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Abstract: Freezing stress is one of the main factors limiting the growth and yield of wheat. In
this study, we found that TaMYB4 expression was significantly upregulated in the tillering nodes
of the strong cold-resistant winter wheat variety Dongnongdongmai1 (Dn1) under freezing stress.
Weighted gene co-expression network analysis, qRT-PCR and protein–DNA interaction experiments
demonstrated that monodehydroascorbate reductase (TaMDHAR) is a direct target of TaMYB4.
The results showed that overexpression of TaMYB4 enhanced the freezing tolerance of transgenic
Arabidopsis. In TaMYB4 overexpression lines (OE-TaMYB4), AtMDHAR2 expression was upregulated
and ascorbate-glutathione (AsA–GSH) cycle operation was enhanced. In addition, the expression
of cold stress marker genes such as AtCBF1, AtCBF2, AtCBF3, AtCOR15A, AtCOR47, AtKIN1 and
AtRD29A in OE-TaMYB4 lines was significantly upregulated. Therefore, TaMYB4 may increase
freezing tolerance as a transcription factor (TF) in Arabidopsis through the AsA–GSH cycle and
DREB/CBF signaling pathway. This study provides a potential gene for molecular breeding against
freezing stress.
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1. Introduction

Wheat (Triticum aestivum) is the second most cultivated cereal crop worldwide. The
increased human population combined with modern consumption preferences have led to
a proliferation in the demand for wheat over the past 50 years [1]. However, various abiotic
stresses severely limit wheat production [2]. Among them, cold stress mainly limits wheat
growth and geographic distribution, and affects wheat yield and quality [3]. The winter
season is long and cold in the Heilongjiang Province of China. Dongnongdongmai1 (Dn1)
is the first winter wheat breed to be successfully overwintered in Heilongjiang Province [4].
A large amount of physiological indices and gene expression data reflect the distinct
cold-resistance characteristics of Dn1 [5–7]. Nevertheless, the regulatory mechanism of
transcription factors (TFs) in Dn1 under cold stress is still poorly understood.

The MYB TF family contributes prominently in terms of plant responses to abiotic
stresses [8]. In apple (Malus pumila), MdMYB108L and MdHY5 shape a feedback circuit
to regulate CBF3 expression, and overexpression of MdMYB108L improves apple cold
tolerance [9]. In Arabidopsis thaliana, the MYB96-HHP module activates the CBF pathway
involved in regulating cold tolerance in the plants [10]. In maize (Zea mays), ZmMYB31
expression is upregulated under cold stress, and overexpression of ZmMYB31 elevates
SOD and APX activities in Arabidopsis [11]. In rice (Oryza sativa), the regulatory network
centered on OsMYB4 enhances cellular antioxidant capacity under cold stress [12]. In
wheat, 60 MYB genes have been isolated, of which, 11 gene expressions are affected by cold
stress [13]. Recently, we screened TaMYB4 in Dn1, which can respond to freezing stress [14].
Nevertheless, the regulatory mechanism of MYB TFs in wheat under freezing stress is still
poorly understood.
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Monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) is a momentous enzyme in
the ascorbate–glutathione (AsA–GSH) cycle that catalyzes the regeneration of AsA from
MDHA [15]. Studies have shown that the transcription and activity of MDHAR are signif-
icantly upregulated in tomato (Solanum lycopersicum) [16], acerola (Malpighia glabra) [17]
and Antarctic hairgrass (Deschampsia antarctica) [18] under cold stress. Overexpression of
Brassica rapa MDHAR enhances the antioxidant capacity and improves freezing tolerance
in Arabidopsis [19]. Furthermore, the co-expression of BrDHAR and BrMDHAR produces
synergistic effects and is also able to effectively improve the freezing tolerance of Ara-
bidopsis [20]. In wheat, MDHAR transcription and activity are significantly upregulated
under drought, heat and water stress [21–23]. However, the mechanism of transcriptional
regulation of MDHAR under freezing stress remains unknown.

