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Abstract: Calcific aortic valve stenosis (CAVS) is among the most common causes of cardiovascular
mortality in an aging population worldwide. The pathomechanisms of CAVS are such a complex and
multifactorial process that researchers are still making progress to understand its physiopathology
as well as the complex players involved in CAVS pathogenesis. Currently, there is no successful
and effective treatment to prevent or slow down the disease. Surgical and transcatheter valve
replacement represents the only option available for treating CAVS. Insufficient oxygen availability
(hypoxia) has a critical role in the pathogenesis of almost all CVDs. This process is orchestrated by
the hallmark transcription factor, hypoxia-inducible factor 1 alpha subunit (HIF-1α), which plays a
pivotal role in regulating various target hypoxic genes and metabolic adaptations. Recent studies
have shown a great deal of interest in understanding the contribution of HIF-1α in the pathogenesis
of CAVS. However, it is deeply intertwined with other major contributors, including sustained
inflammation and mitochondrial impairments, which are attributed primarily to CAVS. The present
review aims to cover the latest understanding of the complex interplay effect of hypoxia signaling
pathways, mitochondrial dysfunction, and inflammation in CAVS. We propose further hypotheses
and interconnections on the complexity of these impacts in a perspective of better understanding
the pathophysiology. These interplays will be examined considering recent studies that shall help us
better dissect the molecular mechanism to enable the design and development of potential future
therapeutic approaches that can prevent or slow down CAVS processes.

Keywords: calcific aortic valve stenosis; hypoxia; HIF-1α; mitochondria; oxidative stress; inflamma-
tion; therapeutic target

1. Introduction

Heart valve diseases are a major contributor to cardiovascular morbidity and mortality
worldwide. They affect more than 13% of the population aged over 75 years old and occur
when any type of the four heart valves (tricuspid, pulmonic, mitral, and aortic valves) is
damaged. Calcific aortic valve disease (CAVD) is defined as a slowly progressing condition
that ranges from mild valve aortic sclerosis to severe calcifying aortic valve stenosis. This
progression manifests in approximately 2% of individuals over 65 years old annually [1–3].

Calcific aortic valve stenosis (CAVS) remains one of the most rapidly increasing and
common forms of heart valve disorders, prevailing in over 3.4% of the aged population,
making it a major predominant and critical public health care and economic burden [4],
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and it entails 80% of the risk to develop heart failure (HF) or mortality by approximately
25% annually [5].

Despite the growing amount of evidence to better understand the factors underlying
CAVS progression, today it remains unclear in terms of molecular and cellular mechanisms.
Currently, no drug strategies exist to prevent or treat CAVS once symptoms occur and the
only clinical option available is a surgical or transcatheter valve replacement. Since CAVS
incidence increases with age, it becomes critically urgent to identify and emphasize the
pathophysiological causes to ameliorate the current therapy. CAVS is a multifactorial and
active process, with aging being the principal risk factor. Other relevant factors in CAVS
have been reported including gender “male”, obesity, smoking, hypertension, increased
triglyceride levels (TG), and high oxidative stress [6]. The aortic valve (AV) is largely an
avascular tissue, where oxygen (O2) and nutrients within the AV occur via passive diffusion.
With aging and the early phases of CAVD, the significant O2 demand of the inflammatory
cells with the further thickening process of AV reduces and impedes O2 levels progressively,
which turns the AV region hypoxic. Hypoxia-inducible factor 1 alpha subunit α (HIF-1α) is
the primary sensor of hypoxia, and it mediates numerous responses and acts as a central
modulator of several target genes in the human organism [7,8]. Studies have identified
the expression of HIF-1α, a pro-angiogenic transcription factor, in the calcific leaflet nod-
ule of aortic stenosis (AS) [9,10]. However, the further impact of HIF-1α at the onset of
AV disorders is still to be explored. Hypoxia is reported as a promoter of angiogenesis.
Indeed, it has been suggested that the involvement of HIF-1α induces the expression of
vascular endothelial growth factor (VEGF), thereby stimulating neo-angiogenesis, a feature
of valvular disorders, and increasing metabolic adaptation, affecting in return the valve
phenotype [10,11]. Importantly, numerous pieces of evidence have documented the appear-
ance of neovascularization throughout the progression of the calcification process [12,13].
The presence of neovessels exhibits an increased expression of vascular and intercellu-
lar adhesion molecules that have also been linked to the inflammatory response, bone
development, and calcification progression [14,15].

Today, inflammation is still considered the main active player in the phases that
precede calcification. It is deeply entwined among other major contributors such as mi-
tochondrial dysfunctions, which have recently been identified as the main contributor to
CAVS; however, cause–effect relationships are difficult to address.

This review aims to cover the most recent understanding of the impact of the hypoxia
signaling pathways, mitochondrial dysfunction, and inflammation on a key condition of
cardiovascular disease, which is “calcific aortic valve stenosis”. We will discuss the new
molecular and cellular mechanisms involved in CAVS and will propose further critical
hypotheses and interconnections on the complexity of these impacts with a perspective
of better understanding the pathophysiology that shall help us to design further future
potential therapeutic strategies in CAVS processes and research methodology. The fol-
lowing keywords were used to search the PubMed database: “inflammation and CAVS”,
“mitochondria and CAVS”, and “Hypoxia signaling”. We also reviewed articles on the
concepts of “inflammation and mitochondria” and “inflammation and hypoxia signaling”.
Most recent original articles and review articles published and reported in the last four
years were included.

2. Overview of the Calcific Aortic Valve Disease
Epidemiology and Histological Structure

Calcific aortic valve disease (CAVD) is a progressive heart valve disorder defined by
an active process of remodeling with an uncontrolled formation of calcium nodules, valve
mineralization, which leads to the consequent narrowing of the valve, to the restriction of
the valvular area, and to serious problems in the correct blood flow.

CAVD is an important clinical problem because it is the most common heart valve dis-
ease; its frequency increases with age, and men are more affected than women. According
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to epidemiological studies, 2.8% of adults over 75 years old have some degree of CAVS,
and one adult over 65 out of four presented valvular sclerosis [16].

A very recent study focused on the epidemiology of CAVD during the past 30 years by
taking full advantage of estimates from the Global Burden of Diseases, Injuries, and Risk
Factors 2019 [17,18]. The results obtained confirmed that the global number of incident cases
of CAVD has increased continuously over the past 30 years and the prevalence is higher in
men than in women. CAVD mortality is associated with three primary causes: high systolic
blood pressure, a diet high in sodium, lead exposure, and age are all fundamental factors
in CAVD incidence [19].

To note, the most common congenital heart disease is bicuspid AV, affecting 0.5%
to 1.4% of the population [20,21]. Most of these patients develop stenosis and valvular
calcification early in their lifetime with a faster progression [22]; an event that might be
linked to genetic, mechanical, and biological factors [23]. Given the previous data, the
clinical approaches against CAVD have received enhanced interest over the last decade,
but, right now, the gold standard intervention for CAVD patients is valve replacement
or the percutaneous implantation of valve prostheses, such as mechanical prostheses and
bioprostheses [24]. This approach is common, life-saving, and certainly improves the
patient’s quality of life but might have some side effects, such as the necessity for long-
term anticoagulation therapy or failure of bioprostheses due to tissue degeneration and
mineralization [25]. The one-way blood flow from the left ventricle to the aorta goes
through the aortic heart valve without regurgitation. The AV possesses three leaflets with
a trilaminar conformation covered by endothelium: a layer named fibrosa, on the aorta
side, a central layer named spongiosa, and a layer named ventricularis, on the left ventricle
side [26] (Figure 1). Each layer is important for the mechanical feature of the AV and has a
different tissue composition. Fibrosa is rich in collagen fibers indispensable for strength
and support, the most present cell type is valvular interstitial cells (VICs). The spongiosa
layer consists of glycosaminoglycans and is responsible for absorbing shear stress; it also
presents smooth muscle cells (SMC) with contractile function. Ventricularis is made of
collagen and elastin fibers, which provide the dynamism of the valve. The valve leaflets
are attached to the annulus, a fibrous ring, fundamental for their connection to the aortic
root and the dissipation of mechanical energy [27].

