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Abstract: We recently developed a multiplex diagnostic kit, QPLEX™ Alz plus assay kit, which
captures amyloid-β1-40, galectin-3 binding protein, angiotensin-converting enzyme, and periostin si-
multaneously using microliters of peripheral blood and utilizes an optimized algorithm for screening
Alzheimer’s disease (AD) by correlating with cerebral amyloid deposition. Owing to the demand for
early AD detection, we investigate the potential of our kit for the early clinical diagnosis of AD. A
total of 1395 participants were recruited, and their blood samples were analyzed with the QPLEX™
kit. The average of QPLEX™ algorithm values in each group increased gradually in the order of the
clinical progression continuum of AD: cognitively normal (0.382 ± 0.150), subjective cognitive decline
(0.452 ± 0.130), mild cognitive impairment (0.484 ± 0.129), and AD (0.513 ± 0.136). The algorithm
values between each group showed statistically significant differences among groups divided by
Mini-Mental State Examination and Clinical Dementia Rating. The QPLEX™ algorithm values could
be used to distinguish the clinical continuum of AD or cognitive function. Because blood-based
diagnosis is more accessible, convenient, and cost- and time-effective than cerebral spinal fluid or
positron emission tomography imaging-based diagnosis, the QPLEX™ kit can potentially be used for
health checkups and the early clinical diagnosis of AD.

Keywords: Alzheimer’s disease; dementia; cognition; peripheral blood; algorithm; early diagnosis

1. Introduction

The development of Alzheimer’s disease (AD), the most common form of dementia, is
slow and persistent, with a pre-symptom stage lasting over several years to decades [1–4].
As of 2023, the prevalence of Alzheimer’s dementia among the older population (aged
65 years and older) in the United States is estimated to be approximately 6.7 million
individuals [5]. The prominent neuropathological features of AD primarily involve the
presence of senile plaques, characterized by the aggregation of amyloid-β (Aβ), and the
formation of neuronal neurofibrillary tangles (NFTs) [6]. Generally, AD symptoms begin
with mild memory impairment and progress to diverse cognitive impairments, including
memory disorder and dysfunctions in complex daily activities [7,8]. The early clinical
diagnosis of AD can be defined by means of criteria such as neuropsychological tests [9–11]:
(a) subjective cognitive decline (SCD) is a continued decline in the self-reported experience
in cognitive performance compared to the subject’s previously normal state [12]; and
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(b) mild cognitive impairment (MCI) is characterized by objective cognitive impairment,
including impairment of memory (amnestic) or judgment (non-amnestic) [13]. Both groups
are in transitional stages between normal cognition and dementia [14]. The symptoms
of SCD are among the early signs of pathological brain aging [15]. Individuals with
SCD behavior are associated with Aβ deposition [16]. MCI is also a precursor to AD
characterized by neurocognitive dysfunction [17]. Based on estimates for the year 2023, it
is projected that approximately 8–11% of the American population aged 65 years and older,
corresponding to approximately 5–7 million older individuals, may exhibit MCI [5] and
approximately 10–15% of individuals with MCI develop dementia yearly, while 1–2% of
unaffected individuals develop dementia [18,19]. These pre-dementia stages could serve
as populations for dementia prevention clinical trials [12]. The development of early and
accessible diagnostic methods can help to prevent or delay the progression of cognitive
deficits and the onset of full-blown AD dementia [20,21]; therefore, targeting the critical
precursor steps of SCD or MCI may have a strong potential for the early clinical diagnosis
of AD [22].

Increasing efforts to discover biomarkers for AD in the cerebral spinal fluid (CSF) or
blood have been ongoing for decades and have led to the discovery of potential biomarkers.
CSF analysis revealed amyloid-β1-42 (Aβ42) proteins, Aβ42/Aβ40 ratio, total tau proteins,
phosphorylated tau proteins, and neurogranin can be used as a biomarker for AD. In the
blood, Aβ42/Aβ40 ratio, amyloid precursor protein (APP)669-711/Aβ42 ratio, tau proteins,
and neurofilament light were suggested as biomarkers for AD [23]. Some candidates are
related directly to the core pathological features of AD, while others are linked closely to the
neurodegeneration of the brain. Compared to CSF-based diagnosis, peripheral blood-based
diagnosis has the advantages of reducing the patient’s burden, shortening the inspection
time, and lowering the cost of sample collection and examination as a non-invasive method.
With these advantages, blood-based diagnosis can be included in health checkups and
used for early diagnosis. Although many peripheral biomarkers for AD diagnosis have
been reported in recent decades [24–26], few have proven to be useful in commercially
developed diagnostic kits. Screening peripheral biomarkers for brain diseases has many
challenges, such as problems with the sensitivity and specificity of the assay and careful
validation work. Such biomarkers can be detectable at relatively low concentrations in
the blood because the blood–brain barrier limits the movement of molecules between the
central nervous system and the blood vessel system [27]. It is also technically difficult to
detect various biomarkers simultaneously within a single assay system [21]. Therefore, it
was suggested that multiple combinations of effective peripheral biomarkers with highly
sensitive assays might increase diagnostic success for AD [28].