In this research, we discovered that under either severe winter field or short-term in-
door freezing treatment, TaMYB4 expression in Dn1 was significantly upregulated. Protein–
DNA interaction experiments demonstrated that TaMDHAR is a direct target of TaMYB4.
Overexpression of TaMYB4 or TaMDHAR promoted the AsA–GSH cycle operation and
improved Arabidopsis freezing tolerance. The in-depth exploration of the transcriptional
regulation mechanism of MDHAR by TaMYB4 not only enriches the TaMYB4 regulatory
network, but also provides a theoretical basis for crop cold-resistance breeding.

2. Results
2.1. TaMYB4 Is Induced by Cold

Previously, we found that TaMYB4 expression was significantly upregulated in the
tillering nodes of Dn1 under freezing stress by transcriptome analysis [14]. To experimen-
tally demonstrate the cold induction of TaMYB4 in the transcriptome data, we detected
TaMYB4 expression in the tillering nodes of field-grown Dn1 by qRT-PCR (5 ◦C as a control).
The expression of TaMYB4 in Dn1 at −10 and −25 ◦C was significantly higher than that at
5 ◦C, with fold changes of 11.60 and 11.06, respectively (Figure 1A). However, there was
only a two-fold increase in the expression of TaMYB4 at −25 ◦C in Jimai22 (J22) (Figure 1B).
To exclude the interference of spatiotemporal differences and other environmental factors
in the field on the expression of TaMYB4, we subjected Dn1 seedlings to short-term low-
temperature treatment and performed qRT-PCR analysis (22 ◦C as a control). The TaMYB4
expression pattern in the tillering nodes of greenhouse-grown Dn1 was similar to that of
field-grown Dn1, and TaMYB4 expression was significantly upregulated at−10 and−25 ◦C
(Figure 1C).

Then, we performed a promoter activity assay under cold stress. The promoter of
TaMYB4 (ProTaMYB4) contained a low-temperature-responsive element (Figure S1). The
ProTaMYB4 activity was detected using the GUS reporter gene in tobacco leaves transiently
transfected with pBI121-ProTaMYB4-GUS. We observed that the blue color of tobacco
leaves deepened after cold treatment at 4 ◦C. After cold stress, the GUS activity of the
tobacco leaves transiently transfected with pBI121-ProTaMYB4-GUS was also markedly
higher than in leaves without cold stress (Figure 1D). This suggests that ProTaMYB4 is
induced by cold temperatures.

2.2. TaMYB4 Co-Expression Network Construction

To explore the TaMYB4 regulatory network under freezing stress, weighted gene
co-expression analysis was performed. We found that six members were associated with
TaMYB4 (Figure 2A). These members included zinc finger protein (TraesCS1A02G285900),
serine acetyltransferase (TraesCS3D02G286900), RING/U-box superfamily protein
(TraesCS4D02G148400), RNA binding protein (TraesCS7A02G398200), kelch-type beta
propeller domain containing protein (TraesCS7A02G496600) and monodehydroascorbate
reductase (TraesCS7D02G277500). We observed that monodehydroascorbate reductase
(MDHAR) gene expression was significantly upregulated in the Dn1 transcriptome under
freezing stress, and that its expression was the highest among the six members (Figure S2).
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Figure 1. TaMYB4 expression analysis in tillering nodes of winter wheat and TaMYB4 promoter ac-
tivity analysis under cold stress. (A,B) TaMYB4 expression in field-grown Dn1 and J22; (C) TaMYB4 
expression in greenhouse-grown Dn1; (D) Promoter activity analysis of TaMYB4. Mean ± SD (n = 3) 
is used to represent values. Significant differences in panels (A–C) were calculated by one-way 
ANOVA and marked by asterisks; Significant differences in panel (D) were calculated by Student’s 
t-test and marked by asterisks; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. CK: control check, 
CT: cold treatment. 
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Figure 1. TaMYB4 expression analysis in tillering nodes of winter wheat and TaMYB4 promoter
activity analysis under cold stress. (A,B) TaMYB4 expression in field-grown Dn1 and J22; (C) TaMYB4
expression in greenhouse-grown Dn1; (D) Promoter activity analysis of TaMYB4. Mean± SD (n = 3) is
used to represent values. Significant differences in panels (A–C) were calculated by one-way ANOVA
and marked by asterisks; Significant differences in panel (D) were calculated by Student’s t-test and
marked by asterisks; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. CK: control check, CT:
cold treatment.

