
penoid cyclization reactions are one of the most complex reactions found in nature [204].
Due to the functional diversity of terpene cyclases, various types of cyclic terpenoids are
formed from linear precursors, which, in turn, undergo various modifications. Currently,
over 80,000 terpenoids are known, which represent about a third of the described natural
products [205]. In most cases, the gene for TPC clusters in the same BGC as the genes for
its downstream modification enzymes [200]. However, there are a number of examples,
such as lanosterol-derived triterpenes/steroids, where the TPC gene is outside the gene
cluster for its downstream modification enzymes [206].

4.3. Hybrid BGCs with Genes for Different Backbone Enzymes

In addition to biosynthetic clusters encoding only one type of core enzyme, which
leads, respectively, to the production of secondary metabolites of the NRPS type, PKS type,
or TPC type (Figure 1b–d), there are mixed-type BGCs that contain genes for different types
of core enzymes [160]. There are also BGCs with hybrid core genes, for example, for the
production of NRPS/PKS hybrids, part of the gene may encode NRPS modules and the
other part PKS modules [175]. In such cases, specific interpolypeptide linkers exist at both
the C- and N-termini of the NRPS and PKS proteins, which play a critical role in facilitating
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the transfer of the growing peptide or polyketide intermediate between NRPS and PKS
modules in hybrid NRPS-PKS systems [160].

Among the four basic types of SMs in fungi (NRPS, PKS, terpenes, and alkaloids), there
are numerous chimeric variants. As a result, the production of such mixed (or hybrid) fun-
gal BGCs results in chimeric secondary metabolites such as NRPS/PKS, NRPS/terpenoid,
PKS/terpenoid, or alkaloid/terpenoid hybrids (Figure 1e–h) [67,160,207]. Some (but not
all) alkaloids also use core enzymes for their construction [208,209]; for example, ergot
alkaloids use NRPS [210,211]. In rare cases, secondary metabolites in fungi result from
crosstalk between two separate BGCs [212]. Such an interaction not only increases the
structural diversity but also significantly expands the activity spectrum of the produced
cross-cluster compounds [212]. NRPS-PKS hybrids (Figure 1e) are among the most common
in nature [102]. Such compounds benefit from the combinatorics of products resulting from
NRPS and PKS synthesis [175]. It has been shown that more than a third of the clusters
encoding megasynthases carry NRPS-PKS hybrids [174].

4.4. BGCs without Genes for Canonical Backbone Enzymes (“Wild BGCs”)

In addition to the main types of SMs, in the production of which relatively easily
identifiable genes of core and tailoring enzymes are involved (Figure 1a–h), fungi also
produce highly active low-molecular-weight compounds that do not have characteristic
elements for their “barcoding” (Figure 1i) [213]. BGCs for the production of such SMs do
not contain genes encoding canonical “backbone” synthases/synthetases (e.g., NRPS, PKS,
TPC); for example, clusters for the production of clavine alkaloids [214], isocyanides [215],
NRPS-independent siderophores (NIS) [127], and other [133].

BGCs for the production of clavine alkaloids do not contain NRPS [214], unlike er-
got alkaloids, with four genes encoding NRPS [216]. Isocyanides (also called isonitriles)
have notable bioactivities that mediate pathogenesis, microbial competition, and metal
homeostasis through metal-associated chemistry [215]. For isocyanide production, fungi
use non-canonical BGCs (containing the non-canonical core enzyme isocyanide synthase,
ICS), which are not detected by standard genome-mining algorithms [217]. However, a
targeted bioinformatics study of 3300 fungal genomes allowed 3800 ICS BGCs to be charac-
terized [213]. Hydroxamic siderophores also use NRPS, but recently, an NRPS-independent
siderophore (NIS) synthetase pathway has been established for the production of NRPS-
independent siderophores [116]. Five functional types of NIS enzymes are classified; all
such clusters also lack the core canonical gene [57]. The BGC for kojic acid production
does not contain genes encoding both core enzymes and characteristic tailoring enzymes
(Figure 3f) [133]. The lack of conserved signature sequences makes such BGCs almost impos-
sible to detect as a result of genomic mining using current bioinformatic approaches [218].
The only way to detect such clusters is through an experimental approach. For example,
the BGC of kojic acid in Aspergillus oryzae was identified as a result of a reverse genetic
method combined with a DNA microarray technique [133].

Currently, most of our knowledge about BGCs is formed in silico [219]. As a result of
the application of bioinformatics technologies, tens of thousands of BGCs have been found
in fungal genomes, for most of which the products are still unknown [160]. Along with this,
for all secondary metabolites from bacteria, fungi, and plants, fewer than two thousand
corresponding BGCs have been experimentally characterized [220,221]. As a result, our
knowledge of “wild” clusters (without characteristic core and tailoring enzymes) is much
narrower than that of BGCs containing these elements.

There are also “canonical” BGCs without genes for core enzymes. This is due to the
fact that genes encoding canonical core enzymes for such clusters are localized outside
the cluster, in the other part of the genome. For example, the “late” beta-lactam BGC
contains only genes for tailoring enzymes (CefEF and CefG), while the core enzyme for
this biosynthetic pathway clusters in the “early” beta-lactam BGC, which is located on a
different chromosome (Figure 3b) [222,223].
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4.5. Tailoring Enzymes (Enzymes for Modifying the Core Structure)

The final products of biosynthetic secondary metabolism pathways are often signif-
icantly modified as a result of enzymatic activities such as heterocyclization, epimeriza-
tion, oxidative hydroxylation, methylation, oxidative crosslinking, the addition of sug-
ars, translocation, and other modifications [224]. Some tailoring enzymes assemble as
optional domains within megasynthase modules; other tailoring enzymes act in trans
during megasynthase work, recognizing the modules required by protein–protein interac-
tions [224]. For example, the trans-acting polyketide enoyl reductase LovC (lovastatin enoyl
reductase; EC: 2.3.1.161) specifically reduces three out of eight polyketide intermediates
(triketides, tetraketides, and hexaketides) during nonaketide synthase LovB activity in
lovastatin biosynthesis [198]. As a result of such cis- and trans-activities, the core poly-
merization product may contain, after the release, a significant number of modifications.
The release of the core scaffold process itself is quite complex; it can proceed using various
mechanisms [225], the implementation of which may also require special enzymes encoded
in the corresponding BGC. For example, in the biosynthesis of lovastatin, thioester hydro-
lases LovG (dihydromonacolin L-[lovastatin nonaketide synthase] thioesterase; EC: 3.1.2.31)
is required to release from nonaketide synthase LovB its final product, dihydromonacolin
L [226]. After the backbone, or core, enzymes create a core scaffold (with cis- and possibly
trans-modifications), a third group of tailoring enzymes transform its structure, resulting
in a variety of end products. Thus, in addition to the genes for core enzymes, BGCs contain
genes for various biosynthetic enzymes, trans-acting with core enzymes, helping to release
or modify the released core products (Figure 3).