In previous studies, we revealed a novel blood-based biomarker panel consisting of
galectin-3 binding protein (LGALS3BP), amyloid-β1-40 (Aβ40), angiotensin-converting
enzyme (ACE), and periostin (POSTN) [28,29]. It was demonstrated that LGALS3BP
exerts a regulatory role in Aβ production by directly interacting with amyloid precursor
protein (APP), consequently impeding APP processing by β-secretase [30]. ACE has
been implicated in the processing and metabolism of amyloid β (Aβ) [31]. Therefore,
the administration of ACE inhibitors in hypertensive patients diagnosed with AD has
been correlated with increased handgrip strength (HGS), preservation of physical capacity,
and the prevention of neuromuscular junction (NMJ) degradation [32]. In a recent study,
researchers observed a noteworthy relationship between elevated plasma POSTN levels
and the progressive decline in physical and cognitive capacities among older adults [33].
We have already produced a bioanalytical platform that can measure four biomarkers
with tens of microliters of peripheral blood, the so-called Quantamatrix’s multiplexed
diagnostics platform (QPLEX™; Quantamatrix Inc., Seoul, Republic of Korea) Alz plus
assay kit. Subsequently, we designed an optimal algorithm, the QPLEX™ algorithm, using
the results of the QPLEX™ Alz plus assay kit to predict cerebral amyloid deposition. When
the algorithm value exceeds the cutoff value, we assume that the participants may be at
risk for AD. The current study shows that a QPLEX™ Alz plus assay kit could be used
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for cerebral amyloid deposition diagnosis [21,34,35]. However, all studies were developed
and applied with the Korean Brain Aging Study for the Early diagnosis and prediction of
Alzheimer’s disease (KBASE) cohort. Therefore, applying the kit and the algorithm to other
independent cohorts is necessary to verify the performance and bias.

In this paper, our goal is to investigate the potential of the QPLEX™ Alz plus assay kit
for the early clinical diagnosis of AD in another independent cohort in South Korea. First,
we checked the relationship between the QPLEX™ algorithm values and the four clinically
separated groups: cognitively normal individuals (CN), SCD, MCI, and AD. Second, we
explored the relationship between our algorithm values and groups divided by the scores
of the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR). The
MMSE is a screening tool that provides information about global cognition, and the CDR
is a composite evaluation used mainly to determine the presence/absence of functional
impairment. Finally, we analyzed the relationship between our algorithm values and the
subgroups fractionalized by some factors known to influence the onset of AD, such as sex,
age, depression, or apolipoprotein E (ApoE) genotype. The comorbidity of depression is
frequently observed in individuals with dementia [36]. As in the case of those three factors,
ApoE has been implicated in the pathological changes in AD, including the accumulation
of Aβ and tau proteins, which subsequently contribute to neuroinflammation and neuronal
injury, ultimately leading to impaired cognitive functions associated with learning and
memory [6]. Moreover, we checked the influence of other factors, such as education years,
hypertension, diabetes, hyperlipidemia, stroke, angina, thyroid, surgical history, cancer,
family history, drinking, smoking, body mass index (BMI), and anxiety. However, at least
in our data, there were no significant differences between clinically separated groups
(Supplementary Table S1), so we did not include them in the in-depth analysis.

2. Results
2.1. Characteristics of the Participants

This study included 1395 participants (aged 41–92 years) classified into four groups
divided by the clinical continuum of AD: 71 CN, 275 SCD, 857 MCI, and 192 AD. The
demographic details are shown in Table 1. There were significant differences among the
clinically separated groups in terms of age, MMSE score, and CDR score. Moreover, there
were significant differences between groups in all the MMSE and CDR test sub-categories.

Table 1. Demographic data of the participants (N = 1395).

CN SCD MCI AD

Number 71 (5%) 275 (20%) 857 (61%) 192 (14%)
Age 61.49 ± 9.44 69.79 ± 7.80 a 72.86 ± 8.15 a 70.26 ± 9.44 a

Sex (M/F) 24/47 81/194 297/560 78/114
ApoE genotype (ε4 +/−) 8/63 71/204 314/543 92/100
MMSE total 27.93 ± 2.24 27.92 ± 1.91 24.31 ± 4.06 a 19.33 ± 4.73 a

