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Abstract: The ability to detect and monitor amyloid deposition in the brain using non-invasive imag-
ing techniques provides valuable insights into the early diagnosis and progression of Alzheimer’s
disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI)
is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize
amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In
recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has
entered clinical practice. We review the advances in the field and deduce the requirements for the
molecular structure and properties of a diagnostic probe candidate. These requirements make up
the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular
attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with
known binders offering the possibility to use computational structure-based design methods. With
continued research and development, MRI probes may revolutionize the diagnosis and treatment of
neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.

Keywords: Alzheimer’s disease; amyloid plaques; amyloid fibrils; magnetic resonance imaging;
molecular imaging probes; fluorine-19; protein-ligand interactions; imaging agent development

1. Introduction

Alzheimer’s disease (AD) is a slowly progressing neurodegenerative disorder that
accounts for 60 to 80% of dementia cases [1]. Until recently, a definitive diagnosis of
AD could be made only post-mortem, while clinical diagnoses of AD were “possible” or
“probable” [2–4]. They were based on medical history and clinical symptoms, such as
memory dysfunction and cognitive impairment, in different intellectual domains [5,6].
However, cognitive impairment and other obvious pathological changes are observed
at the late stage, when the neurons are already dead and the condition is impossible to
reverse [3]. In 2011, these criteria were updated, and advances in AD imaging research were
taken into account [5]. Among the major pathological biomarkers differentiating AD from
other forms of dementia are senile β-amyloid (Aβ) plaque deposition and neurofibrillary
tangles (NFTs) of hyperphosphorylated tau protein in the brain [4,6–9]. In accordance
with the hypothesis of the amyloid cascade in AD, the formation of senile plaques with
subsequent deposition in tissues is the earliest pathological change in the disease. [10–13].
The study of dominantly inherited AD demonstrated that amyloid plaque deposition in
the brains of the participants occurred about 20 years before the first onset of symptoms in
the parents of the participants [14]. Thus, Aβ plaques represent the most important early
diagnostic indicator of AD. Diagnostic agents visualizing these plaques will help in the
early diagnosis of AD; determining the stage of the disease; assessing the response to anti-
amyloid therapy, including clinical trials of promising drug candidates; and developing
new treatment strategies [3,15].

Positron emission tomography (PET) scan-based diagnostics of amyloid deposits with
clinically approved imaging probes demonstrate very high specificity and sensitivity in
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AD patients. Unfortunately, the use of PET is still limited due to its cost, as it is not covered
by most insurance companies, so it is still used as part of clinical trials [6]. In addition, PET
has a low spatial resolution, not allowing for the visualization of individual plaques [16].
Considering the severity of the disease and the increasing incidence rate of AD [1,17,18],
the development of other affordable and effective diagnostic methods is relevant. The
alternatives to radio imaging are optical imaging and magnetic resonance imaging (MRI)
techniques, which can also use chemical probes that are able to bind to Aβ plaques or NFTs.

In this review, we focus on the recent progress in the development of novel MRI
diagnostic agents binding to fibrillar structures. For a more general description of various
AD imaging approaches, readers may refer to the reviews of Kaur et al. [19], Arora and
Bhagat [20], and Mori et al. [21]. Some previous papers were also dedicated particularly to
AD radioimaging diagnostic agents [22–28] and fluorescent probes [29–33]. Various aspects
and techniques of MR imaging of AD which do not focus on the fibril-binding tracers have
also been reviewed [34–36]. In contrast, herein, we highlight the strategies and prospects
for the molecular design of compounds with desirable properties for MRI tracing. Some
of these properties, such as a high affinity or blood–brain barrier (BBB) permeability, are
also important for other imaging techniques, which leads to similar structural patterns
being observed in optical, radio, and MR imaging probes. At the same time, each method
has its own specific requirements for the probe structure. MRI relies on the presence of
spin-active nuclei in the probe. In addition, when the probe is bound to the amyloid
plaque, a strong signal can be only obtained if the segment containing the active nucleus is
sufficiently flexible.

2. Major Amyloid Visualization Techniques
2.1. Optical Imaging

Fluorescent probes are widely used for in vitro and ex vivo studies of soluble and
insoluble Aβ aggregates. Optical methods also have some potential for in vivo studies,
with the advantages of low cost, ease, and speed of analysis [29]. The first dyes applied
in histopathological studies of amyloidosis were two fluorescent indicators: Congo red,
which has been used since 1922, and Thioflavin T, used since 1959 (Figure 1). They are still
frequently chosen for immunostaining of brain tissues for the post mortem diagnosis of
AD and in in vitro studies of fibril formation kinetics [37–41].
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However, in vivo imaging requires deep tissue penetration and a good signal-to-
background ratio, so UV/visible fluorescent probes cannot be used. Near-infrared fluo-
rescence (NIRF) has become the most widely used in vivo optical imaging method. It is
based on the detection of photons with 650–900 nm wavelengths emitted by the excited
fluorophores. Near-infrared light has deeper tissue penetration compared to visible light
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due to less absorption by hemoglobin and water and less autofluorescence from surround-
ing tissues [42]. Unfortunately, even NIRF is suitable only for superficial imaging of organ
tissues in humans [42]. The quality of deep tissue imaging is far from adequate, and the
depth of penetration of NIR photons into tissues is only several millimeters [43,44]. NIRF
is useless in the case of AD due to weak penetration of light into the skull-shield brain.
Imaging of amyloid deposits in the brains of small animals is possible, but often requires
skull thinning to achieve satisfactory image resolution [30]. Moreover, undesirably high
concentrations of fluorescent probes would be required for in vivo studies due to their
low sensitivity.