For example, in A. chrysogenum, after NRPS, which is called PcbAB or ACV (δ-[L-α-
Aminoadipoyl]-L-Cysteinyl-D-Valine) synthetase (EC: 6.3.2.26), polymerizes the LLD-ACV
tripeptide δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine, a series of enzymatic reactions occur,
catalyzed by enzymes from beta-lactam BGCs, resulting in the production of cephalosporin
C (CPC). First, PcbC (isopenicillin N-synthase (EC: 1.21.3.1)), as a result of a dioxygenase
reaction, cyclizes this tripeptide to isopenicillin N (IPN); then, cefD1 (isopenicillin N-CoA
synthetase (EC: 5.1.1.17)), and cefD2 (isopenicillin N-CoA epimerase (EC: 5.1.1.17)) catalyze
reactions leading to the epimerization of IPN to penicillin N (penN); finally, enzymes of
the “late” beta-lactam BGC, CefEF (deacetoxycephalosporin C synthetase (penicillin N
expandase, EC: 1.14.20.1)/deacetoxycephalosporin C hydroxylase (EC: 1.14.11.26)), and
CefG (deacetylcephalosporin-C acetyltransferase (EC: 2.3. 1.175)), carry out reactions
leading to the formation of CPC [168,227,228].

A distinctive feature of BGC in terpenoid biosynthesis is the presence among the
genes for tailoring enzymes of a significant number of genes for cytochrome P450 mono-
oxygenases (CYP450), NAD(P)+, and flavin-dependent oxidoreductases that generate
the final bioactive structures (Figure 3d) [63]. Individual members of the CYP450 su-
perfamily catalyze various stereospecific modifications at various positions in the core
structures of terpenoids, as a result of which their biological activity can significantly
increase [229,230]. The most important modification catalyzed by CYP450 is oxidative
hydroxylation, which makes the compound more hydrophilic [231]. Clustered NAD(P)+
and flavin-dependent oxidoreductases are required for CYP450 to function as partners in
the electron transfer chain [232].

In addition to terpenoids, CYP450s are also used to modify other types of fun-
gal secondary metabolites based on NRPS, PKS, and NRPS-PKS activities and meroter-
penoids [233]. For example, LovA (CYP68R1, dihydromonacolin L/monacolin L hydroxy-
lase; EC: 1.14.14.124, EC: 1.14.14.125) from the lovastatin biosynthetic pathway sequentially
introduces two hydroxyl groups into the backbone (dihydromonacolin L), which leads to:
(i) the introduction of the 4a,5-double bond and obtaining monacolin L, which, in turn,
(ii) is hydroxylated at C-8 to form monacolin J [234]. The hydroxyl inserted at the C-8 posi-
tion is then used to incorporate the independently synthesized diketide via a transferase
reaction involving LovD (monacolin-J-acid methylbutanoate transferase; EC: 2.3.1.238) to
form the final product, lovastatin [235]. However, CYP450s localized separately (without
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association with any core enzyme of VM biosynthesis) are not always good indicators for
the search for biosynthetic clusters of secondary metabolism, since they are used not only
to build secondary metabolism, but also for the biosynthesis of structural components
and in signaling networks, and are instrumental in xenobiotic detoxification [229,236–238].
There are currently about 400 CYP families (namely, CYP51-CYP69, CYP501-CYP699, and
CYP5001-CYP6999) [239], which exceeds the diversity in the number of families of rep-
resentatives of this protein superfamily in bacteria (333 CYP families), plants (127 CYP
families), vertebrates (19 CYP families), and insects (67 CYP families) [229]. Due to this
variety in the most important enzymatic components of fungi, as well as the lack of data
on structural and functional relationships for the vast majority of CYP450, the presence of
their genes is only a signal for a possible search for BGCs.

4.6. Transporter Genes of BGCs

It also turns out that, together with the genes for the biosynthesis of a secondary
metabolite, the genes necessary for the transport of the final product or its intermediates
can be clustered [26,168,240,241]. Such transport can occur both for the removal of the end
product from the cell, and for the transport of metabolic intermediates between different
compartments of the cell, where the stages of biosynthesis take place [168,169,242,243].
For example, in A. chrysogenum, the first steps in the biosynthesis of cephalosporin C
(CPC), leading to the biosynthesis of IPN, occur in the cytoplasm; then, in the peroxisome,
epimerization of IPN to penicillin N (penN) occurs; the final conversion of penN into
the target SM, CPC, occurs again in the cytoplasm [244]. For this purpose, in the “early”
BGC of beta-lactams, there are special genes for transporter proteins that carry out active
transport of the corresponding intermediates: first, as a result of the activity of the CefP
transporter, IPN enters peroxisome from the cytoplasm [245]; then reactions occur in the
peroxisome, leading to the epimerization of IPN to PenG [227], which then, as a result of
the activity of the CefM transporter [246], moves from the peroxisome to the cytoplasm,
where it undergoes further transformations.

4.7. Gene for Resistance of BGCs

Another important class of genes found in BGCs are resistance genes against the
directly synthesized compound (Figure 3). The physiological basis of this strategy is that
many high-yielding natural products, such as antibiotics or statins, can harm the host
organism by acting on microorganisms with similar biochemistry [1]. This is why it is
necessary to “defend” against a number of compounds created by the microorganism
itself [169,247]. Currently, three main defense strategies for BGC resistance genes have
been classified. They are associated with: (i) placement in the BGC of an additional copy
of the gene encoding the target protein, which is inhibited by the produced metabolite;
(ii) the active transport of a “hazardous” substance from the cell; and (iii) the coding of an
enzyme that detoxifies the final highly active antimicrobial product [142]. For example, the
“early” beta-lactam BGC also contains the gene for the CefT transporter, which serves in the
active transport of CPC and its intermediates, such as IPN, PenN, deacetoxycephalosporin
C (DAOC), and deacetylcephalosporin C (DAC), out of the cell [168,248]. In the BGC for
the production of lovastatin (LOV), a compound that affects the ergosterol biosynthesis
of competing fungi (and potentially affects endogenous ergosterol biosynthesis), lovR
is clustered, representing an additional copy of the gene encoding 3-hydroxy-3-methyl
glutaryl coenzyme A reductase (EC: 1.1.1.34), which is inactivated by LOV as a result of
irreversible binding.

4.8. Pathway-Specific and Cross-Cluster Regulators of BGCs

Finally, in addition to genes for biosynthesis, transport, and resistance, there is a
fourth class of genes, often, but not always, found in BGCs, that are responsible for
pathway-specific regulation of the BGC itself and/or of other BGCs, in the case of cross-
regulation [166]. Such genes encode transcription factors that are able to modulate the effect
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of signals perceived and reproduced by global regulators and occur in more than half of the
currently known BGCs [249]. These factors can act as positive regulators during the signal
amplification stage [166]. There are also negative pathway-specific regulators leading to
downregulation of the BGC; they are more common if genes for two regulators are clustered
in the same BGC and one regulator is positive while the other is negative [166]. However,
there are regulators that can be positive for some BGC genes and negative for others. For
example, in A. chrysogenum, the early BGC beta-lactam cluster contains a gene for the CefR
regulator, which is both a negative regulator for the cefT transporter gene from the early
BGC and a positive regulator for the cefEF biosynthetic gene from the late BGC [250]. Thus,
CefR from the early BGC beta-lactam cluster is a pathway-specific regulator for cefT, and
a cross-cluster regulator for cefEF. Such a differential effect of CefR on the expression of
beta-lactam BGCs in A. chrysogenum allows, on the one hand, the biosynthesis of CPC to be
intensified (as a result of upregulation of one of the key biosynthetic genes), and on the other
hand, for a reduction in the “leakage” of intermediates from the cell (such as IPN, PenN,
DAOC, and DAC) and their redirection toward producing the target metabolite, CPC.