Orientation 9.85 ± 0.36 9.84 ± 0.43 8.59 ± 1.69 a 5.94 ± 2.07 a

Immediate recall 2.96 ± 0.20 2.96 ± 0.22 2.90 ± 0.37 2.81 ± 0.49 a

Attention and
Calculation

4.21 ± 1.12 4.17 ± 1.03 3.32 ± 1.51 a 2.36 ± 1.75 a

Memory recall 2.37 ± 0.76 2.27 ± 0.96 1.35 ± 1.11 a 0.66 ± 0.99 a

Language 7.59 ± 0.77 7.74 ± 0.56 7.32 ± 1.01 a 6.92 ± 1.34 a

Copying 0.94 ± 0.23 0.94 ± 0.24 0.81 ± 0.39 a 0.65 ± 0.48 a

CDR score 0.18 ± 0.24 0.46 ± 0.14 a 0.50 ± 0.16 a 0.94 ± 0.49 a

CDR SB 0.21 ± 0.30 0.67 ± 0.48 a 1.63 ± 1.35 a 5.65 ± 2.87 a

Memory 0.18 ± 0.24 0.46 ± 0.15 a 0.60 ± 0.28 a 1.24 ± 0.57 a

Orientation 0.00 ± 0.00 0.05 ± 0.18 0.32 ± 0.36 a 1.07 ± 0.55 a

Judgment and
Problem-solving

0.01 ± 0.06 0.07 ± 0.18 0.28 ± 0.33 a 0.95 ± 0.53 a
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Table 1. Cont.

CN SCD MCI AD

Community Affairs 0.00 ± 0.00 0.03 ± 0.12 0.19 ± 0.32 a 0.97 ± 0.61 a

Home and Hobbies 0.02 ± 0.10 0.06 ± 0.17 0.20 ± 0.32 a 0.95 ± 0.61 a

Personal care 0.00 ± 0.00 0.01 ± 0.05 0.04 ± 0.23 0.47 ± 0.68 a

Data represent mean ± standard deviation; a, p < 0.05 compared with the CN group, one-way ANOVA with
Student–Newman–Keuls post hoc comparison; CN, cognitively normal; SCD, subjective cognitive decline; MCI,
mild cognitive impairment; AD, Alzheimer’s disease; ApoE, Apolipoprotein E; MMSE, Mini-Mental State Exami-
nation; CDR, Clinical Dementia Rating; CDR SB, Clinical Dementia Rating Sum of Boxes.

2.2. Demographic Characteristics of the Two Groups Divided by the QPLEX™ Algorithm

In Table 2, QM Alz-N indicates the negative group below the cutoff value and QM
Alz-P indicates the positive group equal to or higher than the cutoff value, as classified
by the QPLEX™ algorithm. Previous results have shown that a score equal to or higher
than the cutoff value indicates a high possibility of cerebral amyloid deposition. Significant
differences were demonstrated between QM Alz-N and QM Alz-P in age and CDR (CDR
SB, memory, orientation, judgment and problem-solving, community affairs, home and
hobbies, and personal care). Except for immediate recall and copying, the scores of other
MMSE items (orientation, attention and calculation, memory recall, and language) in QM
Alz-N were significantly higher than those in QM Alz-P.

Table 2. Demographic characteristics of the two groups divided by the QPLEX™ algorithm.

QM Alz-N QM Alz-P p-Value

Number 595 800
Age 70.71 ± 9.04 71.76 ± 8.49 p = 0.0283
Sex (M/F) 212/383 268/532
ApoE genotype (ε4 +/−) 184/411 301/499
MMSE total 25.15 ± 4.28 24.05 ± 4.70 p < 0.0001

Orientation 8.80 ± 1.75 8.34 ± 2.03 p < 0.0001
Immediate recall 2.92 ± 0.34 2.90 ± 0.38 N.S.
Attention and
Calculation

3.53 ± 1.50 3.31 ± 1.58 p = 0.0068

Memory recall 1.62 ± 1.13 1.39 ± 1.18 p = 0.0002
Language 7.43 ± 0.94 7.31 ± 1.07 p = 0.0289
Copying 0.84 ± 0.36 0.81 ± 0.40 N.S.

CDR score 0.50 ± 0.24 0.57 ± 0.32 p < 0.0001
CDR SB 1.60 ± 1.82 2.16 ± 2.38 p < 0.0001
Memory 0.58 ± 0.37 0.68 ± 0.43 p < 0.0001
Orientation 0.29 ± 0.43 0.40 ± 0.49 p < 0.0001
Judgment and
Problem-solving

0.25 ± 0.38 0.36 ± 0.46 p < 0.0001

Community Affairs 0.20 ± 0.38 0.30 ± 0.49 p < 0.0001
Home and Hobbies 0.21 ± 0.37 0.31 ± 0.49 p < 0.0001
Personal care 0.06 ± 0.27 0.11 ± 0.39 p = 0.0059

Data represent mean ± standard deviation; QM Alz-N, the negative group that has below-cutoff values in the
QPLEX™ algorithm, resulting from the QPLEX™ kit; QM Alz-P, the positive group that has values equal to or
over the cutoff values in the QPLEX™ algorithm, resulting from the QPLEX™ kit; N.S., not significant; ApoE,
Apolipoprotein E; MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating; CDR SB, Clinical
Dementia Rating Sum of Boxes.