One of the prospective NIR fluorescent probes for amyloid aggregates is CRANAD-2.
Its synthesis [45] was inspired by the knowledge that incorporating a difluoroboronate
moiety into yellow-colored curcumin, which is able to bind Aβ fibrils, leads to red dye
(CRANAD-1, Figure 2) with higher absorption and emission wavelengths. The introduction
of the red-shift pushing N,N-dimethyl groups into the curcumin scaffold led to CRANAD-2
(Figure 2), which also had a good BBB-penetrating ability. Figure 3 shows in vivo brain
images created using CRANAD-2 injected into mice. The development of fluorescence
molecular tomography (FMT) and integration with other imaging techniques may offer
novel opportunities for fluorescent indicators. For example, Ren et al. [46] demonstrated
the ability of FMT integrated with MRI to visualize 3D deposition of beta-amyloid in mouse
brains using CRANAD-2.
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Further progress in fluorescence bioimaging may also be connected with NIR-II flu-
orescent probes emitting in the 950–1350 nm wavelength range [43]. NIR-II light has a
larger (centimeter-level) penetration depth and allows for micron-level resolution to be
obtained. However, few NIR-II probes have been developed. Recently, a difluoroboronate
Eth-BF (Figure 4) was synthesized and tested in mice [47]. It contains N,N-diethylaniline
fragments presumed to bind to amyloid fibrils. They also serve as donor groups, leading to
the strong intramolecular charge transfer effect, which results in high emission wavelengths
with emission tails reaching 1200 nm. Another NIR-II probe shown to visualize amyloid
plaques in mice, DMP2 (Figure 4), with 980 nm emission maximum and 42 nM affinity to fib-
rils, is a conjugate of N,N-dimethylaminobenzene, thiophene, and benzo[cd]indole-1-ium
fragments [48].
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Nevertheless, decades of efforts aimed at the design of fluorescent probes for amyloid
aggregates has led to the discovery of different molecular scaffolds providing a good affinity
to fibrils. The compounds developed to be used as histological dyes, for visualization
of fibril formation in vitro, or NIR fluorescent probes can be turned into MRI or radio
imaging probes after some modifications introducing the necessary isotopes. We discuss
the molecular structure of known fibril binders in more detail in Section 3.

2.2. Radio Imaging

Radio imaging, which includes positron emission tomography (PET) and single photon
emission computed tomography (SPECT), is based on the detection of gamma rays from
the decay of certain isotopes in the probe molecule.

PET is a powerful imaging technique for detecting Aβ fibril deposits with very low
doses of radioactive indicators [49]. PET indicators most commonly contain the 11C,
18F, 64Cu, or 68Ga isotopes. These radionuclides contain excess amounts of protons, are
unstable, and undergo radioactive decay by emitting positrons. Positrons collide with
nearby electrons and slow down and ultimately annihilate them, either in flight or at rest, to
emit two 511 keV gamma rays in opposite directions. The instrument identifies coincident
gamma pairs and determines, with high accuracy, the position of the line on which the
annihilation process occurred [23,50–52]. SPECT indicators usually contain 123I, 125I, 99mTc,
111In, or 188Re isotopes, the nuclei of which emit one gamma photon during each act of
radioactive decay. These photons leave the patient’s body unscattered and can also be used
to obtain information about the distribution of the radiopharmaceutical in the organs and
tissues [23,52–54].

The U.S. Food and Drug Administration (FDA) and the European Medicines Agency
(EMA) have approved several indicators for PET imaging of beta-amyloid in patients with
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cognitive impairment undergoing clinical assessment for AD: [18F]florbetapir (Amyvid)
(2012) [55], [18F]flutemetamol (Vizamyl) (2013) [56], and [18F]florbetaben (Neuraceq) (2014) [57]
(Figure 5). For [18F]florbetapir, 59 post mortem brain assays were performed, showing sensi-
tivity and specificity of 92% and 100%, respectively [58]. For 74 assays with [18F]florbetaben,
the sensitivity and specificity were 97.87% and 88.89%, respectively [59], and for 106 pa-
tients with [18F]flutemetamol, these values were 85.7% and 100% [60]. Figure 6 shows an
example of the PET images of healthy and AD-affected human brains after injection of
[18F]florbetapir.
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The inclusion of the 18F label into PET indicator molecules occurs through nucleophilic
radiofluorination by 18F– ion, which can be produced via the 18O(p,n)18F reaction when
18O-enriched water is irradiated with protons in cyclotrons [61–63]. Due to the short half-
life of isotopes for the synthesis of PET and SPECT indicators, synthesis should be designed
with a minimum number of steps and purification, in order to take the shortest possible
amount of time [64]. The 18F isotope has a half-life of 109.8 min [65]. This is longer than
that of the isotope 11C (20 min) used in some earlier developed indicators, which allows for
a reduction in the cost of the indicator and an increase in the number of potential users of
imaging centers [55]. The isotopes used in SPECT have longer half-lives, but technetium,
indium, and rhenium can be only infused in the form of complexes, which usually have
poor BBB permeability [19]. A number of clinical trials have been conducted with 123I-
containing probes, e.g., [123I]IMPY [66] (Figure 7), which displayed a low signal-to-noise
ratio. No SPECT amyloid probes have been approved for clinical use.

Besides the radiation risk, the cost and complexity of synthesis, and the purification
of diagnostic agents, the disadvantages of PET imaging are quite low resolution and high
background noise resulting from the nonspecific absorption of 18F-indicators by the white
matter of the brain [19,67]. The disadvantages of SPECT are even lower spatial resolution,
long scan times, and difficulty in obtaining reliable quantification [68].



Int. J. Mol. Sci. 2023, 24, 11152 6 of 32Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 34 
 

 

 
Figure 6. PET images of AD-affected (top) and healthy (bottom) human brains, made using [18F]flor-
betapir. This figure was originally published in JNM (Ref. [55]). © SNMMI. 

The inclusion of the 18F label into PET indicator molecules occurs through nucleo-
philic radiofluorination by 18F– ion, which can be produced via the 18O(p,n)18F reaction 
when 18O-enriched water is irradiated with protons in cyclotrons [61–63]. Due to the short 
half-life of isotopes for the synthesis of PET and SPECT indicators, synthesis should be 
designed with a minimum number of steps and purification, in order to take the shortest 
possible amount of time [64]. The 18F isotope has a half-life of 109.8 min [65]. This is longer 
than that of the isotope 11C (20 min) used in some earlier developed indicators, which 
allows for a reduction in the cost of the indicator and an increase in the number of poten-
tial users of imaging centers [55]. The isotopes used in SPECT have longer half-lives, but 
technetium, indium, and rhenium can be only infused in the form of complexes, which 
usually have poor BBB permeability [19]. A number of clinical trials have been conducted 
with 123I-containing probes, e.g., [123I]IMPY [66] (Figure 7), which displayed a low signal-
to-noise ratio. No SPECT amyloid probes have been approved for clinical use. 