Then, we detected TaMDHAR expression in the tillering nodes of field-grown winter
wheat. TaMDHAR expression in Dn1 was significantly increased at −10 ◦C and −25 ◦C,
and the fold change was higher than that in J22 (Figure 2B,C). To exclude the interference
of spatiotemporal differences and other environmental factors in the field on the expression
of TaMDAHR, we subjected Dn1 seedlings to short-term low-temperature treatment and
performed qRT-PCR analysis (22 ◦C as a control). The TaMDHAR expression pattern of
greenhouse-grown Dn1 was similar to that of field-grown Dn1 (Figure 2D). We found that
TaMDHAR had a similar expression pattern to TaMYB4 in Dn1 under freezing stress. There-
fore, we speculated that there might be an association between TaMYB4 and TaMDHAR
under freezing stress.

2.3. Bioinformatics Analysis and Subcellular Localization of TaMYB4 and TaMDHAR

We cloned TaMYB4 and TaMDHAR sequences from Dn1 cDNA. Multiple sequence
alignment showed that TaMYB4 contained two typical conserved adjacent repeats in the
MYB domain and belongs to the R2R3 subgroup (Figure S3A). The phylogenetic tree that
was generated showed that TaMYB4 clustered with TaMYB-1D and ZmMYB31 (Figure S3B).
Multiple sequence alignments revealed that TaMDHAR is highly similar to MDHAR in
other plants and contains a typical Pyr_redox_2 domain (Figure S3C). The phylogenetic
tree constructed from these proteins showed that TaMDHAR clustered with AeMDHAR
(Figure S3D).
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Figure 2. TaMYB4 co-expression network and TaMDHAR expression analysis in tillering nodes of
winter wheat under cold stress. (A) TaMYB4 co-expression network; (B,C) TaMDHAR expression in
field-grown Dn1 and J22; (D) TaMDHAR expression in greenhouse-grown Dn1. Mean ± SD (n = 3) is
used to represent values. One-way ANOVA was used to calculate significant differences, which are
marked by asterisks; *, p < 0.05; ***, p < 0.001; ****, p < 0.0001.

Subcellular localization prediction analysis revealed that TaMYB4 might localize to the
nucleus, whereas TaMDHAR might localize to the cytoplasm (Figure S3E,F). Subsequently,
we found that the enhanced green fluorescent protein (EGFP) fluorescence signal was
mainly detected in the nucleus in tobacco leaves containing the TaMYB4-EGFP plasmid.
And the EGFP fluorescence signal was mainly detected in the cytoplasm in tobacco leaves
containing the TaMDHAR-EGFP plasmid (Figure 3). To further determine the localization
of TaMYB4 and TaMDHAR, we isolated nuclear and cytosolic proteins from tobacco
leaves expressing TaMYB4-EGFP and TaMDHAR-EGFP, respectively. Then, we performed
Western blot analysis. The results showed that TaMYB4 and TaMDHAR were detected in
the nucleus and cytoplasm using anti-EGFP antibody, respectively (Figure 4).