5. Methods for Improving Fungal Strains for the Production of Secondary Metabolites

Natural fungal isolates, the so-called wild-type (WT) strains, produce a limited amount
of the target SM, which is insufficient for industrial production. In this regard, over the
past 70–80 years, improved high-yield (HY) producers have been created, in which the
yield of the target SM is increased by 100–1000 or more times. There are two principal
approaches to improve the production of SMs in fungal strains: (i) an approach using
genetic and metabolic engineering methods to introduce targeted changes in the resulting
recombinant strains [50,251,252], and (ii) so-called classical strain improvement (CSI) based
on random mutagenesis and subsequent screening of the resulting mutants with improved
production of target SMs [253]. Currently, all industrial fungal producers of SMs have
been obtained using CSI programs, or as a result of modifications introduced into CSI
strains [253] (Figure 4). The essence of CSI programs is that a mutagenic effect is applied to
the natural producer of a promising SM. Various agents are used for this, such as chemical
mutagens, UV, and irradiation. A sublethal dose of mutagenic effects is selected; the
obtained clones are screened according to the level of production of the target SM. Typically,
most clones show similar or lower activity; however, there are clones that have higher
activity than the WT strain. The most active clone is used for a new mutagenic effect (second
round of mutagenesis); the obtained clones are screened, and among them, the most active
one is selected. This process is repeated several dozen times, which leads to a multiple-
fold increase in the production of the target SM. Along with the increase in production,
concomitant mutations accumulate. Therefore, strains improved in this way usually have
lower viability than WT strains. This can be expressed as a slowdown in the growth rate, a
decrease in the size of the colonies on agar media, a decrease in biomass during submerged
cultivation, an increase in stress resistance, and many other complications [223,254,255].
As a result, after several tens of rounds of mutagenesis, a stage begins whereby, after the
next mutagenic effect, it is no longer possible to obtain more active clones. This stage
corresponds to the technological limit of the method. For industrial production, a strain
obtained at the last or one of the penultimate stages of mutagenesis is used (if the strain
obtained at the last stage is not viable enough for biotechnological application).
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subjected to random mutagenesis at a sublethal level. The clones obtained as a result of such ex-
posure are screened according to the level of production of the target SM. Typically, most clones 
will show less or equal activity compared to the initial strain; however, clones with higher activity 
than the original strain are also detected. The clone with the highest activity is used for new ran-
dom mutagenic exposure (second round) followed by screening and selection of the most active 
strain. This procedure is repeated, as a rule, several tens of times, until the next mutagenic effect 
makes it possible to obtain more active clones. This stage corresponds to the technological limit of 
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Figure 4. Classical strain improvement (CSI) program for increasing the production of a target
secondary metabolite (SM) in filamentous fungi. The wild-type (WT) strain in the first round is
subjected to random mutagenesis at a sublethal level. The clones obtained as a result of such
exposure are screened according to the level of production of the target SM. Typically, most clones
will show less or equal activity compared to the initial strain; however, clones with higher activity
than the original strain are also detected. The clone with the highest activity is used for new random
mutagenic exposure (second round) followed by screening and selection of the most active strain.
This procedure is repeated, as a rule, several tens of times, until the next mutagenic effect makes it
possible to obtain more active clones. This stage corresponds to the technological limit of the method.
The high-yielding (HY) strain obtained at the final (or one of the last) stage of mutagenesis is used
for industrial production of the target SM. As an example, production is shown in the wild-type
strain A. chrysogenum WT (ATCC 11550, CPC production—50–75 mL/L, [256]) and in the strain
A. chrysogenum HY (RNCM F-4081D, CPC production—9000–12,000 mL/L, [257]) derived from
A. chrysogenum WT as a result of the CSI program.

The most important (but not the only) event that occurs at the molecular level in CSI
is the upregulation of biosynthetic genes, tens and hundreds of times [258,259]. Significant
changes also occur at the level of primary metabolism; for example, they can occur at
the level of the biosynthesis of precursor amino acids, in the case of NRPS [48]. Other
important events in the creation of HY strains may be associated with changes in the
physiological and morphological state of the cell, and its life cycle, which are necessary for
high-yield fermentation.

Numerous works on changing the production of SMs in fungi as a result of only direct
genetic engineering manipulation of wild-type strains have not yet led to the creation of
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industrial producers. For example, an attempt to achieve the production of penicillin G
(PenG) as a result of the heterologous expression of its BGC in Saccharomyces cerevisiae
was only of theoretical significance, since after the optimization of all conditions, the
maximum yield of PenG was 70–280 µg/L [260], while industrial strains improved via
classical methods produce more than 50 g/L of PenG [59]. Such a powerful method as
genetic engineering does not make it possible to create industrial fungal producers of SMs
from natural isolates, since the transformation of a WT strain into HY requires not one
or two, but a whole range of changes, including at the level of the global regulation of
secondary metabolism (for more details, see Section 7.3).

In this regard, a promising approach is the combination of classical and genetic en-
gineering methods. For example, HY strains from CSI programs (such as, P. chrysogenum
DS17690) after inactivation of their most active host BGCs can be used as recipient strains
for the heterologous expression of target BGCs. So, in a recent work, P. chrysogenum was
modified for industrial use, in which the four highly expressed biosynthetic gene clusters re-
quired to produce penicillin, roquefortine, chrysogine, and fungisporin were removed [58].
One of the few examples of a successful combination of metabolic engineering and CSI
is the industrial production of pravastatin, a cholesterol-lowering drug belonging to the
statin class [261]. In industry, the drug pravastatin has traditionally been produced via
a semi-synthetic method. For this, compactin (Table 1) is produced in improved Penicil-
lium citrinum strains [262], and then, converted to compactin in a one-step reaction using
biocatalysts [263]. For in vivo pravastatin production, compactin BGC from P. citrinum
and cytochrome P450 from Amycolatopsis orientalis (CYP105AS1, used to catalyze the final
compactin hydroxylation step), fused to a redox partner, were transferred into β-lactam-
negative P. chrysogenum DS50662 [261]. Numerous additional manipulations, such as the
deletion of esterase activity, yielded more than 6 g/L pravastatin on a pilot production scale.

6. Hierarchical Organization of the Secondary Metabolism Regulation System
in Fungi

The effective production of the target SM requires the implementation of a whole
complex of events at the molecular level that occur in the fungal cell after the receipt of
a particular signal. Ultimately, whether or not the synthesis of one secondary metabolite
or another will occur depends on the complex and hierarchical system of regulation that
functions in the fungal cell (Figure 5).