 
Figure 7. Structure of [123I]IMPY. 

Besides the radiation risk, the cost and complexity of synthesis, and the purification 
of diagnostic agents, the disadvantages of PET imaging are quite low resolution and high 
background noise resulting from the nonspecific absorption of 18F-indicators by the white 
matter of the brain [19,67]. The disadvantages of SPECT are even lower spatial resolution, 
long scan times, and difficulty in obtaining reliable quantification [68]. 

2.3. MR Imaging 

Figure 6. PET images of AD-affected (top) and healthy (bottom) human brains, made using
[18F]florbetapir. This figure was originally published in JNM (Ref. [55]). © SNMMI.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 34 
 

 

 
Figure 6. PET images of AD-affected (top) and healthy (bottom) human brains, made using [18F]flor-
betapir. This figure was originally published in JNM (Ref. [55]). © SNMMI. 

The inclusion of the 18F label into PET indicator molecules occurs through nucleo-
philic radiofluorination by 18F– ion, which can be produced via the 18O(p,n)18F reaction 
when 18O-enriched water is irradiated with protons in cyclotrons [61–63]. Due to the short 
half-life of isotopes for the synthesis of PET and SPECT indicators, synthesis should be 
designed with a minimum number of steps and purification, in order to take the shortest 
possible amount of time [64]. The 18F isotope has a half-life of 109.8 min [65]. This is longer 
than that of the isotope 11C (20 min) used in some earlier developed indicators, which 
allows for a reduction in the cost of the indicator and an increase in the number of poten-
tial users of imaging centers [55]. The isotopes used in SPECT have longer half-lives, but 
technetium, indium, and rhenium can be only infused in the form of complexes, which 
usually have poor BBB permeability [19]. A number of clinical trials have been conducted 
with 123I-containing probes, e.g., [123I]IMPY [66] (Figure 7), which displayed a low signal-
to-noise ratio. No SPECT amyloid probes have been approved for clinical use. 

 
Figure 7. Structure of [123I]IMPY. 

Besides the radiation risk, the cost and complexity of synthesis, and the purification 
of diagnostic agents, the disadvantages of PET imaging are quite low resolution and high 
background noise resulting from the nonspecific absorption of 18F-indicators by the white 
matter of the brain [19,67]. The disadvantages of SPECT are even lower spatial resolution, 
long scan times, and difficulty in obtaining reliable quantification [68]. 

2.3. MR Imaging 

Figure 7. Structure of [123I]IMPY.

2.3. MR Imaging

MRI is based on the effect of nuclear magnetic resonance relaxation. The conventional
1H MRI technique is based on the relaxation of water proton spins in the human body. A
number of metal-based (mainly gadolinium-based) contrast agents have been developed
which increase the relaxation rate in the immediate vicinity of the metal and improve the
visibility of pathologies [69]. Conventional or contrast-enhanced 1H MRI has been success-
fully used to diagnose many different pathological conditions: neurological tumors [70];
issues with the structure and function of the heart [71,72]; joint diseases and soft tissue
tumors [73–76]; stenosis or aneurysm of the arteries [77]; and lesions of the liver, pancreas,
and bile ducts [78–80].

In AD-suspected patients, MRI allows for non-invasive measurement of the brain
tissue volume, which helps to localize pathophysiological signs such as regional brain
atrophy, gray matter volume loss, and white matter damage [15,34,35,81]. However, these
signs are not specific signatures of AD, and the number of brain cells or white matter tracts
that should be lost to detect atrophy in AD is unknown [15]. Direct visualization of amyloid
deposits is a different and prospective approach. Unfortunately, the ability to identify
Aβ plaques is very limited, even in the presence of contrast agents [82]. One possible
solution is the development of targeted contrast agents with a binding affinity to plaques,
which are discussed below in Section 3.3. The common problem of such agents is low BBB
permeability. In addition, 1H MRI does not directly detect contrast agent molecules, and
the signal is not proportional to their concentration [83].
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Another method is the 19F MRI technique, with fluorinated organic probes binding to
amyloid fibrils. Multi-nuclear imaging is more challenging than 1H imaging and requires
very sensitive radiofrequency coils tuned to specific frequencies, broadband radiofrequency
amplifiers, and specialized pulse sequences [84]. However, the 19F MRI method has a
number of advantages. The sensitivity of the magnetic resonance of 19F is relatively high
compared to the sensitivity of various nuclei other than 1H [85–87]. The natural abundance
of 19F is 100%, which means that no isotope-enriched reagents nor radioactive compounds
should be used during probe synthesis. At the same time, there is almost no fluorine in
the human body, and the background noise is very low [88]. Unlike the indirect effect of
metal-based contrast agents on the water signal in 1H MRI, the detection of fluorine-based
agents directly visualizes 19F atoms, and the signal is proportional to their quantity [89].
In the pioneering work of Higuchi et al. [90], (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-
hydroxy)styrylbenzene (FSB) probe (Figure 8) was used to detect Aβ plaques in mouse
brains. This compound was originally synthesized as a fluorescent dye with amyloid-
binding ability and good BBB permeability [91]. Further progress in fluorinated MRI probe
development is discussed in Section 3.1. Not all of these probes, however, have reached the
clinical phase yet.
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The general advantages of MRI include relatively high spatial resolution, low cost
(about one-fifth of the PET cost), wider availability, use of diagnostic agents with a long
shelf life, and the absence of ionizing radiation [19,90]. Due to the high resolution, this
method can provide anatomical information, helping to identify the brain regions with
amyloid deposits and quantitatively characterize the extent of deposition [83]. The main
disadvantage is the low sensitivity of the MRI method in general. This can be improved by
designing fluorinated probes with strong signals, which is a specific requirement for the
19F MRI diagnostic agents, as described below in Section 3.1.