The main cellular components localized in the AV are VICs, present in all the layers,
valvular endothelial cells (VECs) are on the surface of the leaflets, and there are a few SMCs,
but only in the ventricularis layer [23]. VICs control matrix remodeling, they synthesize
the extracellular matrix (ECM) and remodel collagen, maintaining normal valve structure;
VECs are involved with VICs in the maintenance of the integrity of valve tissues [14,15].

CAVD is a multistep process that starts at the early stage with aortic sclerosis, charac-
terized firstly by endothelial dysfunction, then by mechanical stress, lipid accumulation in
the tissue and their subsequent oxidation, and then by initiating an inflammatory response
with the infiltration of inflammatory cells, T cells, and macrophages [28]. A second phase is
characterized by fibrosis and accelerated calcification; in fact, the inflammation process in
stenotic valves leads VICs to differentiate myofibroblasts, which actuate matrix remodeling
through the activation of matrix metalloproteinase (MMP) enzymes [29,30].

Along with stenosis, a key feature of this pathological condition is the calcification
process, resulting from the activation of several osteogenesis pathways [31]. The increased
lipid deposition induces VICs to change their phenotype through osteogenic differen-
tiation, producing spheroid calcium phosphate particles, leading irreversibly to leaflet
stiffening [32–34].
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Figure 1. Schematic representation of a native healthy and calcific aortic valve. The healthy aortic 
valve contains 3 layers of extracellular matrix termed fibrosa that consist of collagen, on the aorta 
side, a central layer named spongiosa contains proteoglycan and glycosaminoglycans, and a layer 
named ventricularis consists of elastin fiber, on the left ventricle side. The main cells in the aortic 
valve cusp core are the endothelial and the interstitial cells (the left) Therefore, in the pathological 
case, the valve cusp becomes thick and calcified on the surface of the fibrosa, with further fragmen-
tation in the elastin fibers and the enhanced collagens (the right). 
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regulators mediating adaptation to hypoxic conditions and are modulated by an O2-sen-
sitive-expressed alpha subunit (HIF-1α) (or its analogs HIF-2α and HIF-3α). In normal 
conditions, HIF-1α is continuously synthesized and hydroxylated through HIF prolyl-4-
hydroxylases, leading to its rapid ubiquitination and proteasomal degradation (ubiquitin 
proteasome 26S), the von Hippel–Lindau (pVHL) function as a tumor suppressor binds to 
the ubiquitin ligase complex E3 targeting the HIF-1α subunit destruction in the O2 degra-
dation domain, causing its short life. In contrast, under hypoxia, HIF-1α hydroxylation is 
suppressed through the inhibition of the O2-dependent propyl-hydroxylase-1, -2, and -3 
enzyme activity (PHD1, -2, and -3), leading to the stabilization of HIF-1α in the cytosol, 
and migrates to the nucleus, where it forms a heterodimer with the beta subunits (HIF-1β, 
aryl hydrocarbon receptor nuclear translocator, ARNT) that bind to a core putative regu-
latory sequence called hypoxia response elements (HRE) with a consensus sequence (5′-

Figure 1. Schematic representation of a native healthy and calcific aortic valve. The healthy aortic
valve contains 3 layers of extracellular matrix termed fibrosa that consist of collagen, on the aorta side,
a central layer named spongiosa contains proteoglycan and glycosaminoglycans, and a layer named
ventricularis consists of elastin fiber, on the left ventricle side. The main cells in the aortic valve cusp
core are the endothelial and the interstitial cells (the left) Therefore, in the pathological case, the valve
cusp becomes thick and calcified on the surface of the fibrosa, with further fragmentation in the
elastin fibers and the enhanced collagens (the right).

3. The Complex Interplay of Hypoxia Signaling, Mitochondrial Dysfunction,
and Inflammation
3.1. Hypoxia Signaling and Molecular Regulation of HIF-1

Hypoxia plays a critical role in CVDs and is orchestrated by a hallmark heterodimer
trans-acting DNA-binding hypoxia-inducible transcription factors (HIFs), which are key
regulators mediating adaptation to hypoxic conditions and are modulated by an
O2-sensitive-expressed alpha subunit (HIF-1α) (or its analogs HIF-2α and HIF-3α). In
normal conditions, HIF-1α is continuously synthesized and hydroxylated through HIF
prolyl-4-hydroxylases, leading to its rapid ubiquitination and proteasomal degradation
(ubiquitin proteasome 26S), the von Hippel–Lindau (pVHL) function as a tumor suppressor
binds to the ubiquitin ligase complex E3 targeting the HIF-1α subunit destruction in the
O2 degradation domain, causing its short life. In contrast, under hypoxia, HIF-1α hydrox-
ylation is suppressed through the inhibition of the O2-dependent propyl-hydroxylase-1,
-2, and -3 enzyme activity (PHD1, -2, and -3), leading to the stabilization of HIF-1α in the
cytosol, and migrates to the nucleus, where it forms a heterodimer with the beta subunits
(HIF-1β, aryl hydrocarbon receptor nuclear translocator, ARNT) that bind to a core putative
regulatory sequence called hypoxia response elements (HRE) with a consensus sequence
(5′-RCGTG-3′) in the promoter or enhancer of target genes to enhance a concerted tran-
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scriptional response during a hypoxic condition [35] (Figure 2). Both α and β subunits
have basic helix-loop-helix (bHLH) motifs, a DNA-binding domain that can bind HREs to
target specific genes [8,36]. The transcription activity of the target genes requires not only
the transfer of HIF-1α to the nucleus but also the complex HIF-1 requires the recruitment
of multiple cofactors such as CREB-binding protein (CBP)/p300 and transcription inter-
mediary factor 2 steroid-receptor activator that binds to the CTAD domain, and another
cofactor that increases the HIF-1/HRE complex binding the M2 isoform of pyruvate kinase
(PKM2) [37]. The canonical sensor of hypoxia, HIF-1α, mediates a cellular response dur-
ing hypoxic conditions through the regulation of the transcription activity of enormous
target genes, termed hypoxia-inducible genes encoding proteins, as examples: the lactate
dehydrogenase-A (LDH-A) or pyruvate dehydrogenase kinase isoform 1 (PDK) [38,39];
VEGF-A [40]; erythropoietin (EPO) [41]; and inducible nitric oxide synthase (iNOS) [42],
which are needed for improving tissue O2 homeostasis, energy metabolism, and efficient
management of hypoxia-induced toxic stress, and elicit a crucial impact in various CVDs,
such as ischemic heart disease (IHD) and HF [7,43]. HIF-2α, the analog of HIF-1α, is also
termed endothelial PAS domain protein-1 (EPAS-1), and is predominantly enriched within
endothelial cells and in highly vascularized tissues [44]. These two subunits (HIF-1α and
HIF-2α) contain different spatial expressions in IHD, for example, and various effects in re-
sponse to hypoxia [45]. Despite the recent interest in studying hypoxia and HIF-1 in CVDs,
their role at the onset of CAVS remains unclear and requires deep further investigation.
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Figure 2. Schematic illustration showing Hypoxia-inducible factor-1 α (HIF-1α) protein regulation
during normoxia and hypoxia. Under the normoxic condition, HIF-1α protein is hydroxylated by
propyl-hydroxylases (PHDs) and factor-inhibiting HIF (FIH), which facilitate the binding of HIF-1α
with the von Hippel–Lindau protein (pVHL), leading to its ubiquitination, and thus proteasomal
degradation. Upon the PHD inhibition or hypoxic condition, HIF-1α translocates to the nucleus,
where it heterodimerizes with HIF-1β and binds to a core putative sequences of target genes termed
hypoxia response element (HRE) and stimulates their transcriptional activity.
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3.2. Hypoxia Signaling and Inflammation in CAVD