At the lowest level in this hierarchy are the pathway-specific regulators, transcription
factors whose genes are localized within the BGCs they regulate. Thus, if the BGC is
“silent”, its pathway-specific regulator is also not working. Slightly higher in this hierarchy
are cross-cluster regulators, which are transcription factors whose genes are clustered
in different BGCs than those they regulate. Thus, the cross-cluster regulator can theo-
retically regulate the “silent” BGC if the cross-cluster regulator’s own BGC is expressed.
However, in most cases, cross-cluster regulation does not function without “permission”
from the regulatory systems at a higher level. A cross-cluster can simultaneously be a
pathway-specific regulator if it regulates not only foreign but also its own BGC. For a
higher level of regulation, global cell regulators are branched. They are transcription factors
that have binding sites for promoters of numerous genes and coordinate, in response to
signals (such as light, temperature, pH, carbon, nitrogen, iron, etc.), various cell processes,
including the biosynthesis of SMs. The global regulator genes are not associated with
BGCs, so their functioning does not depend on the expression of any BGCs. An even
higher level of regulation is associated with the epigenetic status of BGCs [54]. In the
fungal cell, there is a special system of global regulation of secondary metabolism, which,
in response to internal or external signals, remodels chromatin in BGC-containing loci,
which are mosaically scattered over chromosomes. In the absence of appropriate signals
(Figures 2a and 5a) the majority of BGCs are in a heterochromatic state, which prevents
the production of the corresponding SMs. Upon receipt of the appropriate signal, the
remodeling system converts the required BGC-containing loci from heterochromatin to
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euchromatin, which makes binding sites available for global, cross-cluster, and pathway-
specific regulators (Figure 5b). In addition to the described main levels of regulation,
represented by transcription factors and the chromatin remodeling system in the fungal
cell, there are a number of low-molecular-weight compounds that can indirectly affect the
production of secondary metabolites, enhancing or weakening regulation.
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Figure 5. Levels of regulation of the biosynthesis of secondary metabolites (SMs) in fungi.
(a) A particular gene from a biosynthetic gene cluster (BGC) is “silent” under normal physiologi-
cal conditions, in the absence of a stimulating effect from the regulatory system. The absence of
their transcription is associated both with the absence of the necessary transcription factors and
with the functional state of these loci, which are in the form of heterochromatin. (b) The activation
of a gene from the BGC as a result of coordinated regulation at the levels of (i) pathway-specific,
(ii) cross-cluster, (iii) global cell, and (iv) global secondary metabolism (at the epigenetic level),
(v) mediated by regulatory molecules. The antibiotic penicillin G is given as an example of a SM
synthesized due to BGC activation. Green and purple arrows show transcription factor binding
sites, curved cyan arrow indicates the start of transcription. Cross symbols on these arrows in-
dicate that binding sites are not available for transcription factors. Pathway-specific regulators:
ApdR—Zn(II)2Cys6 regulator for aspyridone A and B BGC (PKS/NRPS hybrid); FsqA—Zn(II)2Cys6

regulator for fumisoquin BGC (NRPS); FmpR—Zn(II)2Cys6 regulator for fumipyrrole BGC (NRPS);
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CicD—regulator with Myb-like DNA-binding domain for cichorine BGC (PKS); AntN—Zn(II)2Cys6

regulator for aspercryptin BGC (NRPS); XanC—bZIP transcription factor for xanthocillin BGC (iso-
cyanide synthase); GliZ—Zn(II)2Cys6 regulator for gliotoxin BGC (NRPS); LaeA—Zn(II)2Cys6 reg-
ulator for lovastatin BGC (PKS). Cross-cluster regulators: PbcR—Zn(II)2Cys6 regulator for ent-
pimara-8(14),15-diene BGC (terpenoid), which also downregulates penicillin cluster, two putative
PKS clusters, and one putative NRPS cluster and upregulates one siderophore BGC; PexanC—bZIP
transcription factor for upregulation of xanthocillin BGC, which also upregulates citrinin BGC;
ScpR—transcription factor with C2H2-type zinc finger for upregulation of fellutamide B BGC (NRPS),
which also upregulates asperfuranone BGC (PKS); RglT—Zn(II)2Cys6 transcription factor, whose gene
is localized outside the gliotoxin BGC (NRPS), for which it is a positive regulator; CefR transcrip-
tion factor with nuclear targeting signal that downregulates some genes from “early” beta-lactams
BGC (NRPS) and upregulates some genes from “late” beta-lactams BGC. Global regulators: CreA
(Cre1)—C2H2-type zinc finger transcription factor for glucose catabolite regulation; PacC—C2H2-type
transcription factor with three zinc fingers for pH regulation; Nre (or AreA)—GATA transcription
factor with single Cys4 zinc finger for nitrogen regulation; Ada1—C2H2-type transcription factor for
control of asexual development; Yap1—bZIP-containing transcription factor for antioxidant response;
HapB, HapC, and HapE—transcription factors from CCAAT-binding complex for regulation of
redox status and iron starvation; CPCR1—RFX transcription factor for morphological development;
AcFKH1—forkhead transcription factor for regulation of morphogenesis. Epigenetic regulators (in-
cluding global regulators of secondary metabolism). Velvet complex: LaeA—S-adenosylmethionine-
dependent histone methylase for chromatin remodeling; VelA (VeA), VelB, VelC, and
VosA—components of so-called velvet complex with velvet domain for interacting with each
other and with LaeA in the fungal nucleus. COMPASS complex—complex associated with Set1:
Set1—histone-lysine N-methyltransferase (H3 lysine-4-specific). Mediators: sRNA—small non-
coding RNA; PA—polyamine; SM—secondary metabolite.

6.1. Pathway-Specific Regulation

Pathway-specific regulatory proteins are transcription factors whose genes are local-
ized within the BGC they regulate [264]. The basic function of such transcription factors in
a single BGC is as specific positive regulation. As a rule, the genes for these proteins are not
expressed under conditions whereby their BGC is not induced (“silent”) [166]. They are at
the lowest level in the hierarchical structure of regulation (Figure 5), and they start working
when the cluster “wakes up” under the influence of regulators located at higher levels [166].
Pathway-specific regulators usually control the expression of all the genes of their BGCs,
including their own, which can lead to a signal amplification cascade [164]. However, there
are examples whereby not all BGC genes in the promoter regions have sites for binding
their pathway-specific regulators [169]. Some examples of pathway-specific regulators
include: (i) ApdR—Zn(II)2Cys6 regulator for aspyridone A and B (PKS/NRPS hybrid) from
A. nidulans [265]; (ii) FsqA—Zn(II)2Cys6 regulator for fumisoquin (NRPS) from A. fumiga-
tus [266]; (iii) FmpR—Zn(II)2Cys6 regulator for fumipyrrole from A. fumigatus (NRPS) [267];
(iv) CicD—regulator with Myb-like DNA-binding domain for cichorine from A. nidulans
(PKS) from A. nidulans [268]; (v) AntN—Zn(II)2Cys6 regulator for aspercryptin from A.
nidulans (NRPS) [269,270]; (vi) XanC—bZIP transcription factor for xanthocillin (isocyanide
synthase) from A. fumigatus [271]; (vii) GliZ—Zn(II)2Cys6 transcription factor from A. fumi-
gatus for positive regulation of gliotoxin BGC (NRPS) [272]; and (viii) LaeA—Zn(II)2Cys6
transcription factor from A. terrius for lovastatin BGC (PKS) [259].