2.4. TaMYB4 Regulates TaMDHAR Expression under Cold Stress

Eight MYB binding sites were present in the isolated 2000 bp promoter of TaMDHAR
(ProTaMDHAR) (Figure S1B). TaMDHAR may be a direct target of TaMYB4. To validate this
regulatory relationship, a yeast one-hybrid assay was performed. The eight MYB binding
sites in ProTaMDHAR were classified into five categories, including MRE (AACCTAA),
MBS (CAACTG), Myb (CAACAG), MYBrs (CCGTTG) and MYBbs (TAACCA). Full-length
ProTaMDHAR and three tandem copies of the motif sequence were cloned into the pHis2
vector. Then, the yeast strain Y187 was co-transformed by the pHis2 recombinant plasmid
with the pGADT7-TaMYB4 recombinant plasmid. We found that TaMYB4 can recognize
five MYB binding sites and has stronger binding activity to the Myb motif (Figure 5).
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tein extracted from un-injected tobacco; Lane 2: Total protein extracted from tobacco expressing
35S-EGFP; Lane 3: Cytosolic protein extracted from tobacco expressing TaMDHAR-EGFP; Lane 4:
Nuclear protein extracted from tobacco expressing TaMYB4-EGFP; Red arrows: mark the positions of
different proteins.
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Figure 5. Yeast one-hybrid validation of the regulatory relationship between TaMYB4 and TaMDHAR.
(A) Schematic diagram of different constructs used in yeast one-hybrid assays; (B) Autoactivity test
of the pHis2-ProMDHAR vector; (C) TaMYB4 binds to the MYB binding site in vivo. The pGADT7
empty and pHis2-ProMDHAR vectors were co-transferred into yeast as a control.

Subsequently, we performed a GUS transient expression experiment. We truncated
ProTaMDHAR according to the distribution of the MYB binding sites (Figure 6A). The
full-length and truncated sequences of ProTaMDHAR were cloned into the pBI121 vec-
tor. Then, tobacco leaves were transiently transfected with PBI121 recombinant plasmid
alone or together with 35S-TaMYB4 recombinant plasmid. After 3 d of culture, the to-
bacco was divided into control and cold-treated (4 ◦C 2 h) groups. The GUS staining
results showed that the blue color of the tobacco leaves gradually became lighter with
shortening of the promoter sequence. The P1 and ProMDHAR sequences presented a
low-temperature-responsive element. The color of tobacco leaves transiently expressing
pBI121-ProTaMDHAR-GUS and pBI121-P1-GUS deepened under cold stress. Moreover,
the addition of the 35S-TaMYB4 recombinant plasmid noticeably deepened the color of the
tobacco leaves (Figure 6B). We subsequently assayed GUS activity in tobacco leaves, and
the GUS activity change was in line with the tobacco leaf color change (Figure 6C).
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tobacco leaves; (C) GUS activity in tobacco leaves. Mean ± SD (n = 3) is used to represent values.
One-way ANOVA was used to calculate significant differences, which are marked by asterisks;
*, p < 0.05; **, p < 0.01; ****, p < 0.0001. CK: control check, CT: cold treatment.

The results of dual luciferase transient expression experiments were similar to those of
the GUS transient expression experiments. The LUC/REN in the tobacco leaves decreased
gradually with the shortening of the promoter sequence, and the LUC/REN in tobacco
leaves transiently expressing 0800-ProTaMDHAR-LUC and 0800-P1-LUC was significantly
increased under cold stress. Moreover, the addition of the 35S-TaMYB4 recombinant
plasmid significantly increased the LUC/REN ratio in the tobacco leaves (Figure 7).
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2.5. Characterization of TaMYB4 and TaMDHAR Function under Freezing Stress

To characterize the functions of TaMYB4 and TaMDHAR under freezing stress, we
constructed expression vectors (35S-TaMYB4 and 35S-TaMDHAR) and transformed them
into Arabidopsis. After several cycles of kanamycin-resistance screening, TaMYB4 and
TaMDHAR overexpression lines (OE-TaMYB4-1, OE-TaMYB4-6, OE-TaMDHAR-3 and OE-
TaMDHAR-4) were obtained. We observed the phenotypes of the Arabidopsis lines (WT,
OE-TaMYB4 and OE-TaMDHAR) under freezing stress (Figure 8A). After −10 ◦C treatment,
curling and a deepening in color occurred in the leaves of the three lines, but the WT
had a deeper leaf color than the OE-TaMYB4 and OE-TaMDHAR lines. After recovery for
7 d, the OE-TaMYB4 and OE-TaMDHAR lines mostly recovered to a normal growth state,
whereas nearly all of the WT died. Ultimately, the OE-TaMYB4 and OE-TaMDHAR lines had
higher survival rates than WT (Figure 8B). Then, we determined the electrical conductivity
(EC), malondialdehyde (MDA) and proline (Pro) contents. The results showed that the
OE-TaMYB4 and OE-TaMDHAR lines had a lower EC and MDA content and a higher Pro
content than WT at 4 ◦C and −10 ◦C. Altogether, the OE-TaMYB4 and OE-TaMDHAR lines
showed equally excellent physiological properties under freezing stress (Figure 9).
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TaMDHAR had high homology with Arabidopsis cytoplasmic subtype AtMDHAR2
(Figure S3D). MYB binding sites were present in the AtMDHAR2 promoter (Figure S4).
OE-TaMYB4 lines showed higher AtMDHAR2 expression and MDHAR activity than WT at
4 ◦C and −10 ◦C (Figure 10).