The heart AV is an avascular tissue able to sustain metabolic activity, nutrition, and
oxygenation through passive diffusion. Nevertheless, with age, the initiation of CAVS is
exhibited by endothelial injury triggered by shear stress, lipid deposition, and inflamma-
tion [46]. In these early stages of CAVS, the thickening of the valve process compromises the
diffusion of O2, resulting in tissue hypoxia, while the CAVS progression occurs through the
abnormal remodeling of the ECM, which is modulated by the valve interstitial cells [47,48].
Sustained stimulation of hypoxia maintains HIF-1α signaling, leading to the upregulation
of inflammation and fibrosis, but these effects are counterbalanced by sustained HIF-2α
signaling, potentially linked to mitochondrial and peroxisomal abnormalities [49]. It is
demonstrated that during hypoxia, HIF-1α and HIF-2α are activated and both can transac-
tivate VEGF expression [50–52]. HIF-1α is reported to initiate the process of angiogenesis,
while HIF-2α is required for vascular network maturation [53–55]. Nevertheless, it is not yet
established whether HIF-2α contributes to the angiogenesis maturation and regenerative
process in CAVS.

Hypoxia has been recently identified in both the aortic and mitral valves [56,57]. More-
over, diseased valvular interstitial cells in regions surrounding calcific nodules have been
found to express HIF-1α, which is a pro-angiogenic transcription factor [9,10]. Additionally,
in human aortic endothelial cells (HAVEC), the level of HIF-1α mRNA and protein expres-
sion are identified as elevated in response to disturbed flow as opposed to stable flow [58].
A study has demonstrated the significant upregulation of HIF-1α in the stenotic valves and
its colocalization with angiogenesis in areas calcified [10]. These findings suggest a further
key role of HIF-1α in influencing the valve phenotype through the induction of VEGF
expression, thereby activating neo-angiogenesis, a feature of valvular disorders, to increase
metabolic adaptation [10,59]. In contrast to the upregulation of pro-angiogenic factors,
anti-angiogenic factors have been identified as suppressed [60–62]. Furthermore, there are
five VEGF family growth factors that bind to specific tyrosine kinase receptors and play im-
portant roles in the formation of new blood vessels and lymphatic vessels [63,64]. Among
the VEGF receptors is the soluble fms-like tyrosine kinase 1 (sFlt1), an anti-angiogenic
component that sustains AV avascularity [65].

A recent study by Lewis and colleagues has shown that sFlt1 is expressed in the
native normal AV, but its expression level is significantly downregulated in patients with
CAVS [65]. The authors demonstrated for the first time the dual roles of hypoxia in stimu-
lating angiogenesis in CAVS, as the classical way by inducing VEGF-A and by inhibiting
the sFlt1 expression, which could elevate inflammation, thus contributing to CAVS pro-
gression [65]. Sphingosine 1-phosphate (SP1) is a bioactive lipid signaling mediator shown
to inhibit angiogenesis via the activation of sFlt1 expression in CAVS patients [65]. How-
ever, the link between HIFs (HIF-1α and HIF-2α) and sFlt1 has not been studied yet in
CAVS, and its mechanism of action in response to hypoxia is not clear. To our knowledge,
the relationship between sFlt1 and HIFs in response to hypoxia has been studied only
in the pathogenesis of Preeclampsia, the onset of hypertension during pregnancy [66,67].
The relationship between HIF-1 and sFlt1 needs to be studied to understand further the
molecular mechanisms behind this process in CAVS. Prior studies have shown that sFlt1
induces inflammation in VICs when it synergizes with lipopolysaccharide (LPS), which
is a major component of the outer membrane of Gram-negative bacteria [68]. LPS drives
the activation of Toll-like receptor 4 (TLR4), a key receptor of innate and adaptive im-
munity, stimulating the inflammatory (interleukin 6 and 8 (IL-6, IL-8), and intercellular
adhesion molecule-1 (ICAM-1)) and osteogenic responses (bone morphogenetic protein-2
(BMP-2) and runt-related transcription factor 2 (RUNX2) in CAVS patients [69,70]. IL-37
is a novel cytokine member of the IL-1 family and plays a potential role in suppressing
inflammatory responses, identified as downregulated in CAVS [71,72]. The lower levels of
IL-37 observed in CAVS patients have been explained by M1 macrophage infiltration in
pathological AV stenosis (AVs). IL-37 inhibits the macrophages polarization M1 (reduction
in IL-6, MCP-1, iNOS, and the surface marker of M1 (CD11c)) via the suppression of nuclear
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factor kappa B (NF-κB) and Notch homolog 1, translocation-associated (Notch1) signaling
pathways [73]. Along with that, IL-37 is reported as a potent anti-osteogenic in AVICs
from patients, through the suppression of the NF-κB and extracellular signal-regulated
kinase (ERK1/2) [72]. The anti-inflammatory response of IL-37 is associated with NF-κB,
suppressing the TLR4 ligand LPS-mediated IL-6, IL-8, monocyte chemoattractant protein-1
(MCP-1), and ICAM-1 stimulation in AVICs from patients [74], thus playing a critical role in
CAVS physiopathology. Noteworthy, IL-37 is capable of inducing other anti-inflammatory
pathways including the AMP-activated protein kinase (AMPK) and Phosphatase and tensin
homolog, which may impact NF-κB stimulation in CAVS [71]. Morciano and colleagues
have shown the correlation of both pro-inflammatory cytokine levels of IL-18 and IL-1β—
which both belong to the IL-1 family—in CAVS [46]. Furthermore, IL-1β has been found to
stimulate mTORC1, and, downstream, it enhances HIF-1α activity in several diseases [75].
The expression of the HIF-1α protein is induced by IL-1β in normoxia in multiple cell
types [76–78]. For instance, HIF-2α is one among the different signaling pathways that
are involved in M1 infiltration [79], but is yet to be studied in macrophages of AVICs.
Previous studies have shed light on better understanding the further relationship between
HIF-1, Signal Transducer and Activator of Transcription 3 (STAT3), and IL-37 in cancer
disorders [80]. This would increase further interest in a deep understanding of the crosstalk
of the IL-37 and HIF-1 in the pathogenesis of CAVS. Evidence has confirmed the upregula-
tion of HIF-1α and its analog HIF-2α in valve stenosis. Interestingly, HIF-2α co-localizes
with NF-κB in regions of calcified lesions of AS of patients [52]. These findings have been
correlated positively with the enhanced levels of VEGF and the formation of neovessels [52].
On the other hand, it is well known that the expression of VEGF can also be increased by
inflammatory cytokines [81]. The findings indicate further convergence between hypoxia
and inflammatory mechanisms involved in the remodeling of the valve ECM, which con-
tributes to VIC stimulation and calcification. It has been shown that the HIF-1α activates
the expression of various proteins involved in ECM remodeling including the Neutrophil
Gelatinase-Associated Lipocalin [82,83] and the MMP2 and MMP9, suggesting the key
impact of hypoxia in ECM remodeling.