6.2. Cross-Cluster Regulation

The regulator from Aspergillus nidulans PbcR, encoded by the pbcR gene, upregulates
the transcription of BGC (where this gene is localized) for the production of a diterpene,
ent-pimara-8(14),15-diene [273]. However, it also upregulates the siderophore transporter
genes mirA and mirB and downregulates four other BGCs (penicillin cluster, two putative
PKS clusters, and one putative NRPS cluster). Thus, in the case of the production of ent-
pimara-8(14),15-diene in A. nidulans, there is a decrease in the consumption of primary



Int. J. Mol. Sci. 2023, 24, 11184 22 of 42

resources for alternative secondary metabolism, and the system of iron delivery to cells
is intensified [166,273]. PexanC, a bZIP transcription factor from the xanthocillin BGC of
Penicillium expansum, not only upregulates the xanthocillin BGC, but also activates the
expression of ctnA, the pathway-specific regulator of the citrinin BGC, and increases the
production of citrinin [27]. ScpR is a transcription factor with a C2H2-type zinc finger
for the upregulation of fellutamide B (NRPS) in A. nidulans [274], and also activates the
silent asperfuranone cluster with PKS by upregulating its pathway-specific regulator,
AfoA [275]. RglT is a Zn(II)2Cys6 transcription factor from A. fumigatus, and its gene is
localized outside the gliotoxin BGC (NRPS), for which it is a positive regulator [276]. The
gene for the transcription factor CefR from Acremonium chrysogenum is localized within
the so-called “early” beta-lactams BGC (NRPS). CefR downregulates some genes from the
“early” beta-lactams BGC (for example, the cefT transporter gene) and upregulates the gene
for biosynthesis, cefEF, from the “late” beta-lactams BGC, which is localized on a different
chromosome [250].

6.3. Global Regulation

Cre1 (CreA) is a C2H2-type zinc finger transcription factor for glucose catabolite
regulation, e.g., in Acremonium chrysogenum [277,278]; PacC is a C2H2-type transcription
factor with three zinc fingers for cellular pH homeostasis [228], e.g., in A. nidulans [279];
Nre (or AreA) is a GATA transcription factor with single Cys4 zinc finger for nitrogen
regulation [280,281], e.g., in A. nidulans [281,282]; Ada1 is a C2H2 type transcription factor
for the control of asexual development, e.g., in Fusarium verticillioides [283]; Yap1 is a bZIP-
containing transcription factor for redox status regulation and antioxidant response [284],
e.g., in Fusarium graminearum [285]; HapB, HapC, and HapE are transcription factors for
the regulation of redox status and iron starvation from the CCAAT-binding factor (AnCF
in Aspergillus nidulans, [286]); CPCR1 is an RFX transcriptional factor nonconventional
modes of DNA recognition for the morphological development of fungus cells, such as
hyphal fragmentation for the formation of arthrospores in A. chrysogenum [287], or linking
cell division with cellular differentiation during morphogenesis, mainly in the process
of conidiation and growth under yeast formed in the opportunistic human pathogenic
fungus Penicillium marneffei (for RfxA, a CPCR1 ortholog) [288]; AcFKH1 is a forkhead
transcription factor associated with the RFX transcription factor CPCR1 for morphogenesis
(arthrospore formation), e.g., in A. chrysogenum [289].

6.4. Epigenetic Regulation

A variety of elegant natural models are described that operate at the level of epigenetic
protein complexes, remodeling chromatin in response to external or internal signals [290].
One such machine for chromatin remodeling in eukaryotic cells is the ATP-dependent
chromatin remodeling complex SWI/SNF [291,292]. This complex is also important for
fungi in the response of their primary metabolism to external influences [293]. However,
fungi also use special complexes of protein machines to regulate the status of chromatin
for BGCs, such as the so-called velvet complex, based on LaeA and VelA global regulators
of fungi secondary metabolism [57,164,294]. LaeA is an S-adenosylmethionine-dependent
histone methylase for chromatin remodeling, a global regulator of secondary metabolite
biosynthesis [169,295]. In A. fumigatus, LaeA positively controls the expression of 20% to
40% of major SM biosynthesis genes, such as nonribosomal peptide synthetases, polyketide
synthases, and P450 monooxygenases [296]. A whole-genome comparison of the transcrip-
tional profile of wild-type, ∆laeA, and complemented control strains showed that genes in
13 of 22 secondary metabolite BGCs were expressed at significantly lower levels in the ∆laeA
mutant [296]. The knockdown of laeA also results in a loss of characteristic pigmentation in
fungal strains associated with BGCs positively regulated by LaeA [31]. VelA (VeA), VelB,
VelC, and VosA are components of the so-called velvet complex with a velvet domain for
interacting with each other and with LaeA in the fungal nucleus [297].
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Another important player that can change the epigenetic status of BGC-containing
loci is the COMPASS (complex associated with Set1) complex [298]. This complex is a
conserved eukaryotic transcriptional effector that acts epigenetically through the methy-
lation of lysine 4 of histone 3 (H3K4) and is responsible for multiple functions, such as
the regulation of homothallic mating silencing, ribosomal DNA silencing, telomere length,
and subtelomeric gene expression in yeast [299,300]. It was shown that the deletion of
the Bre2/ASH2 homolog cclA, a critical member of the COMPASS complex, in Aspergillus
nidulans activates the expression of the cryptic BGCs of emodin, monodictyphenone, and
their derivatives [298]. The deletion of cclA in Aspergillus fumigatus decreased growth but
increased production of several SMs, including gliotoxin.

6.5. Possible Role of Mediators in Fungal Cell Regulation

Mediators are low-molecular-weight compounds that affect the biosynthesis of sec-
ondary metabolites in fungal cells. Such compounds include polyamines (PAs). It was
shown that the introduction of exogenous PAs such as 1,3-diaminopropane or spermidine
during the fermentation of HY strains, obtained via CSI, can further increase the production
of the target SMs, by 10–45% [42,44,301]. Moreover, an additional increase in production is
even observed for strains that have reached the technological limit of the method in the
process of the CSI program [42,44] (we provide more information on this in Section 5). In
this regard, the effect found on the increase in production in HY strains of pharmaceutically
significant drugs (such as PenG, CPC, and lovastatin) with the addition of relatively cheap
PA could have a biotechnological application. It is assumed that PAs affect the system
of global regulation of the secondary metabolism of fungi, since their addition is accom-
panied by the upregulation of laeA, which can also lead to the observed upregulation of
biosynthetic genes in the BGCs of target SMs [44,301]. It has also been shown that, under
certain conditions, polyamines can lead to the downregulation of laeA, which leads to
downregulation of the target BGC and a decrease in the production of the corresponding
secondary metabolite [169].