3. Molecular Design of MRI Fibril-Binding Probes
3.1. Fluorinated Probes Binding to Amyloid Plaques

The low signal-to-noise ratio was the main problem of the FSB probe [90]. In order
to increase it, the authors suggested increasing the number of fluorine atoms in the probe
molecule and its affinity to amyloid aggregates. Vennerstrom et al. [92] prepared tetrafluo-
rosubstituted and trifluoromethylsubstituted bis-styrylbenzenes. These compounds had
higher affinities to beta-amyloid than FSB and four to six fluorine atoms in their molecules,
but had not been tested in vivo. Tooyama et al. studied benzoxazole compounds with
the trifluoromethoxy groups TFMB-2Et and TFMB-3Et [93] (Figure 9). These compounds
showed a strong 19F signal in a buffer, but it was greatly reduced in mouse brain lysates. A
similar reduction was also observed when the NMR spectra of some arbitrary non-amyloid
binding fluorinated compounds were recorded in brain homogenates instead of a buffer.
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The change in signal intensity was smaller for hydrophilic than for lipophilic compounds.
The authors attributed this reduction to the high membrane lipid content in the brain,
particularly in myelin sheaths. Lipid components may trap and immobilize lipophilic
compounds, leading to short relaxation times and broadened NMR peaks. On the other
hand, hydrophilic compounds face difficulties with BBB penetration. Thus, it is necessary
to provide optimal lipophilicity to the MRI probes. Other imaging techniques also suffer
from the nonspecific binding of lipophilic compounds. Approved PET probes, florbetapir,
and flutemetamol contain a polyethylene glycol chain, which increases their hydrophilicity.
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The same research group developed 19F-containing curcumin-derivative FMeC1 (also
called Shiga-Y5, Figure 10) [94,95] with a high affinity of the enol form to Aβ aggregates,
which displayed an MRI signal in a live mouse model. Very interestingly, the authors
observed no signal when the brain was resected and immediately subjected to MRI mea-
surements. After several hours, however, the signal from the isolated brain could be
registered. This was explained by the hypothesis that binding of the probe to amyloid
plaques also leads to the immobilization and NMR signal broadening and disappearance,
and the observed signal corresponds to the free probe molecules around the plaques and
in the blood. In order to prevent such a signal reduction, it has been suggested that the
mobility of 19F atoms be increased by separating them, using a flexible polyethylene gly-
col chain, from the part of the molecule that binds to the amyloid plaques [67,96]. The
probes were not well-soluble in water, and the surfactants were added for their intra-
venous injection. The optimum number of ethylene glycol groups needed to achieve the
strongest MRI signal was determined and found to be seven (compound XP7 or Shiga-X22,
Figure 10). Figure 11 shows in vivo MR images of wild-type and transgenic AD model
mouse brains after injection of this compound. Shorter chains led to weaker signals likely
due to insufficient fluorine mobility, while compounds with longer chains faced difficulties
in BBB penetration. An increase in the number of fluorine atoms, e.g., by introducing two
trifluoromethyl groups instead of one, does not lead to stronger signals, which can be
explained by a higher affinity to brain lipids. Another candidate compound in this series is
Shiga-Y51 [97] (Figure 10), a fluorinated curcumin derivative with keto-groups not capable
of enolization. It does not have a flexible chain with fluorine atoms. Instead, it has been
reported to bind soluble Aβ oligomers in the brain, which are significantly mobile and
do not cause a dramatic decrease in the relaxation time or the signal intensity. However,
strong and unwanted signals were observed even in the experiments with healthy mice.
Figure 12 shows the results of in vivo testing of this compound in mice.
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permission from Elsevier.

Recently, a series of potential 19F MRI probes was synthesized from indanone deriva-
tives [98]. They contained trifluoromethyl groups separated from the amyloid-binding
fragment by two ethylene glycol groups. One of them, abbreviated as 7d (Figure 13), has
shown imaging capability in in vitro experiments.
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An attempt to use bovine serum albumin-capped graphene quantum dots function-
alized with hydrofluorinated glucose as MRI probes in live mice has been made [99].
Graphene quantum dots have an affinity to amyloid peptides, and albumin prevents them
from aggregation and reduces their interactions with plasma proteins.

To summarize, 19F-MRI can become a readily available and cost-effective approach
once sufficiently sensitive probes have been developed. The developed compounds cannot
provide the desired signal intensity, even though MR scanners with high magnetic power
(7.0 to 9.4 T) were used in the studies described above [95,98]. The sensitivity must also
be improved for safety reasons, since quite high doses of probes (e.g., 200 mg/kg [67])
were used, which are likely to be toxic and resulted in the death of mice in some cases. In
addition, low sensitivity leads to very long image acquisition times of up to several hours.
Hence, novel compounds need to be designed, screened, and tested in vivo.

3.1.1. Requirements for an MRI Probe Candidate

The requirements that an MRI probe candidate must meet are as follows (see Figure 14
for a short schematic representation):

1. High affinity and specificity of binding to Aβ plaques: The affinity is usually de-
termined in vitro using beta-amyloid binding assays based on radioligand binding,
fluorescence titration, or other techniques. These experiments are not robust, and the
value for the same compound may vary significantly depending on the exact condi-
tions and methods used by different authors, which complicates our understanding
of the structure–affinity relationships. The presence of certain molecular scaffolds
discussed in the next section can guarantee a certain degree of affinity to beta-amyloid,
which can be enhanced by various structural modifications. The approved PET probes
have an affinity below 10 nM, and most of the compounds studied as potential probes



Int. J. Mol. Sci. 2023, 24, 11152 11 of 32

for various imaging techniques have an affinity in the range of 1 to 1000 nM. The intro-
duction of long, flexible chains carrying fluorinated groups into the molecule is likely
to result in a decrease in the affinity [100]. Hence, the design of MRI probe candidates
should be initiated from the precursors with the highest possible amyloid affinity.
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The specificity of binding can only be proven experimentally. The approved PET
probes are known to bind highly specifically; hence, the structurally similar compounds
will also likely be specific. It is especially difficult to provide the selectivity for amyloid
plaques over neurofibrillary tangles, which consist of tau protein aggregates with similar
β-sheet structures. On the other hand, some compounds have been developed which bind
tau aggregates more tightly than beta-amyloid plaques and can be used to diagnose tau
pathologies (see Section 3.2.1).