2.3. Difference in the QPLEX™ Algorithm Values among Clinically Separated, MMSE-Separated,
or CDR-Separated Groups

The average of QPLEX™ algorithm values in each group increased in the order
of the clinical progression continuum of AD: CN (0.382 ± 0.150), SCD (0.452 ± 0.130),
MCI (0.484 ± 0.129), and AD (0.513 ± 0.136) (Figure 1A). Moreover, the algorithm values
between each group showed statistically significant differences (p < 0.01). Further, we
compared the values of the QPLEX™ algorithm to cognitive evaluation scores of MMSE
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or CDR (Figure 1B,C). When the groups were divided according to the clinical criteria of
each cognitive evaluation, the values of the QPLEX™ algorithm were significantly different
among groups in both MMSE and CDR. The MMSE score and algorithm values were
analyzed by defining 24 to 30 as normal, 20 to 23 as mild AD dementia, and less than 20 as
AD dementia [37]. The algorithm values showed significant differences among the MMSE-
separated groups. Furthermore, the CDR score was analyzed by defining 0 as normal, 0.5 as
questionable, 1 as mild dementia, and 2 or more as dementia [38]. Similarly, the QPLEX™
algorithm value showed a statistically significant difference among the CDR-separated
groups.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 17 
 

 

Data represent mean ± standard deviation; QM Alz-N, the negative group that has below-cutoff 
values in the QPLEX™ algorithm, resulting from the QPLEX™ kit; QM Alz-P, the positive group 
that has values equal to or over the cutoff values in the QPLEX™ algorithm, resulting from the 
QPLEX™ kit; N.S., not significant; ApoE, Apolipoprotein E; MMSE, Mini-Mental State Examination; 
CDR, Clinical Dementia Rating; CDR SB, Clinical Dementia Rating Sum of Boxes. 

2.3. Difference in the QPLEX™ Algorithm Values among Clinically Separated,  
MMSE-Separated, or CDR-Separated Groups 

The average of QPLEX™ algorithm values in each group increased in the order of the 
clinical progression continuum of AD: CN (0.382 ± 0.150), SCD (0.452 ± 0.130), MCI (0.484 
± 0.129), and AD (0.513 ± 0.136) (Figure 1A). Moreover, the algorithm values between each 
group showed statistically significant differences (p < 0.01). Further, we compared the val-
ues of the QPLEX™ algorithm to cognitive evaluation scores of MMSE or CDR (Figure 
1B,C). When the groups were divided according to the clinical criteria of each cognitive 
evaluation, the values of the QPLEX™ algorithm were significantly different among 
groups in both MMSE and CDR. The MMSE score and algorithm values were analyzed 
by defining 24 to 30 as normal, 20 to 23 as mild AD dementia, and less than 20 as AD 
dementia [37]. The algorithm values showed significant differences among the MMSE-
separated groups. Furthermore, the CDR score was analyzed by defining 0 as normal, 0.5 
as questionable, 1 as mild dementia, and 2 or more as dementia [38]. Similarly, the 
QPLEX™ algorithm value showed a statistically significant difference among the CDR-
separated groups. 

 
Figure 1. Difference of the QPLEX™ algorithm values among the clinically separated groups, 
MMSE-separated, or CDR-separated groups. The values of the QPLEX™ algorithm showed statis-
tically significant differences among the (A) four clinically separated groups (CN (n = 71), SCD (n = 
275), MCI (n = 857), and AD (n = 192)), (B) MMSE-separated groups (30–24 (n = 923), 23–20 (n = 265), 
and 19–0 (n = 207)), and (C) CDR-separated groups (CDR 0 (n = 98), CDR 0.5 (n = 1153), CDR 1 (n = 
117), and CDR 2 (n = 27)). Data represent mean ± standard deviation. *** p < 0.01 compared with the 
(A) CN group, (B) the group ranging from 24 to 30 in MMSE scores, and (C) the group scoring 0 in 
CDR, one-way ANOVA with Student–Newman–Keuls post hoc comparison, respectively; # p < 0.05 
compared with the (A) SCD group, and (C) the group scoring 0.5 in CDR, one-way ANOVA with 
Student–Newman–Keuls post hoc comparison, respectively; CN, cognitively normal; SCD, subjective 
cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental 
State Examination; CDR, Clinical Dementia Rating. 

2.4. Comparison of the QPLEX™ Algorithm Values among the Individual Subgroups 
Fractionized by Sex, Age, Depression, or ApoE Genotype 

We further analyzed whether the clinically separated groups had a significant differ-
ence in the QPLEX™ algorithm values even when the participant groups were fraction-
ized by various factors (Figure 2). When the groups were fractionized according to age, 
sex, or depression, the difference in the algorithm values between the two groups was not 
significant (Figure 2A,D,G). However, the QPLEX™ algorithm values showed significant 
differences among the clinically separated subgroups fractionized by age or sex (Figure 
2B,C,E,F). In participants without depression, significant differences between subgroups 