For prokaryotes, the role of small non-coding RNA (sRNA) in the production of
SMs has been shown [302]. It is possible that sRNAs also play a mediating role in fungi.
This is indicated by a number of indirect factors; for example, in phytopathogenic fungi,
when plants are infected, the amount of sRNA significantly increases in parallel with the
biosynthesis of secondary metabolites [145,303]. At the same time, in most works, the role
of fungal sRNAs in phytopathogenicity is considered only from the point of view of their
interaction with the plant microbiome or with the plant itself, but not from the point of view
of their impact on the biosynthesis of its own virulence factors, in particular, secondary
metabolites [304]. It is also possible that the mediating effect of sRNA on the regulation of
the secondary metabolism of fungi is realized in the framework of the recently discovered
phenomenon of “strand commutation” [305].

An important role in regulation can be played by the secondary metabolites themselves,
since at least some of them are directly involved in the control of their own production, like
the primary metabolites, via a feedback mechanism [35]. Several types of inhibition of SMs’
own biosynthesis are known, which can occur either at the initial, intermediate, or final
stages of biosynthesis. Thus, in Claviceps, the ergot alkaloids agroclavine and elymoclavine
inhibit their own biosynthesis at the first stage [306,307]. Elymoclavine also inhibits a later
enzyme, chanoclavine-I-cyclase [308]. In Penicillium stoloniferum, mycophenolic acid is, on
the contrary, an inhibitor of the final stage of its own biosynthesis [309].

It is possible that there are other low-molecular-weight compounds that have a signifi-
cant effect on the functioning of the regulatory system of secondary metabolism in fungal
cells, which will be discovered as a result of expanding the research arsenal, in particular,
with the involvement of modern multiomics approaches.
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7. Regulation of SM Production in Fungi According to the Piano Principle

In the previous section, we analyzed the currently known main levels at which such
a complex and hierarchical process as the regulation of secondary metabolism in fungi
functions. In this section, we will compare the various elements of the regulatory system
with the equivalent parts of a piano. Such a comparison seems justified because, like a
fungal cell that is finely tuned to produce a particular SM when it receives the appropriate
signal, a piano is designed and tuned to produce a certain sound when a certain key is
pressed. We will also discuss what changes occur at the molecular level in a fungal cell,
a unique natural tool, when a cell factory is created from a natural isolate to produce a
certain secondary metabolite that a person needs, for example, a drug. How should the
fungal cell, this natural piano, be hewn and remade so that it emits only one very loud
sound upon pressing the key of the target BGC.

7.1. Piano Model for Describing the Principle of SM Production

Like a fungal cell, which has about a hundred BGCs, a typical piano has 88 keys (an
organ can have several hundred keys). Also, like a fungal cell, in which, without the absence
of signals, BGCs are silent and no synthesis of SMs occurs, the piano makes no sound
without the influence of a pianist. Apart from this, like a fungal cell, in which a specific
signal leads to the expression of one BGC or another and the synthesis of the corresponding
SM, when a certain piano key is pressed, the corresponding sound is emitted.

If we continue this analogy at the level of regulation, in the absence of signals,
(i) BGCs for the production of SMs are in a state of heterochromatin (the piano fallboard is
closed); additionally, at these loci, (ii) the binding sites for global regulators are not available
(the music stand is closed), (iii) the binding sites for cross-cluster and pathway-specific
regulators are also not available (the piano lid is closed), (iv) and there is no influence of
mediators (the piano pedals are not pressed) (Figure 6a). As a result, there is no production
of SMs (it is impossible to press a key and no sound is emitted).

In order to trigger the production of a secondary metabolite (extract a sound) after
receiving a signal, at the first stage, it is necessary to influence the epigenetic regulatory
system and transfer the BGC to the appropriate locus from heterochromatin to euchro-
matin status (open the keyboard cover) (Figure 6b). This allows, at the next stage, for the
implementation of the program of global regulators (opening the music stand and setting
the sheet music), to achieve the effect of cross-cluster and path-specific regulation (the
change in signal strength from opening/closing the piano lid). As a result of influencing
a specific BGC (pressing a specific key), a specific biosynthesis process occurs (a certain
hammer strikes its string), leading to the appearance of a corresponding SM (a specific
sound is emitted). The level of biosynthesis may differ depending on the effect of a number
of low-molecular-weight compounds and mediators (and the characteristics of the sound
can be changed by pressing the pedals).

In the current model, a key of the piano is a BGC. The activation of one particular BGC
(pressing a key) results in the production of one particular secondary metabolite (sound
extraction). A 1:1 ratio is observed both when playing the piano (Equation (1)) and during
SM biosynthesis (Equation (2)).

NPK:NEs = 1:1 (1)

NABGC:NPSM = 1:1 (2)

where NPK—number of pressed keys, NEs—number of emitted sounds, NABGC—number
of activated BGCs, and NPSM—number of produced SMs (only the final products of the
metabolic pathways are taken into account, not the intermediates).

This ratio works in principle for any number of BGCs (keys). For example, pressing
three keys results in three sounds (Equation (1)), and the activation of three BGCs leads
to the appearance of three different SMs (if only the final products are taken into account,
ignoring the intermediates). Just as a pianist can play multiple keys at the same time (for
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example, playing a chord), multiple BGCs can be activated at the same time and multiple
SMs can be produced.

But the following question arises: what in nature presses this key? A pianist presses
one finger per key to extract one sound per unit of time. Two fingers extract two sounds,
three fingers—three keys—extract three sounds, etc., up to ten fingers—ten sounds. In
nature, the a BGC key is pressed by one or several signals that determine the totality
of the external and/or internal states of the organism and affect the hierarchical system
of regulation.

According to the piano model, the level of the signal’s effect on SM yield can be
compared with the way the key is pressed. The very method of pressing the key allows
for variation in the characteristics of the sound, such as its strength, duration of sound,
attenuation characteristics, and a number of others (Equation (3)).

IP:SP = a (3)

where IP—Impact Level (pressing force, key touch speed, and others), SP—sound
parameters (sound intensity, duration, attenuation characteristics, and others), and
a—variable parameter.

When a good pianist plays his piano, the relationship between IP and SP, that is,
parameter “a” in Equation (3), is under his control. For example, it is possible to quantify
both the force of pressing a particular piano key and the strength of the resulting sound.
Pressing harder will make the sound stronger; pressing even harder will make it sound
even stronger. Finally, there is a pressure level that will result in the loudest possible
sound that a piano can extract. This relationship is described in Equation (3). The different
SPs when playing a piano are given both by note duration and so-called strokes. Strokes
determine the character, timbre, and attack of music, creating musical images. For example,
a staccato stroke means that each note must be played clearly, abruptly, and sharply. The
finger strikes a note and immediately releases it. Staccato means using 50% of the duration
of the note for the sound and 50% for the rest to make up for the unused time of the
duration. A legato stroke means that one note should smoothly flow into another. There
are also the following strokes: non-legato (the sound must stop before making the next
sound), accented non-legato (a louder sound), wedge-shaped staccato (an even shorter
staccato duration), tenuto (exceeding the duration of a note), fermato (an irregular increase
in the duration notes), French league (starts from a note and goes nowhere; you need to
hear the natural fading of the sound), and some others.