2. Blood–brain barrier (BBB) permeability: The ability of amyloid probes to cross the
BBB is indispensable for MRI imaging in vivo. Passive transmembrane diffusion of
a compound through the BBB is possible for rather small lipophilic molecules. A
molecular weight between 400 and 600 Da is usually considered as an upper border for
BBB-permeable compounds. Under this threshold, the kinetic permeability logPS and
the steady-state blood–brain partition coefficient logBB are, to some extent, correlated
with 1-octanol-water partition coefficient logP (or logD for ionizable compounds) [101].
For larger molecules, the passive permeability rapidly decreases with the molecular
size and is generally not correlated with logP. The cutoff value of logBB = 0 can be
taken to classify compounds as permeable, which means an equal concentration of a
compound on both sides of the barrier. The equivalent cutoff value for logPS is about
–2 [101]. Despite the fact that the relationship of these quantities with logP is not strict,
the value of logP (logD) > 1 is often recommended for the molecules that should pass
the BBB. Additional commonly mentioned empirical rules for the BBB-permeable
compounds are to form no more than eight hydrogen bonds with water; not to carry
a negative charge, since the surface of the brain endothelial cells forming the BBB is
itself negatively charged; and not to be a high-affinity serum protein binder [102,103].
For a more precise a priori logBB prediction, multiple QSAR models based on linear
regressions or various machine learning approaches [104–106] have been developed.

Active targeting strategies include the use of adsorptive-mediated transcytosis, transporter-
mediated transcytosis, and receptor-mediated transcytosis [107]. These mechanisms allow
for the brain delivery of some large or hydrophilic molecules necessary for organism
function. The MRI probes that cannot cross the BBB themselves can be encapsulated into
or conjugated to nanoparticles modified with specific ligands that are recognized by the
receptors or transporters, or coupled to BBB-penetrating proteins [107–109].

3. Low binding to the membrane lipids in the brain: Binding to membrane lipids is
thought to decrease the signal-to-noise ratio and can be reduced by lowering the
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probe’s lipophilicity. The upper border of the optimal logP (logD) value is about
3–4. The approved PET probes are moderately lipophilic, i.e., logD = 1.58 for flor-
betaben [110] and logP = 3.44 for flutemetamol [111], while for Shiga-X22, the pre-
dicted logP value equals 3.77 [67].

4. Other ADMET properties: Sufficient in vivo stability, low toxicity, and an optimal
clearance rate are necessary for the successful use of a compound as a diagnostic
agent. Most of the known probe candidates have been studied in live mice and cell
cultures and found to have low toxicity, with the exceptions of some compounds with
long ethylene glycol chains [67] and possible nephrotoxicity of FSB at high doses [90].

5. Strong MRI signal. The NMR signal intensity of a compound is proportional to the
number of fluorine atoms in its molecule [112,113]. The MRI probes that were studied
in vivo contained one or two trifluoromethyl groups, and their signal-to-noise ratio
was far from desirable [67,96]. However, as mentioned above, a larger number of
fluorine atoms leads to higher hydrophobicity and increased off-target interactions
with brain lipid components, as well as low solubility in water. An alternative strategy
could be a simultaneous introduction of fluorines and polar groups, decreasing the
hydrophobicity of a probe. The fluorine atoms should be arranged symmetrically
in order to provide a single NMR peak. Moreover, fluorines should be separated
from the amyloid-binding fragment by a flexible chain to avoid signal broadening
and disappearance.

A number of dendrimeric compounds containing a high number of equivalent fluorine
atoms have been synthesized recently, some of which are water-soluble (an example is
shown in Figure 15) [114,115]. They can be conjugated with the amyloid-binding scaffolds
discussed below. Such molecules, of course, will face problems with BBB permeability and
require some special transport technologies, e.g., nanoparticle-based ones [115].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 34 
 

 

 
Figure 15. Structure of a water-soluble MRI-traceable compound (41) with 54 fluorine atoms [115]. 

3.1.2. Molecular Fragments Providing Affinity to Aβ Fibrils 
The structural features of beta-amyloid fibrils, as well as fibrils from other proteins, 

are stacked parallel arranged β-sheets with a tendency of the hydrophobic residues to be 
packed within the fibril and the hydrophilic residues to be water-accessible [116,117]. Ex-
perimental and theoretical studies indicate the binding of ligands to several binding sites 
in different spatial orientations [27] and the existence of tightly and loosely bound ligand 
molecules [118]. In addition, bound ligands in general do not obey the helical symmetry 
of fibrils. Thus, the exact binding poses can be inaccessible even for cryo-EM studies [119]. 
Nevertheless, the combination of cryo-EM or NMR data with docking and molecular dy-
namics simulations provides information about the binding sites and ligand orientation. 

In particular, it was shown that a PET probe flutemetamol binds to the surface of 
Aβ40 fibrils in a planar conformation with the ligand long axis (connecting benzothiazole 
and benzene rings, Figure 5) predominantly parallel to the fibril axis [118]. This ligand is 
involved in interactions with polar and aromatic residues. Purely computational studies 
also predict binding of Thioflavin T, Congo Red, and their derivatives in parallel to the 
beta-amyloid fibril axis [27,120]. More experimental data on fibril binding are available 
for proteins other than beta-amyloid. Docking of Congo Red to the prion domain of the 
fungal HET-s protein with restraints derived from NMR chemical-shift perturbations and 
polarization transfer experiments [121] results in a planar ligand molecule embedded in a 
surface groove (Figure 16). The complex is stabilized by electrostatic and hydrogen-bond-
ing interactions with polar residues. 

 
Figure 16. Two representations of the result of docking of Congo Red to the prion domain of the 
fungal HET-s protein with NMR restraints [121]. PDB ID: 2LBU. 

The cryo-EM structure of a complex of fluorinated benzothiazole derivative with α-
synuclein fibrils available in PDB (7WMM) indicates the accommodation of the ligand in 
a cavity formed between the beta-sheets (Figure 17). A recent study of interactions of di-
phenylpyrazole anle138b, a clinical drug candidate, with α-synuclein fibrils has shown 

Figure 15. Structure of a water-soluble MRI-traceable compound (41) with 54 fluorine atoms [115].

3.1.2. Molecular Fragments Providing Affinity to Aβ Fibrils

The structural features of beta-amyloid fibrils, as well as fibrils from other proteins,
are stacked parallel arranged β-sheets with a tendency of the hydrophobic residues to
be packed within the fibril and the hydrophilic residues to be water-accessible [116,117].
Experimental and theoretical studies indicate the binding of ligands to several binding sites
in different spatial orientations [27] and the existence of tightly and loosely bound ligand
molecules [118]. In addition, bound ligands in general do not obey the helical symmetry of
fibrils. Thus, the exact binding poses can be inaccessible even for cryo-EM studies [119].
Nevertheless, the combination of cryo-EM or NMR data with docking and molecular
dynamics simulations provides information about the binding sites and ligand orientation.