2.6. ROS Scavenging Capacity Is Increased in OE-TaMYB4 and OE-TaMDHAR Arabidopsis
under Freezing Stress

To demonstrate that overexpression of TaMYB4 and TaMDHAR confers stronger ROS
scavenging capacity in Arabidopsis, we performed the 3,3′-diaminobenzidine (DAB) and
nitroblue tetrazolium (NBT) staining. We found that the WT had a deeper leaf color than
the OE-TaMYB4 and OE-TaMDHAR lines under freezing stress (Figure 11A,B). To further
demonstrate the ROS changes in the WT, OE-TaMYB4 and OE-TaMDHAR lines under
freezing stress, we determined the hydrogen peroxide (H2O2) and superoxide anion (O2

•−)
contents, which were higher in the WT than those in the OE-TaMYB4 and OE-TaMDHAR
lines under freezing stress (Figure 11C,D).
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2.7. The AsA–GSH Cycle Is Improved in OE-TaMYB4 and OE-TaMDHAR Arabidopsis under
Freezing Stress

To further explore whether ROS scavenging was dependent on the AsA–GSH cycle
in the OE-TaMYB4 and OE-TaMDHAR lines, we identified the expression and activity
of antioxidant enzymes related to the AsA–GSH cycle. The results showed that the OE-
TaMYB4 and OE-TaMDHAR lines had a higher expression of AtSOD1, AtSOD2, AtAPX1,
AtAPX6, AtDHAR1, AtDHAR2, AtGR1 and AtGR2 than WT at 4 ◦C and−10 ◦C. OE-TaMYB4
and OE-TaMDHAR lines also had higher SOD, APX, DHAR and GR activities than WT
at 4 ◦C and −10 ◦C. At normal and low temperatures, OE-TaMDHAR lines had a higher
MDHAR activity than WT (Figures 12 and 13).

We determined the content of antioxidant substances in the OE-TaMYB4 and OE-
TaMDHAR lines. The results showed that the OE-TaMYB4 and OE-TaMDHAR lines had
higher AsA, DHA, GSH and GSSG contents than WT at 4 ◦C and −10 ◦C. The OE-TaMYB4
and OE-TaMDHAR lines also had higher AsA/DHA and GSH/GSSG than WT at 4 ◦C and
−10 ◦C (Figure 14).
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****, p < 0.0001.
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under freezing stress. (A) AsA content; (B) DHA content; (C) GSH content; (D) GSSG content;



Int. J. Mol. Sci. 2023, 24, 11090 14 of 22

(E) AsA/DHA; (F) GSH/GSSG. Mean ± SD (n = 3) is used to represent values. Two-way ANOVA
was used to calculate significant differences, which are marked by asterisks; *, p < 0.05; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001.

2.8. Cold-Responsive Genes Expression Is Affected in OE-TaMYB4 Arabidopsis under
Freezing Stress

AtCBF1, AtCBF2, AtCBF3, AtCOR15a, AtCOR47, AtKIN1 and AtRD29A are typical
cold stress marker genes [24]. We examined the expression of these genes in OE-TaMYB4
lines. The results showed that the OE-TaMYB4 lines had a higher expression of AtCBF1,
AtCBF2 and AtCBF3 than WT at 24 ◦C and −10 ◦C. And the OE-TaMYB4 lines had a higher
expression of AtCOR15a, AtCOR47, AtKIN1 and AtRD29A than WT at −10 ◦C. However, at
4 ◦C, the expression of these genes in OE-TaMYB4 was not affected or significantly lower
than those of WT (Figure 15).
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Figure 15. Expression of AtCBF1 (A), AtCBF2 (B), AtCBF3 (C), AtCOR15A (D), AtCOR47 (E), AtKIN1
(F) and AtRD29A (G) in the OE-TaMYB4 lines under freezing stress. Mean ± SD (n = 3) is used to
represent values. Two-way ANOVA was used to calculate significant differences, which are marked
by asterisks (24 ◦C WT as a control); *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
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3. Discussion