Unlike a pianist who feels the ratio of IP and SP, currently, there are no clear experi-
mental data to quantify the relationship between the level of the signal (signals) and the
production of most secondary metabolites (Equation (4)).

SP:YSM = x (4)

where SP—signal power, YSM—yield of secondary metabolite, and x—unknown vari-
able parameter.

This ratio, designated as unknown “x” in Equation (4), can change significantly with
changes occurring in the microorganism at the molecular level, especially at the level of
regulation. For example, the value of “x” decreases in the process of improving strains,
as the YSM (divisor) increases. In particular, the YSM of the HY strain is 100 or more times
greater than the YSM of its parental WT strain, that is, xHY � xWT [43,49,257,310].

It was shown that an increase in the dose of gamma rays led to a consistent increase in
the production of PKS-based pigment melanin in Cryomyces antarcticus [311]. Exposure to
ultraviolet irradiation led to an increase in pigmentation in both the melanin-containing
Cladosporium cladosporioides and the non-melanized fungus Paecilomyces variotii [312]. How-
ever, in these cases, it is important to correlate how strongly the changes in YSM occurred
in response to different doses of SP. Depending on this, the “x” parameter can increase,
decrease, or remain unchanged.
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Figure 6. Regulation of the production of secondary metabolites (SMs) in the fungal cell according to
the piano principle. (a) Under initial physiological conditions, SMs are not synthesized in the fungal
cell (the piano does not make sound). The biosynthetic gene clusters, BGCs (piano keys), required
for the production of SMs, are located in the heterochromatin regions and are inaccessible for gene
expression (the piano keys are not available for pressing), since there is no activation by epigenetic
global regulators of SMs capable of transferring the BGC loci to the euchromatin state (the fallboard is
closed). There is also no activation from the side of the global regulators of the cell (the music stand is
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closed), as well as cross-cluster and path-specific controls (the piano lid is closed). Since there is
no sound (SM biosynthesis), this process is not affected by mediators (pressing the piano pedals).
The background of the figure is filled with a photograph of a colony of Penicillium chrysogenum
STG-117 (MW556011.1) after cultivation on Czapek Dox agar (CDA) medium for 5 days at 26 ◦C.
The microorganism is at the trophophase stage, since the colony is unstained and the synthesis
of secondary pigment metabolites has not yet occurred. (b) For SM biosynthesis by a fungal cell,
after receiving an appropriate signal (for example, a pianist with sheet music has arrived), the
epigenetic regulatory system transfers the corresponding BGC loci from the heterochromatic state
to the euchromatic state (the piano lid opens). This opens the possibility for gene expression of
the corresponding cluster (the ability to press the piano keys). However, gene expression is also
controlled by global cell regulators (the pianist opens the music stand and sheet music is placed on it,
which determines the order in which the keys are pressed), as well as cross-cluster and path-specific
controls (opening the piano lid). All of this leads to pressing a specific key (BGC), which leads to
the appearance of the sound corresponding to it (synthesis of the target secondary metabolite). The
sound of a single key can be changed, for example, by pressing the forte or piano pedal (also, the
complex effect of mediators can increase or, conversely, reduce the production of the target SM).
The background of the figure is filled with a photograph of a colony of P. chrysogenum STG-117
after cultivation on CDA medium for 12 days at 26 ◦C. The appearance of a characteristic pigment
associated with the biosynthesis of chrysogine and sorbicillin SMs indicates the transition of the
microorganism to the idiophase, which is coproduced through the synthesis of SMs.

7.2. Extension of Piano Model for Describing the Principle of SM Production—Organ Model

The model in Figure 6 simplifies the organization of BGCs observed in the fungal cell
(which are mosaically arranged along chromosomes), since the depicted musical instrument
(piano) has only one keyboard, on which BGC keys are conventionally placed. However,
fungi have from two to several dozen chromosomes. Therefore, for a more illustrative
example of the distribution of BGCs over a genome, an organ with several keyboards,
each of which corresponds to one chromosome of the fungus, can be used. The transition
to the organ model also makes it possible to map the BGC loci mosaically located in the
chromosomes of the fungus genome to the keys corresponding to the keyboard chromo-
somes. As an example of such visualization, the model organism P. chrysogenum was used,
for which gene clusters were studied in detail and mapped onto chromosomes [51], and
which has only four chromosomes; therefore, the corresponding organ has four keyboards
(Figure 7). This is easier to visualize as another fungal model organism with relatively well
studied and mapped BGCs, Aspergillus nidulans, has eight chromosomes [36]; hence, the
“organ” for A. nidulans has eight keyboards. The BGCs with known secondary metabolites
for P. chrysogenum are marked in red, and next to them are the structural formulas of the
produced SMs. Orphan BGCs are marked in black (Figure 7).

Recent studies show the complex topological organization of chromosomes in the
nucleus of a fungal cell [313]. It is also still unclear how the system of regulation of
secondary metabolism manages epigenetic status in BGC loci mosaically scattered over
chromosomes. Perhaps these loci are spatially close in the nucleus, which ensures their
joint regulation, or there are other “threads” that allow the regulatory system puppeteer to
pull them at the right time.

7.3. Improvement of Fungal Strains for Target SM Production in Light of the Piano Model

In order to create an HY producer from a WT strain, it is necessary to overcome the
regulation at some built-in levels. A natural isolate has coordinated signal regulation
(regulation in response to a signal), but for an industrial producer, it is necessary that
synthesis of the target SM always occurs and is not mediated by the signal. Therefore, it
is necessary to break down (overcome) barriers to increased production. It turns out that
the selection of high-yielding clones after random mutagenesis works in this way; it works
against systems that restrict the overproduction of SMs of interest [49]. Selection, first of
all, destroys the protective locks that do not allow the dam to break, to eliminate the entire
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possibility of the cell’s biosynthetic potential for the production of only one type of molecule,
which it does not need in such quantities. But this molecule is necessary for humans, in the
biotechnological industry, and we artificially force the cell to perform functions that it is
not adapted for in the environment; we convert a normal ecologically complete organism
into a cellular factory intended for one and only one biosynthetic program.