In particular, it was shown that a PET probe flutemetamol binds to the surface of
Aβ40 fibrils in a planar conformation with the ligand long axis (connecting benzothiazole
and benzene rings, Figure 5) predominantly parallel to the fibril axis [118]. This ligand is
involved in interactions with polar and aromatic residues. Purely computational studies
also predict binding of Thioflavin T, Congo Red, and their derivatives in parallel to the
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beta-amyloid fibril axis [27,120]. More experimental data on fibril binding are available
for proteins other than beta-amyloid. Docking of Congo Red to the prion domain of the
fungal HET-s protein with restraints derived from NMR chemical-shift perturbations and
polarization transfer experiments [121] results in a planar ligand molecule embedded in a
surface groove (Figure 16). The complex is stabilized by electrostatic and hydrogen-bonding
interactions with polar residues.
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Figure 16. Two representations of the result of docking of Congo Red to the prion domain of the
fungal HET-s protein with NMR restraints [121]. PDB ID: 2LBU.

The cryo-EM structure of a complex of fluorinated benzothiazole derivative with
α-synuclein fibrils available in PDB (7WMM) indicates the accommodation of the ligand
in a cavity formed between the beta-sheets (Figure 17). A recent study of interactions of
diphenylpyrazole anle138b, a clinical drug candidate, with α-synuclein fibrils has shown
binding deep inside this cavity [122]. The molecule of anle138b is relatively small and has
no charged or hydrogen-bond donor groups.
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synuclein fibrils. PDB ID: 7WMM.

The binding of the fluorinated PET probe candidate APN-1607 (Figure 18) with tau
protein fibrils was investigated using cryo-EM [119]. This revealed several binding sites
inside the C-shaped cavity of tau filaments (see Figure 19). Some bound molecules are
parallel, while others are perpendicular to the fibril axis. Minor binding sites in the clefts
between two protofilaments have also been reported. In another cryo-EM study, a fibril
formation inhibitor epigallocatechin gallate was shown to form parallel stacks in these
clefts, contacting polar protein residues (Figure 19) [123]. Stacked binding to the C-shaped
cavity of certain types of tau filaments with a molecular stoichiometry close to 1:1 was
recently observed for the approved PET tau imaging agent flortaucipir [124] and a tracer
candidate GTP1 [125]. In both cases, the π–π stacking aromatic rings formed a 45-degree
angle with the helical axis.
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Despite the absence of a well-defined binding site in amyloid fibrils, it is possible to
deduce some desirable structural features of amyloid binders. A high affinity is expected
for the molecules with conjugated aromatic fragments that are able to adopt a planar
conformation, preferably with a linear arrangement of aromatic systems and favorable
interactions with polar amino acid residues. A number of scaffolds listed below have been
shown to possess amyloid-binding properties. They can be modified by various functional
groups to tailor affinity and any other properties.

1. Benzothiazole derivatives [30,126,127]: Prominent representatives are thioflavin T,
flutemetamol, and Pittsburgh compound B (Figure 20) [128], a PET probe used in
numerous early in vivo imaging experiments [129]. Most of the synthesized ligands
contain an aromatic substituent or a conjugated double-bond system attached to
the C2 atom. QSAR analysis shows that the monoalkyl amino group in the para
position to benzothiazole increases the binding affinity [28]. Substituted benzoxazoles,
benzothiophenes, benzofurans, imidazopyridines (e.g., IMPY), and other bioisosteric
heterocycles [130,131] can also show strong fibril binding.
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Figure 20. Structure of Pittsburgh compound B.

2. Curcumin (Figure 21a) derivatives [45,132–134], which include CRANAD dyes and
some of the Shiga-Y series compounds: It was reported that the enol form of curcumin
derivatives (Figure 21b) exhibits a high affinity to Aβ fibrils, while the keto form shows
weaker binding, leading to the bound state becoming predominantly enolic [94]. While
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curcumin itself is chemically unstable, weakly soluble in water, prone to non-specific
binding with many different targets, and has a poor pharmacokinetic profile, some
of its derivatives can be more suitable for probe development. The replacement of
β-diketone with a difluoroboronate moiety in the CRANAD series or with a single
carbonyl group [132] helps to overcome the pharmacokinetic limitations. Replacing
the two phenyl rings of curcumin with pyridyls can strengthen the interaction with
proton donor residues of Aβ [135]. The presence of a rather rigid linker between the
aromatic rings, like in curcumin, seems to be a prerequisite for high Aβ affinity [136].
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Figure 21. (a) Structure of curcumin. (b) Keto-enol tautomerism of curcumin derivatives.

3. Stilbenes, styrylpyridines, and bis-styrylbenzenes (Figure 22) [92,100,137,138]: These
compounds also have aromatic rings separated by rigid conjugated double bonds. The
aforementioned PET probes, florbetaben and florbetapir, as well as the FSB compound,
belong to this group. The studies of their amyloid affinity were inspired by certain
structural similarities of stilbenes with benzothiazoles (particularly thioflavin T) and
bis-styrylbenzenes with Congo Red dye. Some non-stilbene (azo) fibril-binding Congo
Red derivatives have also been obtained [38,139,140]. Bis-styrylbenzenes have also
been modified by replacing the central benzene unit with naphthalene, thiophene, or
other heterocyclic moieties [137].
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4. Dicyanomethylene derivatives [30,141,142]. A well-known representative is the PET
probe FDDNP (Figure 23a) [143], used for research purposes. These compounds are
π-conjugated systems comprising double bonds and an aromatic ring, often with an
electron donor dialkyl amino substituent in para-position (Figure 23b).
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Figure 23. (a) Structure of [18F]FDDNP. (b) Examples of dicyanomethylene derivatives showing their
affinity to beta-amyloid fibrils [30].

5. Other scaffolds: Some carbazole derivatives [144,145], substituted phenothiazines [146],
coumarin derivatives [147–149], merocyanine [150,151], and hemicyanine-based [152]
dyes have been reported to have an affinity to beta-amyloid fibrils.