In light of the previous findings, a novel immune non-hypoxic process entailing
the combination between LPS and interferon-γ (IFN-γ) has been explored to stimulate
calcification in AVICs from patients, through the STAT1/HIF-1α signaling pathway [84].
Interestingly, this response to HIF-1α stimulation mediated by LPS is sex-dependent, as
it is more robust in VICs from male donors compared to females [84]. The Janus kinases
(JAK)-STAT signaling pathways are hallmark regulatory routes contributing to several
cytokine responses activating mineralization and calcification of AV interstitial tissues,
including IL-6 and IFN-γ [84–86]. Notably, the study of Parra-Izquierdo and colleagues also
suggests further a relationship between JAK-STAT and HIF-1α-dependent sex differences
in the context of CAVS [84]. However, females display lower responses and tend to be more
protective compared with males due to the activation of the phosphatidylinositol 3-kinase
(PI3K)-AKT signaling survival pathways [87]. Nevertheless, more research is needed to
fully understand these relationships.

These findings propose the further potential involvement of HIF-1α in normoxia and
in the early phases of CAVS when the hypoxic event is not yet activated; however, it is not
known how LPS and/or IFN-γ could stabilize HIF-1α. Since the stabilization of HIF-1α
is regulated by prolyl-4-hydroxylases under normoxic conditions, it is therefore possible
that LPS and/or IFN-γ treatment could cause a decrease in hydroxylation, leading to
the activation of HIF-1α. Other pioneer evidence supports the upregulation of HIF-1α
in normoxic conditions—mediating the calcification process in AVICs. The ubiquitin E2
ligase C (UBE2C) is a member of the Anaphase Promoting Complex/Cyclosome (APC/C),
which has been reported to also bind pVHL [88]. UBE2C upregulates the endothelial–
mesenchymal transition (EndMT) and endothelial AV inflammation via the stimulation of
HIF-1α levels through further ubiquitination and degradation of its upstream modulator
pVHL, and this was accompanied by the reduction in microRNA-483–3p (miR-483) in
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HAECs [58]. In addition, the miR-483 mimics and the pharmacological suppressor of
HIF-1α (PX478) significantly downregulate the porcine AV calcification through UBE2C
reduction [58]. Other evidence supports the involvement of HIF-1α in valve calcification:
PX478 significantly blocked the deposition of calcium resulting from distributed flow, and
the response was more effective in male valve interstitial cells [10,11]. Other in vitro studies
have identified the increased expression levels of HIF-1 signaling pathways including
IL-6, HIF-1α, and Heme Oxygenase 1 (HMOX1) in CAVS-related ferroptosis signaling
pathways [89]. Hence, one of the causes of ferroptosis is an iron overload that is involved in
CAVS by enhancing calcium deposition and calcification in endothelial cells (HUVEC) [90].
It is identified that the endothelial cells play crucial impacts in the calcification process
through the EndMT [91]. Multiple pathways are involved in this process including the
signaling pathways involved in hypoxia and inflammation, such as the transforming
growth factor beta (TGF-β) signaling pathway [92], and the Wnt signaling pathway [93,94].

In the same regard, inflammation is also triggered by fetuin-A (alpha2-Heremans
Schmid glycoprotein); a 59 kDa glycoprotein synthesized in the liver, emerges as a potent
circulating inhibitor of the calcification process, modulates macrophage polarization, and
attenuates inflammation and fibrosis [95]. Intracellular fetuin-A suppresses calcification
stimulated by transforming growth factor-β and bone morphogenetic proteins [96,97]. In
addition, previous works have conflicting results on circulating fetuin-A as a biomarker for
CAVD. Nevertheless, a meta-analysis demonstrated significantly lower levels of fetuin-A
in AS patients compared to healthy conditions; also, fetuin-A levels have been significantly
identified as being associated with CVD risk factors including age, male gender, smoking,
low-density lipoprotein (LDL) and TG, hypertension, and diabetes [98]. Studies have
shown an inverse correlation between fetuin-A levels and the progression of calcific AV
and underlined diminished fetuin-A levels in AV sclerosis patients, the early asymptomatic
phase of CAVD, suggesting that fetuin-A is an early calcification biomarker [99,100]. These
studies suggest further involvement of fetuin-A in the initiation of AV calcification, hence
raising the concept that fetuin-A, as an inhibitor of calcification, may prevent valvular
calcifications when the calcium phosphate is disrupted, suggesting its correlation to calcium
tissue deposition [101], and its levels, is also associated with inflammation and other comor-
bidities such as chronic kidney disease and diabetes [102]. In a very recent study, Chen et al.
demonstrated the involvement of Fetuin-A in calcific osteogenic environment-induced
VICs calcification, and in parallel, its level reported the decreased inhibition of miR-101
taking place [103]. However, the role of fetuin-A in the progression of CAVD has not been
clearly investigated. Therefore, relationships of fetuin-A with tissue calcification and cardio-
vascular diseases in general are divergent, reflecting its diverse action. Notably, beyond the
role of fetuin-A as a calcification suppressor in the serum phase, it acts as a potent calcium
mineral scavenger, preventing the ectopic pathological calcification of the tissue especially
in response to hypoxic stress in renal tissue remodeling upon IH injury [95]. Recently,
fetuin-A has been identified as an evolutionary target gene of HIF-1 [104]; however, the
correlation between HIF-1 and fetuin-A is still unclear in CAVS. Further understanding
the complex interplay between HIF-1, fetuin-A, and pro-inflammatory cytokine in CAVS
patients would pave the way to better predict the presence of CAVS and may provide
further molecular targeting strategies.

3.3. Mitochondrial Impairment in CAVD

Mitochondria have key roles in eukaryotic cells, as they control several cellular mech-
anisms such as bioenergetics, signal transduction, and energy metabolism. Furthermore,
these organelles are major regulators and executioners of cell death mechanisms, in par-
ticular autophagy and apoptosis [105]. To regulate these processes, cells have to preserve
a functional mitochondrial population, a fundamental aspect allowed by the mitochon-
drial quality control system, in which mitochondrial dynamics, mitochondrial biogenesis,
and mitochondrial autophagy (named mitophagy) are the main events [106]. Fusion and
fission help to keep mitochondrial structure integrity and are necessary steps to improve
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metabolism and facilitate cooperation and communication between mitochondria [107].
At the same time, erroneous fission and fusion events may provoke the formation of a
nonfunctional mitochondria population, which can induce the production of damaged
elements (such as mitochondrial reactive oxygen species) that are harmful for the entire
mitochondria population and for the cell. Injured mitochondria can be removed by the
degradative process, mitophagy, which recognizes and sequesters the damaged organelle
into autophagy vesicles, which are then delivered to the lysosome for degradation [108].
Finally, preserving the adequate mitochondrial number of the cell may intervene in mito-
chondrial biogenesis that is responsible for generating new mitochondrial offspring [109].
Decline and/or sustained activation of these molecular mechanisms deputed to control the
mitochondrial amount and quality has been associated with several human diseases, in par-
ticular, mitochondrial diseases [110], genetic disorders [111], neurodegeneration [112,113],
cancer [114], and cardiovascular disorders [46].

For instance, immunostained calcified human AVs revealed high levels of the mito-
chondrial fission initiator protein dynamin-related protein 1 (DRP1). Inhibition of DRP1
via RNA interference promotes a reduction in the osteogenic differentiation process and in-
hibits oxidative stress [115]. A more recent study highlighted the overexpression of protein
tyrosine phosphatase 1B (PTP1B) in CAVD [116]. PTP1B is a negative regulator of the leptin
and insulin signaling pathways, which are involved in the regulation of mitochondrial
dynamics and biogenesis [117,118]. The authors demonstrate the decreased osteogenic
differentiation of interstitial valvular cells by the pharmacological inhibition of PTPB1.
This effect is accompanied by an upregulation of mitochondrial biogenesis, which has
been observed to be downregulated during the progression of valvular calcification [116].
Morciano et al. revealed the presence of aged mitochondria together with reduced PGC-1α
expression, a key mitochondrial biogenesis protein, in interstitial cells isolated from human
patients [46]. Impairment of mitochondrial biogenesis in CAVS is associated with increased
cell death and the presence of aged mitochondria, despite an increase in mitophagy and
autophagy fluxes, suggesting an insufficient turnover of mitochondria in CAVD samples.
Moreover, the authors revealed for the first time the presence of other mitochondrial im-
pairments in CAVD patients, such as calcium dysregulation, reduced respiratory capacity,
and lack of ATP production [46].