First, it is necessary to remove the epigenetic control of secondary metabolism biosyn-
thesis, which “holds” unclaimed BGCs, in terms of their signal, in the heterochromatin
status. Mutations in the system of global regulation of secondary metabolism were seen
as one of the most significant in an analysis of molecular changes in an SCI program for
P. chrysogenum DS17690 [49]. In particular, the authors paid attention to mutations in the
velvet complex such as: (i) 315 Gln→ Stop in velA (leading to a decrease in the affinity
between VelA and LaeA) and (ii) 338 Gly→ Ser and 248 Lys→ Glu in laeA.
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Figure 7. Localization of biosynthetic gene clusters (BGCs) for the production of secondary metabo-
lites (SMs) on the chromosomes of Penicillium chrysogenum. Four chromosomes of P. chrysogenum are
compared with four keyboards of the organ; the relative localization of BGCs on keys of chromosome
keyboards is shown, as previously described [51]. BGCs for which the product is unknown (“orphan”
clusters) are designated according to the previously entered numbering [51] and are marked in black.
The BGC for which the product is known is indicated by its name and marked in red; the formula
given for this target metabolite is marked in yellow.

In addition, it is most likely that it is the epigenetic control of BGCs that, in many
cases, leads to the “silence” of duplicated copies of the target BGC. In other words, if as
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a result of the SCI program, there was no escape from the epigenetic system of global
regulation, then, probably, in the case of duplications, only one of the target BGCs would
be expressed. Other copies would be in heterochromatin status. Thus, a detailed study
of the industrial strain P. chrysogenum P2niaD18, which, after the CSI program, had two
copies of the target BGC, showed that the production of PenG is not dependent on the copy
number of biosynthesis genes [314]. And the extraordinary high level of PenG production
in P. chrysogenum DS17690 (with eight copies of the target BGC), among other changes, may
be due to detected changes in the velvet system, which could allow more than one copy of
the beta-lactam gene cluster to be expressed [49].

Since epigenetic control of the regulation of secondary metabolism is global, the
influence on this chromatin-remodeling system can also lead to the activation of alternative
BGCs to the target BGCs. This is probably why, along with mutations in the system
of regulation of secondary metabolism, CSI programs select mutations that lead to the
inactivation of alternative BGCs.

The active production of alternative SMs is highly undesirable for industrial pro-
duction, since the cell spends additional resources on their biosynthesis, which could be
redirected to obtain the target compound. In addition, their admixture complicates the pu-
rification process. Therefore, in those clones in which mutations occurred in the key genes
of alternative BGCs during CSI, the production of the target BGC could increase, which
serves as a selection factor. Secondly, the selection also takes into account the presence of
impurity compounds. Other things being equal, clones with a smaller amount of impurity
products are selected for further use, which facilitates purification. As a result, during
selection, clones with disrupted production of one actively expressed alternative SM or
another receive an advantage. For example, in P. chrysogenum DS17690 during CSI, 8 out of
31 studied megasynthase genes were targeted, with a corresponding and progressive loss in
the production of a range of SMs unrelated to β–lactam production [49]. And a promising
approach associated with the development of universal fungal recipient strains for the
heterologous expression of BGCs was based on the modification of HY strains through
inactivation of the most active host BGCs [58].

From the point of view of the piano model, in order to create an industrial HY strain,
it is necessary to greatly modify a perfectly created piano for the finely tuned regulation
of SMs in natural conditions (the extraction of various sounds) (Figure 7). It is required to
eliminate the control of the signal-dependent regulatory system, since it is not desirable
for an industrial strain to depend on any environmental signals. First of all, it is necessary
to break the fallboard and keyboard cover (make mutations in the secondary metabolism
regulation system at the epigenetic level). But then, chaos can arise, a cacophony in
the production of SMs in the cell. This has been demonstrated in a series of works on
genetic engineering manipulations with the global regulators of secondary metabolism,
such as VelA or LaeA, which led to extremely serious changes in the entire profiles of
secondary metabolites of the cell [57,315]. In particular, the overexpression of laeA in As-
pergillus niger FGSC A1279 resulted in the upregulation of 281 putative secondary metabolite
genes, including 22 backbone genes of BGCs [315]. The deletion of velA in the CSI-strains
P. chrysogenum P2niaD18 and A. chrysogenum A3/2 led to a change in expression in both
strains of approximately 50% secondary metabolite cluster genes, including β-lactam
biosynthesis genes [57]. Without a regulation system, all sounds begin to sound simultane-
ously, while an HY strain should have only one sound, emitted by pressing the necessary
key for the production of the required SM. Therefore, it is also necessary to break all the
other keys of the keyboard, so that only one key remains, emitting the sound that is correct
from the point of view of industrial fermentation. And this is exactly how (against the
biosynthesis of alternative SMs) selection is directed in CSI programs, since one of the
most important types of mutations selected during classical improvement turns out to be
deletions in the backbone genes of alternative BGCs.

In addition to epigenetic control and transcription factors, the work of BGCs is ob-
viously affected by some low-molecular-weight compounds through a mediating effect
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on the regulators and enzymes of the biosynthesis of secondary metabolism. One notable
example is aliphatic polyamines, which upregulate laeA, target biosynthetic genes, and the
production of target SMs in the CSI-strains P. chrysogenum Wisconsin 54-1255 and A. terreus
43-16 [44,301]. Such an effect can be associated with pressing the forte pedal (right pedal),
which serves to lengthen the sounds and raises all dampers at once, so that after the key is
released, the corresponding strings continue to sound. One explanation for their effects is
related to the consumption of a common substrate, S-adenosine methionine (SAMe), which
is required both for aminopropylation in the biosynthesis of polyamines and for the work
of LaeA, a histone methylase. Using the example of A. chrysogenum RNCM 408D, it was
shown that during a CSI program, the content of polyamines in a cell can be significantly
increased [316]. This could be due to concomitant mutations selected at the sublethal
level, since polyamines are able to protect the cell from peroxide stress and participate in
the repair of DNA breaks in combination with RAD51 recombinase [317–319]. And the
addition of exogenous polyamines during the fermentation process via a feedback mecha-
nism inhibits their endogenous synthesis, which releases part of SAMe for the purpose of
methylation and the work of LaeA. However, in specially designed genetically engineered
strains or on specially selected nutrient media, the addition of polyamines can lead to a
decrease in target production [169,244]. Such an effect can be associated with pressing the
left pedal, which is used to dampen the sound.

8. Conclusions

Biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) play a key role
in their production. Inside a fungal cell is a “keyboard” of several dozen keys—BGCs—
mosaically scattered across the chromosomes. A special signal-dependent hierarchical
regulatory system “presses” the keys of this keyboard to express the necessary BGCs and
produce the appropriate SMs. The system as a whole works on the principle of a piano;
when a specific key (BGC) is pressed, the corresponding sound appears (the corresponding
SM is synthesized). In order to turn a natural isolate into a high-yielding industrial producer,
it is necessary to significantly change the natural instrument, leaving only one loud and
constantly sounding key.

The main method by which commercial fungal producers have been obtained for
decades is classical strain improvement (CSI), based on random mutagenesis and screening.
In recent years, due to multiomics approaches, it has become clear what changes occur at the
molecular level in fungal cells during such improvements. In an industrial fungal producer,
key streams of primary metabolism are redirected, and the physiology, morphology, and life
cycle of the strain can be significantly changed to adapt to specific fermentation parameters.
However, the key factor is the upregulation of biosynthetic genes against the background
of changes in the system of regulation and disruption of alternative BGCs.
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