Figure 1. Difference of the QPLEX™ algorithm values among the clinically separated groups, MMSE-
separated, or CDR-separated groups. The values of the QPLEX™ algorithm showed statistically
significant differences among the (A) four clinically separated groups (CN (n = 71), SCD (n = 275),
MCI (n = 857), and AD (n = 192)), (B) MMSE-separated groups (30–24 (n = 923), 23–20 (n = 265), and
19–0 (n = 207)), and (C) CDR-separated groups (CDR 0 (n = 98), CDR 0.5 (n = 1153), CDR 1 (n = 117),
and CDR 2 (n = 27)). Data represent mean ± standard deviation. *** p < 0.01 compared with the
(A) CN group, (B) the group ranging from 24 to 30 in MMSE scores, and (C) the group scoring 0 in
CDR, one-way ANOVA with Student–Newman–Keuls post hoc comparison, respectively; # p < 0.05
compared with the (A) SCD group, and (C) the group scoring 0.5 in CDR, one-way ANOVA with
Student–Newman–Keuls post hoc comparison, respectively; CN, cognitively normal; SCD, subjective
cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental
State Examination; CDR, Clinical Dementia Rating.

2.4. Comparison of the QPLEX™ Algorithm Values among the Individual Subgroups Fractionized
by Sex, Age, Depression, or ApoE Genotype

We further analyzed whether the clinically separated groups had a significant dif-
ference in the QPLEX™ algorithm values even when the participant groups were frac-
tionized by various factors (Figure 2). When the groups were fractionized according to
age, sex, or depression, the difference in the algorithm values between the two groups
was not significant (Figure 2A,D,G). However, the QPLEX™ algorithm values showed
significant differences among the clinically separated subgroups fractionized by age or
sex (Figure 2B,C,E,F). In participants without depression, significant differences between
subgroups were maintained (Figure 2H). Conversely, in participants with depression, only
CN and AD were significantly distinguished, while SCD and MCI were not distinguished
(Figure 2I). When the participant groups were fractionated according to ApoE genotyping,
the algorithm values of the ApoE ε4-negative group were significantly lower than those
of the ApoE ε4-positive group (Figure 2J). In the ApoE ε4-negative group, there was a
significant difference in algorithm values among the four subgroups (Figure 2K). However,
in the ApoE ε4-positive group, there was no significant difference between the CN sub-
group and the other subgroups (Figure 2L). There were only eight CN participants in the
ApoE ε4-positive group, which was not a large enough sample size to analyze the statistical
significance. However, the algorithm values of the AD subgroup were significantly higher
than those of the SCD subgroup in the ApoE ε4-positive group.
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Figure 2. Difference of the QPLEX™ algorithm values within the subdivided groups by various
factors. (A) Comparison between the groups under 65 and over 65. (B,C) Comparison among
the clinically separated subgroups by age. (D) Comparison between the male and female groups.
(E,F) Comparison among the clinically separated subgroups by sex. (G) Comparison between the
group without depression and the group with depression. (H,I) Comparison among the clinically
separated subgroups by depression. (J) Comparison between ApoE ε4-negative (ε4 (−)) and ApoE
ε4-positive (ε4 (+)) group. (K,L) Comparison among the clinically separated subgroups by ApoE
genotype. Data represent mean ± standard deviation; N.S., no significance; ‡ p < 0.01 compared
with the ε4 (−) group, an independent t-test; *** p < 0.05 compared with the CN group, one-way
ANOVA with Student–Newman–Keuls post hoc comparison; # p < 0.05 compared with the SCD
group, one-way ANOVA with Student–Newman–Keuls post hoc comparison; CN, cognitively normal;
SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; GDS,
Geriatric Depression Scale; ApoE, Apolipoprotein E.
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2.5. ANCOVA Results to Adjust for Covariates, such as Age, Sex, Depression, and ApoE Genotype

The distribution of age, sex, depression, and ApoE genotype differed for each clinical
group. When the analysis of covariance (ANCOVA) was performed to exclude the effects
of these covariates, significant differences were shown between clinical groups regardless
of age, sex, or geriatric depression scale (GDS) score (Figure 3A–C). In contrast, when the
ApoE genotype was set as a covariate, there was no statistical significance between MCI
and AD (Figure 3D). When age, sex, depression, and ApoE genotype were set as covariates
simultaneously, there were significant differences between all clinical groups (Figure 3E).
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3. Discussion

The QPLEX™ Alz plus assay kit adopts a bead-based 3D suspension array system
to enhance reactivity and improve sensitivity. As a result, the kit can analyze rare or
volume-limited samples, and only 20 µL undiluted human plasma was used per assay in
this study. Moreover, the kit is a well-implemented multi-platform capable of measuring
four peripheral biomarkers at once using a limited sample and combining them into
an algorithm. In previous studies, we identified that these four biomarkers are related
to AD [28,29]. Aβ40 is the most representative biomarker of AD. ACE is known as an
endopeptidase related to blood pressure control [39,40], but it also acts as an inhibitor of
Aβ aggregation [41–43]. ACE level and activity were lower in AD patients than in CN
individuals [44]. POSTN is related to inflammatory diseases [45,46], and can be found in
the cerebral cortex of AD patients [47]. It may be that inflammation is activated and POSTN
levels are elevated during AD pathogenesis. LGALS3BP is a receptor for galectin-3, and
the binding of LGALS3BP to its ligand inhibits neutrophil activation [48,49].