The gene expression profile of AV tissue identified several novel genes associated with
mitochondrial functions variations that are involved in the pathogenesis of CAVD, such as
an increase in reactive oxygen species (ROS) production and reduced mitochondrial mem-
brane potential, metabolic imbalance, and mitochondrial fragmentation [119]. Moreover,
the authors suggest that integrated miRNA/mRNA analyses might be used as diagnostic
biomarkers for CAVD [119]. Interestingly, they later identified matrix metalloproteinase 9
expression (MMP9), a mitochondrial-related gene, as being extremely high in AS samples,
which would be a useful biomarker for aortic stenosis [120].

Inside the cell, Calcium (Ca2+) is one of the major second messengers and regulates
a plethora of biological processes, such as metabolism, antioxidant defense, apoptosis,
muscle contraction, neurotransmitter release, and also mitochondrial functioning [121].
Therefore, it is not surprising that dysregulations of Ca2+ dynamics are involved in different
pathologies [122]. In the context of aortic calcification, evidence that connects aortic stenosis
and Ca2+ dysregulation goes back to a genome-wide association study [123], where calcified
valves reveal the upregulation of mRNA levels of RUNX2 concomitant with an increased
calcium voltage-gated channel subunit alpha 1 C (CACNA1C) gene [123], which encodes
the CaV1.2 L-type voltage-gated Ca2+ channel. Later, these data were confirmed by another
study, which demonstrated a higher Ca2+ influx in CAVD patients through the CaV1.2
channel [124].

VEGF is a target gene of HIF-1α that regulates several cellular processes including
proliferation, cell survival, differentiation, and migration [125]. Xu et al. have demon-
strated the impact of VEGF in sustaining the mitochondrial fission and fusion balance,
mitigating the mitochondrial apoptotic pathway; thereby, VEGF could play a critical role in
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repairing the AS transition from compensatory cardiac hypertrophy to HF in mouse animal
models [125].

It is important to note that patients with AS exhibit a metabolic shift from fatty
acid to glucose metabolism, which is characterized by a decreased expression of fatty
acid translocase (FAT/CD36) protein, together with a downregulation of other fatty acid
transporters, such as plasma membrane and heart-type cytosolic fatty acid binding proteins
(FABPpm and H-FABP), β-oxidation, Krebs cycle, and oxidative phosphorylation proteins.
On the contrary, the same cardiac biopsy exhibits an increased expression of glucose
transporter 1 and 4 (Glut 1, 4). This study suggests a downregulation of fatty acid oxidation
proportionally to a more severe outcome in patients with aortic stenosis [126]. Nonetheless,
whether this metabolic shift in CAVS patients results from the involvement of mitochondrial
ROS (mtROS) in instigating AV calcification or whether another mediator contributes to
this process remains unknown.

Notably, such a metabolic shift to glycolysis is well demonstrated in various CVDs
orchestrated by HIF-1α; however, its effect on the metabolism adaptation in CAVD is yet
to be explored. HIF-1α regulates multiple genes influencing mitochondrial activity and is
crucial for the metabolic shift, such as LDH-A and phosphoglycerate kinase-1 (PGK1) [127],
thus elevating anaerobic glycolysis by enhancing the generation of glycolysis enzymes,
increasing glucose transporters expression (e.g., Glut 1, 4), and inhibiting mitochondrial
energy metabolism [128,129], while impeding fatty acid oxidation [7,130]. Several studies
have supported the notion that HIF-1α plays a significant role in oxidative stress, as its
expression level is intrinsically associated with mtROS in response to O2 deprivation [7,131].

Furthermore, it has been reported that human calcified valves are enriched in oxidative
stress, worsening the progression of calcification [132]. The increased oxidative stress levels
seem to be inversely proportional to antioxidant enzyme expression and functionality, as
well as the uncoupling nitric oxide synthase (NOS) activation [133,134]. Together these
data illustrate the crucial role of mitochondria in the pathophysiology of CAVD.

3.4. Relationship between Inflammation and Mitochondria in CAVD

As we reviewed in the previous paragraphs, the inflammatory response has been the
only known mediator of CAVD in the past [135,136], and its connection with the onset and
progression of the disease that resulted in either surgical valve replacement or transcatheter
AV implantation has been extensively reported [26,137]. Indeed, a significant amount of
clinical data, extrapolated from patients affected by AS, showed with different techniques,
high levels of inflammation. In the 1990s, aortic valvular lesions from this cohort of
patients were carefully analyzed through popular biochemical approaches; the native tissue
appeared as being characterized by thickening, by a large amount of lipids deposition,
and by the presence of mineralization and calcium accumulation into the leaflet (Figure 3).
Concurrently, a high grade of inflammatory infiltrate with foam cell macrophages was
present in the lesions [138]. From plasma samples of AS patients, IL-1β and IL-18 were
the main circulating cytokines to be overexpressed [46]; however, IL-6 and TNF have also
been reported to play a role in osteogenic differentiation with a significant pool of M1
polarized macrophages [139]. In 2012, Dweck MR and co-workers used for the first time the
positron emission tomography (PET) and two common PET tracers, 18F-Flurodeoxyglucose
(18F-FDG) and 18F-Sodium fluoride (18F-NaF), which were able to target calcification and
inflammation into the same patient [140]. They found the inflammatory response increased
by 91% in AS patients compared to healthy subjects [140].
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Figure 3. A diagram representing the contribution of inflammation, mitochondrial dysfunction, and
hypoxia signaling in the pathophysiology of the calcific aortic valve.

Today, inflammation is still considered to be the main active player in the phases that
precede calcification, but it is deeply nestled among other major contributors such as mito-
chondrial dysfunctions for which cause–effect relationships are difficult to
address [26,46,141,142].

The link between mitochondria and inflammation is very close. A seminal paper by
Zhong Z. and co-workers showed how mitochondria directly orchestrate signals from TLR
to produce oxidized mtDNA fragments, needed to activate NLRP3 inflammasomes once
they have moved into the cytosol [143]. Basically, according to this evidence, mitochon-
dria constitute a reservoir of many signaling substances. A pool of these, once released
into the cytosol, becomes harmful and can trigger mitochondria-mediated inflammation
through multiple receptor-dependent responses [144]. These are the so-called mitochon-
drial danger-associated molecular patterns (mtDAMPS) and include, for example, ATP,
mtDNA, and mtROS.

NLRP3 is a multiprotein platform that is activated by mtDAMPS; it relocalizes to
mitochondria and associated membranes and plays a crucial role in CAVD through the
production of the mature form of IL-1β [145]. This cytokine is consistently upregulated in
CAVD patients, is highly expressed in situ in calcified areas, and further sustains inflam-
mation, stimulating IL-6 and IL-8 production and activating the NF-kB pathway [146]. It
is documented that IL-1β activates HIF-1α to stimulate a metabolic shift from oxidative
phosphorylation (OXPHOS) to glycolysis, which is crucial in adaptive immunity [147]. The
exacerbation of the inflammatory phenotype is also given by the enhancement of the MPP1
function with drastic changes in the extracellular matrix composition [148]. Accordingly,
the antagonization of the IL-1 receptor by the IL-1 receptor antagonist (Ra) has been shown
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to block the proinflammatory pathway [149], conferring on the receptor properties tar-
geted for cardioprotection. Moreover, its genetic depletion in animal models of CAVD has
definitively shown its crucial contribution to the calcification process of the AV [149].