3.2. Probes Binding to Non-Aβ Fibrils
3.2.1. Imaging Tracers of Tau Pathology

In addition to the formation of amyloid plaques, AD has another hallmark: the accumu-
lation of an abnormal, hyperphosphorylated form of tau protein as insoluble neurofibrillary
tangles in the brain. Several other neurodegenerative diseases lead to the formation of
similar tau aggregates (but not beta-amyloid fibril plaques), and are known as tauopathies.
The tangles comprise large fibrillar aggregates dominated by parallel beta-sheets assembled
into paired helical or straight filaments. Recent cryo-EM studies [153–158] have shown that
these aggregates can adopt different conformations depending on the disease or in vitro
growth conditions [155,159]. The amount and distribution of neurofibrillary tangles in the
brain are known to depend on disease progression.

The search for compounds targeting tau fibrils started from the screening of more
than 2000 molecules in order to find strong tau binders with relatively low affinity to
beta-amyloid fibrils [160]. Weak binding to Aβ is necessary, since neurofibrillary tangles
colocalize with fibril plaques. The identified hits were lipophilic benzoxazole, benzimida-
zole, and quinolone derivatives, which were further optimized into PET imaging agent
candidates [18F]THK-523 (Figure 24) [161,162]. However, this compound was reported to
bind to Aβ plaques as well [163]. Exploration of a different series of compounds, including
pyridoindole derivatives [163], led to the discovery of a promising candidate, [18F]T807
(Figure 24), which has now become an approved PET imaging agent taucipir, sold under
the brand name Tauvid and also known as [18F]AV-1451. This compound was found to
have a nanomolar affinity to tau fibrils, not to bind to Aβ, and to cross the blood–brain
barrier efficiently [163].
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However, flortaucipir and some other probe candidates from the THK family have
shown significant off-target binding to monoamine oxidases A and B [164,165]. Thus, an ad-
ditional requirement for the development of so-called second-generation tau PET imaging
agents [166] is the low affinity of compounds to monoamine oxidases. A number of novel
compounds have undergone investigations and clinical trials, including the aforementioned
[18F]APN-1607, [18F]MK-6240 [167,168], [18F]PI-2620 [169], [18F]RO-948 [170,171], [18F]JNJ-
067 [172], and [18F]GTP1 [173] (Figure 25). Some of the designed agents have also shown
potential for the detection of non-AD tauopathies, including progressive supranuclear
palsy [169,174,175] or frontotemporal dementia [176].
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Attempts to use MRI probes for tau imaging have recently been made. Tooyama et al. [49]
synthesized the fluorine-containing NFT-binding compound Shiga-X35 (Figure 26), which
still needs further optimization due to its low selectivity, which results in the presence
of strong unwanted signals. Another promising compound is lansoprazole (Figure 26),
which is a commercial fluorine-containing drug with a high affinity to tau fibrils [177].
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Modification of the developed PET agents with fluorine-containing substituents in order to
use them as MRI probes may also become a fruitful approach.
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The development of the cryo-EM technique and its use for the structural analysis
of fibrillar aggregates and their complexes opens the opportunity for the structure-based
design of probes, including their optimization, for a particular pathogenic protein or
disease-determined fibril conformation. An example of the currently available structure is
the complex with tau protein fibrils [123], shown above in Figure 19.

3.2.2. Probes for Visualization of Non-AD-Related Amyloid Deposits

At least some of the diagnostic agents developed for AD-related amyloid plaque
imaging can also be successfully used for the visualization of fibrillar protein deposits
accumulating in various organs, especially in the heart, due to the different amyloid
diseases. It turned out to be possible to use Pittsburgh compound B [178–180] and the
FDA-approved radiopharmaceuticals [18F]flutemetamol [181], [18F]florbetapir [182,183],
and [18F]florbetaben [184] for PET diagnostics of systemic immunoglobulin light chain (AL)
amyloidosis and hereditary transthyretin amyloidosis. In a recent series of works [185–187],
the novel PET ligands [11C]CHDI-180, [11C]CHDI-626, and [18F]CHDI-650 (Figure 27) were
designed to bind huntingtin protein fibrils in the brain in order to diagnose Huntington’s
disease (HD). The design started from screening a collection of analogs of beta-amyloid
binders, followed by an empirical exploration of the structure−activity relationships to
increase the affinity and selectivity of binding to huntingtin fibrils relative to the Aβ fibrils
in order to discriminate between HD and AD.

The low selectivity of many fibril binders can be explained by the common structural
features shared by amyloid fibrils of any origin, namely, the existence of a beta-sheet
secondary structure, which is responsible for the interactions with molecular probes. Fluo-
rescent indicators are also known to bind fibrils formed from different proteins [188,189]. It
is likely that the MRI tracers discussed above also have some potential for visualization
of non-AD amyloidoses. Development of the specific MRI agents particularly aimed at
non-AD fibril deposits has not received the attention of researchers. One of the reasons
is that these diseases are much rarer than AD. Moreover, scintigraphic diagnostic meth-
ods have been developed and applied in clinical practice, including 123I–SAP scans using
the 123I-labeled serum amyloid P component, which binds to amyloid fibrils; 99mTc-DPD
or 99mTc-PYP (Figure 28) scintigraphy using bone-seeking radiopharmaceuticals, which
are thought to accumulate in amyloid deposits due to the high concentration of calcium
ions [179,190]; and PET and SPECT antibody imaging methods [191,192]. These methods
cannot be used to visualize amyloid structures in the brain, since the corresponding probes
cannot cross the BBB.
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MRI techniques that do not use any special chemical agents, such as native myocardial
T1 mapping or steady-state free precession cine imaging for evaluating cardiac amyloido-
sis [193–195], are also emerging, but they are out of the scope of the present review.