This study was performed on another independent cohort, including many more
participants (n = 1395) compared with the previous studies (n = 300) [21,34]. The target for
health checkups are individuals with CN, SCD, or MCI who may potentially develop AD
dementia. We included more subjects (n = 1103) with CN, SCD, or MCI than those (n = 236)
in the previous studies.

In this paper, we demonstrated that the QPLEX™ Alz plus assay kit could be a useful
tool for the early clinical diagnosis of AD. The QPLEX™ algorithm was developed to
determine the presence of cerebral amyloid deposition; however, we hypothesized that it
could also be used to differentiate between CN and AD based on the fact that, statistically,
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CN has less amyloid deposition compared to AD. The results suggest that the kit can indeed
distinguish the groups according to the clinical progression continuum of AD: CN, SCD,
MCI, and AD (Figure 1A). AD neuropathological changes initially target specific brain
regions associated with memory, language, and cognitive functions. Consequently, the
prodromal symptoms primarily present as impairments in memory, language, and cognitive
abilities [5]. Further, there was a significant difference in algorithm values between groups
correlating with the score ranges of the MMSE or CDR test (Figure 1B,C) related to memory,
language, and cognitive abilities. This implies that the kit can differentiate among groups
based on the severity of dementia.

For early diagnosis to be meaningful, it must also be valid for people under the
age of 65 years. The correlation between algorithm values and clinical progress was
present in patients above 65 years and below 65 years (Figure 2B,C). There were also
significant algorithmic value differences among clinical progression in both males and
females without bias (Figure 2E,F). This means that the kit can be used regardless of the
age and sex of the patient. Notably, a correlation between algorithm values and clinical
progression was observed in the absence of depression, but the presence of depression
appears to impact the diagnostic accuracy of the QPLEX™ kit. With depression, only
CN showed a significant difference with AD (Figure 2I). Although the specific subgroup
differences may vary depending on the presence of depression, the QPLEX™ algorithm
value proves to be highly valuable in differentiating between CN and AD, regardless of the
presence or absence of depression. Further research on our kit is necessary to incorporate
depression and effectively distinguish various clinical symptoms. Conversely, the presence
or absence of the ApoE gene shows a significant difference in the QPLEX™ algorithm
value (Figure 2J), because people with the ApoE gene are more likely to develop MCI
or AD [50,51]. Additional research on the QPLEX™ kit will be necessary to differentiate
various clinical symptoms while incorporating ApoE results in the future.

We also performed ANCOVA to adjust for covariates, such as age, sex, depression,
and ApoE genotype (Figure 3). Although the distribution of age, sex, and depression
differed between cognitive states, the ANCOVA results adjusted for these covariates showed
statistically significant differences among all clinical groups (Figure 3A–C). These also
indicate that the QPLEX™ kit can distinguish the cognitive states regardless of age, sex,
and depression. In ANCOVA with ApoE genotype set as a covariate, significant differences
were present among all groups except between the MCI and AD groups (Figure 3D). This
lack of significance between MCI and AD can be attributed to the fact that high ApoE
positivity was considered, but differences in the other factors were not adjusted for. When
age, sex, depression, and ApoE genotype were all set as covariates, the QPLEX™ algorithm
values showed significant differences among all groups (Figure 3E). The ANCOVA results
confirm that the QPLEX™ algorithm values are related to cognitive states.

One intended application of the kit is for use in routine screening for AD among the
general population. Our kit has four main advantages that make it highly suitable for this
purpose: Firstly, it detects multiple biomarkers, which has been shown to increase the
accuracy of diagnosing AD [28], predicting the conversion from MCI to AD [52,53], identi-
fying MCI patients susceptible to AD [54], and predicting cerebral Aβ deposition [24,26,28].
Secondly, it detects these biomarkers in blood samples, which are easier to acquire and more
cost- and time-effective than detecting biomarkers in CSF [25,55–59]. Thirdly, it requires
only a small sample volume of 20 µL undiluted plasma per analysis. Fourthly, the kit
utilizes highly stable magnetic beads that are amenable to automation [21].

Additionally, as in previous studies, participants were analyzed by dividing them into
negative and positive, based on the algorithm cutoff value (Table 2). The t-test results show
a statistically significant difference between QM Alz-N and QM Alz-P in all items of MMSE
and CDR except for immediate recall and copying of MMSE. However, the magnitude of
the difference seems small. This can be explained by the characteristics of the PREMIER
cohort, and we used the CDR score as an example. The purpose of the consortium is
early diagnosis, especially focusing on changes in blood biomarkers, genetic data, and
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pathological data during the progression from MCI to AD with a longitudinal study; hence,
more than half of the recruited participants had MCI (Table 1). The proportion of SCD
and MCI participants exceeded 80% of the total cohort, with 93% of participants in these
categories having a CDR score of 0.5. As a result, the CDR scores converged to 0.5 for
both QM Alz-N and QM Alz-P. In the KBASE cohort, CDR scores differed according to the
clinical state, but there was no difference according to amyloid deposition [21]. When the
KBASE cohort was classified by PET results, there seemed to be a difference in CDR scores
between the two groups, but this is a result of the difference in the CN/MCI/dementia
ratio [34].