Additionally, to the aforementioned studies in the previous sections, HIF-1α upregu-
lates mtROS levels, stimulates the NF-kB transcription factor, and activates inflammasome
genes expression, including NOD-, LRR-, and pyrin domain-containing protein (NLRC)4,
NLRP3, and the IL-1β genes. Thereby, leading to mitochondrial oxidative stress, affecting
in return mitochondrial membrane permeability, lipid peroxidation, and mtDNA, as a
consequence of mitochondrial abnormalities [7].

Mitochondria are also a place where ROS are produced in great amounts, mainly as
end-products from OXPHOS [150]. ROS are usually culprits of mitochondrial damage in
cardiovascular diseases, especially when an overproduction of free radicals or impairment
of the ROS-scavenging enzyme system occurs [151–154]; moreover, ROS further sustain
inflammation [155]. In the last few years, evidence involving mtROS in CAVD has become
manifold. First studies carried out on isolated ex vivo cultures from human valve samples
demonstrated how the presence of lipoprotein a (Lp(a)) selectively triggered acute super-
oxide production from mitochondria, [156] and through it, Lp(a) chronically lead to cell
calcification. Lp(a) induces significant calcium deposition in vitro, and patients with CAVD
have higher plasma levels of Lp(a) [157,158]. mtROS reached high levels in a few hours
after Lp(a) exposure, but the calcification followed in several days. This evidence ascribes a
role for mtROS generation in the acute stages of the disease, but it is still in doubt if they can
be targeted to revert the pathological phenotype once the CAVD condition is established.

In addition to Lp(a), another apolipoprotein named ApoC-III was found to be involved
in functions far from their primary role in metabolism [141]. Similarly, ApoC-III was
detected in large amounts around the calcific regions of human AV leaflets and was directly
related to the calcification grade [141]. The process was further monitored in vitro through
the chronic treatment of normal noncalcified interstitial cells with ApoC-III, which led
to calcification in a few days. The pathological process was accompanied by an increase
in several mitochondrial proteins involved in oxidative stress and in the inflammatory
cascade with the upregulation of IL-6 and BMP-2 expression [141]. Among the signs of
mitochondrial stress during calcification, the expression of superoxide dismutase 2 (SOD2),
HSP60, HtrA Serine Peptidase 2 (HTRA2), and Caseinolytic Mitochondrial Matrix Peptidase
Proteolytic Subunit (CLPP) are the most affected proteins. They usually participate in
apoptotic and mitophagic pathways [159]. Inflammation in CAVD also acts via TNF-α.
There was an acute increase in the number of cytokines at 30 min and chronically, at 21
days, associated with a significant induction of mtROS [160]. These results were only
observational without any correlation to the calcific phenotype. Besides the involvement
of HSP60, the downregulated expression of HSP90 has also been revealed in a proteomic
analysis of CAVD, leading to ROS generation and endothelial alterations [161].

The organized interplay between mtROS and inflammation also participates in the
calcification process by regulating the osteogenic differentiation of vascular smooth muscle
cells (VSMC) through the fine-tuning of RUNX2 expression [162]. Furthermore, mtROS are
generated by mitochondrial carbonic anhydrases, enzymes that result in upregulation in
calcified aortic tissues [163]. The inhibition of their function alleviates both inflammation
and the calcification process to which VSMCs are subjected [163].

Besides this partially direct evidence of the contribution of mitochondria to inflamma-
tion through mtROS release and linked to mitochondrial stress, a study by Smyrnias, in
2019, described the presence of a dysfunctional mitochondrial unfolded protein response
(mtUPR) in patients affected by AS. The role of mtUPR in heart and cardiac diseases is
unclear, but this work showed how patients having a higher activation of mtUPR also have
a lower rate of myocyte death and fibrosis/calcification levels [164].
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4. Novel Insights on the Therapeutic Strategies of CAVS

Despite the increasing amount of evidence to better comprehend the factors under-
lying CAVS progression. Nowadays, this disorder is a major growing challenge, and it
remains unclear in terms of molecular and cellular mechanisms, and presently no thera-
peutic strategies successfully exist to prevent or treat CAVS. Only surgical intervention or
transcatheter valve replacement is an efficient treatment option for CAVS. Nevertheless, it
is well recognized that these types of therapeutic options are highly complicated, in which
the surgical implantation of an artificial valve requires lifelong antithrombotic therapy, and
the bioprosthetic valves are prone to deterioration over time, requiring patients to have a
further operation, as well as a higher risk of thromboembolism due to the reduced flow
and pressure [165,166]. To the best of our knowledge, at present, no therapeutic strategies
successfully exist yet to prevent or treat CAVS; therefore, the development of a potent
medical therapy for CAVS becomes a major urgent necessity to reverse the development
of the disease and ameliorate the clinical outcomes. To attain this noble purpose, it is
highly necessary to deeply focus and target the molecular/cellular mechanisms for a better
understanding of the etiopathology. In Table 1, we report an updated list of the most
promising therapeutic options for CAVS.

In recent years, so much has been learned about novel promising pharmacotherapy
for CVDs. From the pool of molecules, one favorable molecule is HIF-1α, which has been
shown to act as a cardio-protectant in different aspects of CVDs. However, very little has
been explored regarding its role in CAVS. A few studies showing the involvement of HIF-1α
in CAVS are addressed in the earlier sections of this review but none have demonstrated
HIF-1α’s role in the staging of calcification. It has been very recently discovered that HIF-1α
expression can be blocked by PX-478 and miR-483 mimics, which are novel stretch-sensitive
and flow-sensitive disease molecules, respectively. Thus, they convey a novel potent target
to develop an innovative therapeutic strategy to alleviate CAVD [58,167]. Further studies
are required to study the different members of the HIF family in CAVS.

Dimethylloxetane, an inhibitor of HIF-1α, downregulates osteogenic transcription
factors including RUNX2 and BMP-2, thereby reducing vascular calcification in ovariec-
tomized rats. In addition, estrogen drug therapy alleviates HIF-1α expression and vas-
cular calcification [168]. Indeed, studies have also documented the role of estrogen as a
negative modulator of several mechanisms, such as inhibiting NFκB signaling and the
receptor–activator of nuclear factor κB ligand (RANKL) [71,130], blocking p53 activity [169],
inhibiting the activity of NADPH oxidase, and causing inflammation [24,153]. Moreover,
regarding its role mentioned previously, as a negative modulator, estrogen can direct the
activation of antioxidant enzymes in mitochondria, in the lysosome, and in the cytosol to
enhance NOX expression and contribute to the protective impact in calcification [170,171].
Another inhibitor of HIF-1α that still needs to be better investigated in cardiovascular calci-
fication is the HIF-1α mRNA antagonist EZN-2968, [172]. Studies are necessary to unveil
whether it could be a therapeutic alternative to treat vascular calcifications in the future.