3.3. Metal Complex-Based Contrast Agents

There are various gadolinium complexes (Figure 29) [16,83,196] and manganese-
based [197] contrast agents that have been applied to visualize different amyloidoses,
including AD, in humans and animals, but do not have an affinity to the fibrillar structures.
These agents are hydrophilic and distribute in the tissues surrounding the plaques, but
cannot penetrate the hydrophobic amyloid deposits. This increases the imaging contrast of
1H MRI between the plaques and the tissues due to the relaxation rate enhancement of the
spins of the water protons near paramagnetic metal ions. To further increase the sensitivity,
metal-based targeted contrast agents that are able to bind fibrils were suggested [198]. Most
of them were Gd3+ chelate complexes in which the ligand was covalently linked with a
fibril-binding molecule. In the pioneering work of Poduslo et al. [199] and in a number
of later studies, β-amyloid peptides or their fragments and derivatives were conjugated
with gadolinium complexes [200–202] or superparamagnetic iron oxide nanoparticles (SPI-
ONs) [203,204]. Alternatively, β-amyloid antibodies and their derivatives or fragments
were conjugated [205–209]. Many recent studies have employed Gd3+ chelates or iron
oxide nanoparticles covalently or noncovalently linked with organic ligands binding Aβ

fibrils. Conjugates of a chalcone derivative with Gd-DO3A complex [210]; carbazole-based
cyanine with Gd-DOTA complex [211]; curcumin and Pittsburgh compound B with Gd-
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DO3A [212]; N,N-dimethylated Pittsburgh compound B and its benzoxazole and stilbene
analogs with Gd-PCTA12 and Gd-DOTAGA [83]; thioflavin T derivatives [213] with Gd-
DO3A and its derivatives [214]; and curcumin [215] and DDNP carboxyl derivative [216]
with SPIONs were synthesized and tested in vitro, ex vivo, and, in some cases, in animal
models. Another example is the Congo Red molecule noncovalently bound to bovine serum
albumin, which is itself covalently linked with the Gd-DTPA complex [217]. All of these
conjugated ligands were known β-amyloid fibril binders, most of which had previously
been tested as fluorescent or PET imaging probes or their close analogs. An example of
in vivo T1-weighted 1H MR images of mouse brains is shown in Figure 30.
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visualize amyloidoses. (b) Examples of targeted contrast agents binding β-amyloid plaques.
Gadolinium complexes are coupled through—CO-NH- bonds, Literature references are given in
brackets [210–213].
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The ability of many fibril binders to slow down fibril growth in vitro [218] led to the
positioning of some β-amyloid targeting metal complexes as theranostic agents suitable
for both the detection and inhibition of amyloid aggregation [212,219]. As no fibrilla-
tion inhibitor has yet shown potential to treat AD in vivo, these statements should be
considered cautiously.

The common problem of metal complexes and nanoparticles for brain MR imaging is
their poor BBB permeability. The strategies to improve it include additional conjugation with
lipophilic molecules such as putrescine [199,206], polymers like polyethylene glycol [203], cell-
penetrating Tat-peptide [204], liposomes [220], or nanovehicles [221]. Some covalently linked
hydrophobic molecules [210,211], peptides, and antibodies [208,222] have been reported to
provide the ability of the agent to cross the BBB without further modifications.

Conjugation of a metal chelate also markedly reduces the binding of organic ligands
to β-amyloid fibrils [198]. Thus, preliminarily designed and tested small organic molecules
that strongly bind Aβ fibrils (discussed above in Section 3.1.2) should become the basis for
further synthesis of the metal complexes with higher affinity.

No metal-based targeted contrast agents aiming at amyloid deposits have passed
clinical trials yet. In December 2022, gadolinium-based contrast agent ADx-001 entered
Phase 1 of clinical trials [223], which is to be completed in 2024. ADx-001 is an intravenously
delivered liposome-based composition containing DSPE phospholipid-bound Gd-DOTA
chelate and a fibril-binding conjugate of DSPE, PEG3500, and a styrylpyrimidine moiety
(Figure 31) [220,224].
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4. Conclusions

The MRI technique with amyloid-binding molecular probes presents a promising
avenue for the early detection and monitoring of AD and some other amyloidoses. MRI is
a widely available and clinically established method which has a high spatial resolution
and does not involve the use of radioactive compounds. Over the past decade, several
promising MRI probes that exhibit high affinity and specificity for amyloid deposits in
preclinical models have been discovered. However, further studies are needed in order to
optimize the design of these agents and to validate their applicability in vivo.

The major challenge is the low signal intensity of fluorinated MRI probes. This can be
enhanced by increasing the number of fluorine atoms in its molecule. Unfortunately, this
promotes off-target interactions with brain lipid components and decreases the aqueous
solubility of the probes. Simultaneous introduction of a number of MRI-active fluorinated
groups and polar fragments decreasing the hydrophobicity is possible, but leads to a
larger molecular size of the probe, which would require special transport strategies to pass
through the BBB.

Binding affinity of the probe to amyloid plaques can be provided by a variety of known
molecular scaffolds. They contain conjugated aromatic fragments and double bonds and
are able to adopt planar conformations. Recent breakthroughs in the determination of the
atomic resolution structure of fibril aggregates open new possibilities for the computational
structure-based design of diagnostic probes, including their optimization for a particular
structure of fibrils deposited in the case of a certain pathological condition.

Alternatively, metal-based targeted contrast agents that are able to bind amyloid
structures can be used to increase the imaging contrast of 1H MRI between the plaques
and the tissues. The metal ions in these agents should be conjugated with organic amyloid-
binding ligands.

Table 1 lists the most prominent MRI probe candidates considered in the present
review with the ability to bind amyloid aggregates.

Further efforts aimed at the design, synthesis, and extensive testing of potential MRI
probes are required for clinical translation.
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Table 1. Existing MRI probe candidates with the ability to bind amyloid aggregates.

Compound Names and
Literature References Target Figure 1

For 19F imaging
FSB [90] Aβ 8

TFMB-2Et, TFMB-3Et [93] Aβ 9
Shiga-Y5 [94,95] Aβ 10

Shiga-X22 [67,96] Aβ 10
Shiga-Y51 [97] Soluble Aβ aggregates 10

7d [98] Aβ 13
BSA-capped GQDs
functionalized with

hydrofluorinated glucose [99]
Aβ –

Shiga-X35 [49] Tau 26
Lansoprazole [177] Tau 26

For 1H contrast imaging, metal-based
Gd3+ chelates conjugated with
Aβ binders [200–202,210–214]

Aβ 29b

SPIONs conjugated with Aβ

binders [203,204] Aβ –

ADx-001 [220,224] Aβ 31
1 The number of the figure showing the probe’s structure in the present paper.
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