The study also had some limitations. First, proteomics screening and statistical analysis
show that blood biomarkers LGALS3BP, ACE, and POSTN effectively screen for cerebral
amyloid depositions and clinically diagnose Alzheimer’s disease, but the theoretical basis
is still lacking. Additional research will be needed to supplement these theoretical grounds.
Second, a longitudinal study will be needed to observe the change in our assay depending
on the disease progression. Third, owing to limitations in accessibility, the study was
conducted only for the Korean cohort. Analysis of cohorts of different regions and races
is needed to confirm the possibility of universal applicability. Fourth, various types of
dementia or MCI need to be compared using our assay to investigate the possibility of
distinguishing these from one another. Fifth, there were only eight participants in the ApoE
ε4-positive CN group, which was an insufficient sample size for statistical significance
analysis. ApoE positivity is distributed with a lower probability in the CN group, and the
recruitment rate for the CN group was low due to the characteristics of the cohort, resulting
in a shortage of participants in the ApoE ε4-positive CN group. Sixth, only cognition tests,
such as MMSE and CDR, were utilized in this study. However, there is a need for additional
validation of the relationship between the QPLEX™ algorithm and other more sensitive
and specific tests, such as the Montreal Cognitive Assessment (MoCA). Seventh, we only
conducted the prediction of cerebral amyloid deposition using the QPLEX™ algorithm.
However, since tauopathy is highly relevant in the pathophysiology and progression of
AD, future research and validation will also be necessary using tau PET.

In conclusion, the QPLEX™ Alz plus assay kit, a multiplex system to analyze four
blood biomarkers consisting of LGALS3BP, Aβ40, ACE, and POSTN simultaneously,
showed potential as a screening tool for AD. In particular, our kit could be a useful
detection tool for the early clinical diagnosis of AD, i.e., for SCD or MCI. Our kit could be a
helpful diagnostic tool for cognitive impairments at health checkups because the kit can
measure multiple blood biomarkers using only tens of microliters of blood.

4. Materials and Methods
4.1. Participants

In total, 1633 participants were included from 14 referral hospitals in the Republic of
Korea. Most of the participants were recruited from the Samsung Medical Center (n = 579),
the Soonchunhyang University Bucheon Hospital (n = 313), and the Kangwon National Uni-
versity Hospital (n = 265). The rest (n = 476) were from 11 hospitals across Korea, including
the Korea University Guro Hospital (n = 56). These participants were recruited from a na-
tionally funded, nationwide multicenter study named Precision medicine platform for mild
cognitive impairment, based on Multi-omics, Imaging, Evidence-based R&BD (PREMIER)
consortium (conducted between May 2019 and December 2022) in South Korea [60]. The
aim of this consortium is to establish a platform for the development of the early diagnosis
and precision medicine-based treatment of dementia by enrolling participants with various
cognitive states, developing blood-based biomarkers, generating genetic data, and devel-
oping imaging-data- and clinical-data-based algorithms as a diagnostic or predictive tool.
According to the purpose of the consortium, the cohort recruited mainly MCI participants
at the pre-stage of dementia.
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4.2. Clinical Diagnosis

An experienced neurologist diagnosed participants with SCD, MCI, or AD dementia
according to relevant diagnostic criteria [61]. Based on the recommendation of Molinuevo
et al. [62], the criteria for SCD are as follows: (1) self-experienced persistent decline in
cognitive performance compared to previously normal state, (2) normal performance on all
neuropsychological tests, and (3) cannot be explained by other psychiatric or neurologic
diseases. Based on Petersen’s criteria [63], the criteria for MCI are as follows: (1) cognitive
complaint, preferably corroborated by an informant; (2) objective cognitive impairment for
age and educational level; (3) relatively preserved general cognition; (4) intact activities
of daily living; and (5) not demented. The criteria for AD dementia are based on the
proposal by the National Institute on Aging—Alzheimer’s Association (NIA–AA) Research
Framework [64]. AD patients exhibited CDR scores ranging from 0.5 to 3, and their MMSE
scores were 10 or higher, indicating their suitability for Seoul neuropsychological screening
battery-dementia version (SNSB-D) testing [65].

4.3. Cognition Tests

All participants underwent MMSE and CDR (Table 1). The MMSE consists of tests
for orientation, immediate recall, attention and calculation, memory recall, language, and
copying. The CDR consists of tests for memory, orientation, judgment and problem-
solving, community affairs, home and hobbies, and personal care. The details and protocols
of neuropsychological assessment are described in a previous report [66]. The diverse
interpretation of the MMSE scores and their relationship with the severity of dementia were
depicted as several steps [3,67–69]. Using one of the ranging methods of MMSE, we split
the participants into three groups: normal, with a score range from 24 to 30; mild dementia,
with a score range from 20 to 23; and moderate to severe dementia, with a score range below
19 [37]. The CDR scale is a global clinical staging method for AD [70]. Using a simplified
description of the AD stages according to the CDR score, we also split CDR groups as
follows: 0 = no dementia or normal; 0.5 = questionable; 1 = mild; and 2 to 3 = moderate to
severe [38].