Hypoxia has been reported to contribute to the early development of the disorder
and stimulate HAVIC proliferation. Hypoxia is a canonical stimulator of the angiogenesis
process through HIF-1 transcription activity. A novel correlation between hypoxia and
pro-angiogenic conditions has been recently demonstrated in CAVS [65]. Furthermore,
hypoxia modulates angiogenesis in CAVS through the activation of VEGF receptor sFlt1
expression, which is an anti-angiogenic component where its released mechanism action
is still unknown [65]. Inhibiting the angiogenesis process has demonstrated a potential
target to treat various disorders, such as cancer [173,174], and CVD including myocardial
infarction [175]. In a recent study, S1P is identified to halt the formation of neo-vessels by
targeting sFlt1 in CAVS [65], suggesting further future therapeutic approaches to stimulate
the S1P receptors in CAVS to limit the progression of the disorder. Treatments used for
vascular problems have been suggested to ameliorate CAVS outcomes; however, it is well-
known that the molecular mechanisms of CAVS are different from vascular disorders [176].
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Angiotensin-II (Ang-II) plays a crucial role in CAVS progression. It upregulates IL-6
generation to stimulate cardiac fibrosis and to stimulate the osteogenic differentiation of
valve interstitial cells [177,178]. Inhibitors of Angiotensin-converting enzyme (ACE-I) or
Ang-II receptors have been widely used for hypertension treatment and have been ex-
plored in CAVS progression and the multiple severities of CAVS [179,180]. ACE-I therapy
is correlated with reduced CAVS and a slowdown in mild CAVS development [181,182].
Indeed, ACE-I therapy has shown amelioration in the hemodynamic and left ventricular
(LV) hypertrophy in patients with moderate and severe CAVS in randomized clinical trials,
for example, the RIAS [183,184]. In the same regard, potent blockers of Ang-II such as
fimasartan and losartan have shown a beneficial impact in severe CAVS patients with hy-
pertension (clinicaltrials.gov/NCT03666351). Moreover, the targeting of renin–angiotensin–
angiotensinogen system (RAAS) inhibitor therapy may impede CAVS progression and
reduce the mortality risk in CAVS patients [185]. Thus, large-scale trials are needed to
dissect this further therapy in delaying the development of CAVS.

KPT-330 is a potent selective exportin-1 (XPO1) inhibitor, widely involved in cancer
disorders, which regulates the expression of cyclin D1 [186]. KPT-330 has shown an effective
impact in vitro to mitigate calcific nodule formation protecting against CAVS through a
novel CCAAT/enhancing-binding protein (C/EBPβ) signaling pathway, suggesting KPT-
330 as an alternative pharmaco-based therapy to treat CAVS [187].

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule with cardiopro-
tective effects, maintains mitochondrial function via its antioxidant activities, and impedes
the opening of the permeability transition pore complex (PTPC) [188]. Notably, PTPC is a
mitochondrial supramolecular entity [189] that initiates mitochondrial permeability transi-
tion, an event characterized by a sudden and irreversible augmentation of the permeability
of mitochondrial membranes, which causes the dissipation of the mitochondrial trans-
membrane potential, osmotic breakdown of the organelle, and, finally, cell death [190]. In
addition, melatonin targets and shields the mitochondrial fission protein DRP1 in diabetic
hearts [191], and blocks DRP1 in HUVEC through the stimulation of the AMPK/Sarco-
Endoplasmic Reticulum Calcium ATPase (SERCA) signaling pathway [192]. Besides its
effective roles in mitochondria, melatonin plays an important role as an anti-inflammatory
effect [193]. Recently researchers have shown much interest in studying the cardiopro-
tective capabilities of melatonin in CAVS. Melatonin has been shown to improve CAV in
valve interstitial cells via RNA CircRIC3/miR-204-5p/DPP4 signaling [194], and it targets
melatonin receptor (MT1)/NF-κB/RUNX2 signaling to reduce the calcification in valve
interstitial-mediated osteogenic stimulation [195]. Another significant study shows the
crucial protective impact of melatonin in inhibiting calcification through the AMPK/DRP1
pathway in vascular smooth muscle cells (VSMCs) [196].

The enzyme carnitine O-octanoyltransferase (CROT) is responsible for the transport
of medium and long-chain acyl-CoA molecules out of the peroxisome to the cytosol and
mitochondria. antiCROT has been discovered as a novel recent candidate that contributes
to valve fibrocalcification. The inhibition of CROT corrects mitochondrial abnormalities in
VICs by blocking mitochondrial fragmentation, restoring mitochondrial proteome changes
in the osteogenic environment, and promoting fatty acid metabolism [197].

Recently, microarray technologies have been used to identify newly discovered func-
tional genes that can also be adopted for ultimate diagnosis and prognostics in various
diseases [198]. Among these, microarray profiling identified the proprotein convertase
subtilisin/kexin type 9 (PCSK9), an enzyme mainly secreted in the liver that targets the LDL
receptor for further lysosomal destruction, which is involved in the inflammatory gene’s
expression, cell cycle, and stress condition responses [199]. Additional studies demon-
strated the impact of PCSK9 in promoting the inflammatory response, which is the main
contributor to valve calcification, through the stimulation of T cells infiltrating calcified
AVs and promoting inflammation; besides its role in activating the T cells, PCSK9 can
also stimulate directly macrophages to secrete proinflammatory cytokines including, IL-6,
IL-1β, and TNFα [200,201]. Ongoing clinical trials are presently testing whether blocking
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PCSK9 may mitigate the micro/macro-calcification of AVs using computed tomography
and 18F-NaF positron-emission tomography/computed tomography, respectively, in CAVS
patients (clinicaltrials.gov/NCT03051360). Indeed, PCSK9 inhibitors, such as evolocumab,
in the explorative analysis of the “FOURIER” trial (Further Cardiovascular Outcomes Re-
search with PCSK9 Inhibition in Subjects with Elevated Risk) [202], demonstrated positive
outcomes in reducing CAVS events after the first year of the therapy [143].

Other crucial genes that have been recently discovered in CAVS pathogenesis through
advanced gene chip technology are the Secretogranin II (SCG2) and C-C motif chemokine
ligand 19 (CCL19), which are involved in inflammatory responses; however, their exact
correlation and mechanism with the CAVS are still to be elucidated. As previously re-
ported by Fang and colleagues, SCG2 alters angiogenesis and tumor growth by HIF-1α
destruction [203] and is able to stimulate wound healing in response to fasting [204]. These
findings suggest a further impact of SCG2 in tissue remodeling and provide further insights
for future research into immunotherapy strategies for CAVS progression.

On the other hand, MSI-1436, a pharmacological inhibitor of PTPB prevents fibrocalci-
fication of the AV and protects the mitochondrial biogenesis and performances through the
optic atrophy 1 (OPA1) regulation [116].

Recent studies by Liu et al. demonstrate that MMP-9i, an inhibitor of MMP9, reveals its
significant effectiveness in attenuating mitochondrial impairments and repressing oxidative
stress, and thereby VIC calcification in CAVS patients [120].

Rapamycin is a potent inducer of autophagy, and it has been shown by Morciano
and colleagues to revert calcification by attenuating cell death and restoring calcium
dysregulation in CAVS patients [46]. It is, however, required to be studied in animal models
in combination with an anti-inflammatory.

Table 1. A representative table on the therapeutic strategies of CAVS.

Therapeutic Target Treatment Mechanism of Action and Effect References

HIF-1α inhibitors

Dimethylloxetane
Downregulates osteogenic

transcription factors (RUNX2 and
BMP-2), reduces vascular calcification

[168,205]

PX-478

Downregulates porcine AV (PAV)
calcification, and significantly blocks

the deposition of calcium, thereby
alleviating CAVD

[58,167]

EZN-2968 Possible to mitigate the calcification [172]

Estrogen drug therapy -

Alleviates HIF-1α expression and
vascular calcification, inhibits NFκB

signaling and RNKL, blocks p53
activity and NADPH oxidase, as well

as inflammation.
Activates antioxidant enzymes
including in mitochondria and

lysosomes, as well as the cytosol

[168–170,206–209]

Angiogenesis repressor S1P Halts neo-vessels formation via sFlt1
activation [65]

RAAS inhibitors
(ACE-I therapy
Ang-II blockers)

Fimasartan and losartan

Reduces CAV and a slowdown in
mild CAVS development. Improves
hemodynamic and left ventricular
(LV) hypertrophy in patients with

moderate and severe CAVS

[179–182],
https://clinicaltrials.gov/

show/nct01589380,
https://clinicaltrials.gov/
ct2/show/NCT03666351

(accessed on 30 March 2023)
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Table 1. Cont.