4.4. Short Geriatric Depression Scale—Korean Version (SGDS-K)

The SGDS-K, which stands for the Korean version of the Elderly Depression Scale [71],
was derived from the Geriatric Depression Scale (GDS) [72]. It comprises 15 yes/no ques-
tions, resulting in a total score of 15 points. The SGDS-K evaluates symptoms of depression
experienced during the previous week [73,74]. Using one of the ranging methods of GDS,
we split the participants into two groups: normal, with a score range from 0 to 4, and
depression, with a score range of 5 or higher [75,76].

4.5. Blood Sampling and Storage

Whole-blood samples were collected in K2 EDTA tubes (BD Vacutainer Systems,
Plymouth, UK). The blood sample tubes were centrifuged at 700× g for 5 min at room
temperature, and plasma supernatants were stored at −80 ◦C [21,34].

4.6. Exclusion Criteria of the Participants

Figure 4 shows the criteria and number for the inclusion and exclusion of participants.
A total of 1633 participants were recruited. Among them, those without blood samples
(n = 10), ApoE genotype (n = 19), MMSE (n = 57), CDR (n = 70) tests missing, or with other
forms of disease (N = 82) were excluded from the analysis. Finally, QPLEX™ assay and
data analysis were performed on 1395 participants.
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Figure 4. Flowchart for participant selection. CN, cognitively normal; SCD, subjective cognitive
decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; bvFTD, behavioral variant
frontotemporal dementia; FTD-MND, frontotemporal dementia with motor neuron disease; CAA,
cerebral amyloid angiopathy; lvPPA, logopenic variant primary progressive aphasia; nfvPPA, nonflu-
ent/agrammatic variant primary progressive aphasia; svPPA, semantic variant primary progressive
aphasia; ApoE, apolipoprotein E; MMSE, Mini-Mental State Examination; CDR, clinical dementing
rating.

4.7. QPLEX™ Alz Plus Assay

QPLEX™ kit is a bead-based 3D suspension array system for multiplex analysis
in a single well [77,78]. The micro-sized beads, referred to as microdisks, are graphically
encoded using photolithography. By reacting multiple microdisks pre-coupled with specific
markers according to their specific codes, and analyzing the fluorescence signal for each
code, multiple markers can be analyzed simultaneously in one well. Briefly, 35 µL diluted
human plasma samples and 35 µL biotin-conjugated detection antibodies were incubated
with microdisks in a 96-well plate for 90 min at room temperature with shaking at 1000 rpm.
The reacted microdisks were washed with 0.1% BSA buffer and incubated with 50 µL of
2 µL/mL R-phycoerythrin-conjugated streptavidin for 15 min at room temperature with
shaking at 1000 rpm. After three washes, the microdisks were re-suspended in 100 µL of
0.1% BSA buffer and analyzed with Quantamatrix’s multiplex assay platform (QMAP™).

The QPLEX™ algorithm was developed to diagnose cerebral amyloid deposition.
This algorithm was developed through logistic regression with the quantitative values of
LGALS3BP, Aβ40, ACE, and POSTN obtained from the QPLEX™ Alz plus assay kit as the
independent variables and the results of PET imaging performed at the Seoul National
University Hospital as the dependent variables [21,34]. Subsequently, the cutoff value,
sensitivity, and specificity were obtained through receiver operating characteristic (ROC)
curve analysis. The equation of the QPLEX™ algorithm was as follows:

Pi =
E

1 + E

E = exp(a1 × LGALS3BP + a2 × Aβ40 + a3 × ACE + a4 × POSTN + C)

(Pi, predicted probabilities; an, coefficient values for each biomarker, with a1 = −0.00066,
a2 = 0.008, a3 = −0.00662, and a4 = 0.13224; and C = 1.24777, which is a constant. The quan-
titative values of each biomarker obtained with the QPLEX™ Alz plus kit were multiplied
by the coefficient values, and Pi was calculated).
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The cutoff value to maximize sensitivity and specificity for screening cerebral amyloid
deposition determined by ROC curve analysis was 0.461.

4.8. Data Analysis

All statistical analyses were performed using Medcalc 20.115 (Ostend, Belgium), and
the figures were generated using GraphPad Prism 5 (San Diego, CA, USA). The comparison
between groups was performed with an independent t-test, analysis of variance (ANOVA)
with a Student–Newman–Keuls post hoc test, or ANCOVA. p < 0.05 was considered statisti-
cally significant. In ANCOVA, the p-value was Bonferroni-corrected. Figure 5 illustrates
the overall data analysis process, showing the criteria used to create subgroups and the
number of participants in each subgroup.
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