Therapeutic Target Treatment Mechanism of Action and Effect References

Exportin-1 (XPO1) inhibitor KPT-330

Mitigates calcific nodule formation
via CCAAT/enhancing-binding

protein (C/EBPβ) signaling pathway,
protecting against CAVS

[187]

Melatonine (N-acetyl-5-
methoxytryptamine) Melatonine

Improves CAV in VICs via RNA
CircRIC3/miR-204-5p/DPP4

signaling and targets
MT1/NF-κB/RUNX2 signaling,

reducing VIC calcification-mediated
osteogenic stimulation. Inhibits

calcification via the AMPK/DRP1
pathway in VSMCs

[194–196]

CROT inhibitor -

Blocks mitochondrial fragmentation,
restores mitochondrial proteome

changes in the osteogenic
environment, and promotes fatty acid

metabolism, and reduces
fibrocalcification

[197]

PCSK9 inhibitors Evolocumab Reduces CAVS events [143,202]

PTPB inhibitor MSI-1436
Prevents AV fibrocalcification,

protects mitochondrial biogenesis,
and performances via OPA1

[116]

MMP9 inhibitor MMP-9i
Attenuates mitochondrial

impairments, represses oxidative
stress, and VIC calcification

[120]

Autophagy activator Rapamycin

Reverts calcification through cell
death downregulation and restores

calcium dysregulation in CAVS
patients

[46]

5. Conclusions and Future Perspective

CAVS is a complex and progressive heart valvular disease. Extensive research has
led to the identification of several risk factors underlying CAVS progression. The early
insidious nature and etiology of CAVS have made it challenging to explore and unravel
the cellular and molecular mechanisms underlying its complex etiology. This has left us
with only surgical and transcatheter valve replacement as the only possible option to treat
CAVS, which is very likely a costly procedure that is expected to double by 2050 [6]. At
present, no therapeutic approaches have been successfully developed yet to prevent or
treat the disease. Therefore, the development of a potent therapy for CAVS has become a
major urgent and critical necessity. To attain this noble purpose, it is highly essential for
scientists to dive deep into understanding the molecular and cellular mechanisms of CAVS
initiation and progression.

Inflammatory pathways are one of the major molecular mediators in both the initiation
and progression of CAVS. Recent insights demonstrate that impairments in the function-
ing of mitochondria are involved in the pathogenesis of this disorder through both the
processes of oxidative stress and inflammation. Furthermore, discoveries have identified
the hypoxia signaling pathway as a critical contributor in the early and evolution stages
of CAVS. However, extended investigations are required to better dissect the hypoxia-
related pathways in CAVS and their interconnections with mitochondria and inflammation.
Another important point to inspect is how members of the HIF1 family can regulate the
hypoxic levels to modulate the different processes of autophagy and mitophagy in CAVS,
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taking into account of the important role of these pathways in controlling mitochondrial
homeostasis and inflammation.

Understanding how elements related to the HIF1 family contribute to CAVS disease
could help to solve another great issue in the study of CAVS, which is the lack of established
elements for an early diagnosis and prognosis. Furthermore, assessing whether the markers
of hypoxia can influence the calcification score in calcific AV areas of patients by applying
artificial intelligence would be an innovative approach to predict the severity and extent of
calcification, and to be used for further prognosis.

The identification of the close relationship between hypoxia signaling, mitochondrial
dysfunction, and inflammation in CAVS could be also essential to develop new therapeutic
approaches that target factors of these signaling pathways at the early phases of the disease
rather than at the end stage where patients exhibit severe aortic stenosis.
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18F-FDG 18F-Flurodeoxyglucose
ACE-I Angiotensin-converting enzyme
Ang-II Angiotensin-II
APC/C Complex/Cyclosome
AS aortic stenosis
AV Aortic valve
BMP-2 Bone morphogenetic protein-2
C/EBPβ CCAAT/enhancing-binding protein
CACNA1C Calcium voltage-gated channel subunit alpha 1 C
CAVD Calcific aortic valve disease
CAVS Calcific aortic valve stenosis
CBP CREB-binding protein
CCL19 C-C motif chemokine ligand 19
CD11 Surface marker of M1
CLPP Caseinolytic Mitochondrial Matrix Peptidase Proteolytic Subunit
CROT Carnitine O-octanoyltransferase
CTB Cytotrophoblast
CVD Cardiovascular disease
DRP1 Dynamin-related protein 1
ECM Extracellular matrix
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EPAS-1 Endothelial PAS domain protein-1
EPO Erythropoietin
ERK1/2 Extracellular signal-regulated kinase
FAT/CD36 Fatty acid translocase

FOURIER
Further Cardiovascular Outcomes Research with PCSK9
Inhibition in Subjects with Elevated Risk

Glut 1, 4 Glucose transporter 1 and 4
HAVEC Human aortic endothelial cells
HC-OA Human osteoarthritic
HF Heart failure
HIF-1α Hypoxia-inducible factor 1 alpha subunit
HIFs Hypoxia-inducible transcription factors
HMOX1 Heme Oxygenase 1
HTRA2 HtrA Serine Peptidase 2
HUVEC Human umbilical endothelial cells
ICAM-1 Intracellular adhesion molecule-1
IFN-γ Interferon-γ
IHD ischemic heart disease
IL- Interleukin
iNOS Inducible nitric oxide synthase
LDH-A Lactate dehydrogenase-A
LDL Low-density lipoprotein
Lp(a) Lipoprotein a
LV Left ventricular
MCP-1 Monocyte chemoattractant protein-1
MMP9 Matrix metalloproteinase 9 expression
MMPs Matrix metalloproteinases
MMP-9i Matrix metalloproteinase 9 inhibitor
MT1 Melatonin receptor
mtDNA Mitochondrial DNA
mtROS Mitochondrial ROS
mtUPR Mitochondrial unfolded protein response
N-acetyl-5-methoxytryptamine Melatonine
NF-κB Nuclear factor kappa B
NLRC4 Pyrin domain-containing protein
NOS Nitric oxide synthase
O2 Oxygen
OPA1 Optic atrophy 1
OXPHOS Oxidative phosphorylation
PAV Porcine AV
PCSK9 Proprotein convertase subtilisin/kexin type 9
PDK Dehydrogenase kinase isoform 1
PET Positron emission tomography
PGK1 Phosphoglycerate kinase-1
PHD1, -2, -3 Propyl-hydroxylase-1, -2, and -3 enzyme activity
PI3K/Akt P hosphatidylinositol 3-kinase (PI3K)-Akt (protein kinase B)
PKM2 M2 isoform of pyruvate kinase
PTP1B Protein tyrosine phosphatase 1B
pVHL von Hippel–Lindau
RANKL Receptor-activator of nuclear factor κB ligand
SCG2 Secretogranin II
sFlt1 Soluble fms-like tyrosine kinase 1
SMC Smooth muscle cells
SOD2 Superoxide dismutase 2
STAT3 Signal Transducer and Activator of Transcription 3
TG Triglyceride levels
TGF-β Transforming growth factor-beta
TLR Toll-like receptor
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UBE2C Ubiquitin E2 ligase C
VECs Valvular endothelial cells
VEGF Vascular endothelial growth factor
VICs valvular interstitial cells
VSMC Vascular smooth muscle cells
XPO1 Exportin-1
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