In multiple plants, MYB4 has been shown to be able to respond to varying degrees of
cold stress. The OsMYB4 expression was upregulated after 5 h of cold treatment (4 ◦C) [25].
The LcMYB4 expression was consistently upregulated in Leymus chinensis within 24 h of cold
treatment (4 ◦C) [26]. Under chilling (4 ◦C) and freezing stress (−4 ◦C), MYB4 expression is
significantly upregulated in different apple varieties [27,28]. After cold treatment at 4 ◦C
for 2 h, TaMYB4 expression is significantly upregulated in spring wheat [29]. However, the
expression and function of TaMYB4 in wheat under freezing stress are still unknown. The
emergence of Dn1 provides a possibility to explore the freezing tolerance functions of wheat
MYB TFs. In the Dn1 transcriptome, we found that several MYB TFs were differentially
expressed under freezing stress. Among them, only the transcriptional level of TaMYB4 was
consistently upregulated with the decline in temperature (with the minimum temperature
being −25 ◦C) [14]. In this research, TaMYB4 expression was significantly upregulated in
Dn1 under freezing stress (Figure 1A). Together with the findings of previous studies, this
suggests that wheat TaMYB4 may function under both chilling and freezing stress. When
the winter field temperature falls to −10 ◦C, the molecular, physiological and biochemical
levels of Dn1 begin to change significantly [5,30,31]. In this research, TaMYB4 expression
was initiated at −10 ◦C in Dn1, functioning sooner than TaMYB4 in J22. TaMYB4 expression
was significantly upregulated in field-grown J22 at −20 ◦C and −25 ◦C, but the fold change
was significantly lower than that of Dn1 (Figure 1B). This suggests that Dn1 might initiate
cold stress defense mechanisms sooner than J22. Our previous study effectively excluded
the influence of temporal and spatial differences and other environmental factors on gene
expression in Dn1 through short-term low-temperature treatment in the greenhouse [7]. In
this research, the TaMYB4 expression pattern in Dn1 under short-term low-temperature
treatment in the greenhouse was similar to that of Dn1 in the field (Figure 1C). This suggests
that TaMYB4 functions under both long-term and short-term freezing stress, and that its
expression may be mainly induced by freezing stress.

In plants, MYB TFs typically function by regulating downstream gene expression
under cold stress. The regulatory mechanisms of AtMYB15 and AtMYB96 in Arabidopsis
have been well characterized. MYB15 can either directly inhibit CBF expression or interact
with ICE1 to regulate CBF expression [32]. MYB96 positively regulates HHPs expression
under cold stress. HHP proteins subsequently activate CBF expression by interacting
with ICE1 [10]. The above studies indicate that MYB TFs affect plant cold tolerance by
regulating the CBF signaling pathway. However, it is rarely reported that MYB TFs di-
rectly regulate antioxidant enzyme genes. In this study, we had several lines of evidence
suggesting that TaMYB4 directly regulates TaMDHAR expression in Dn1 under freezing
stress. First, WGCNA revealed an association between TaMYB4 and TaMDHAR (Figure 2A).
Second, TaMYB4 and TaMDHAR had similar expression patterns under freezing stress
(Figures 1 and 2). Third, TaMYB4 was found to be located in the nucleus and to possess
transcription activation properties (Figures 3 and 4). Finally, TaMYB4 was found to recog-
nize and bind to five MYB binding sites in the TaMDHAR promoter (Figures 5–7). Therefore,
we speculate that TaMYB4 directly regulates TaMDHAR expression in Dn1 in response to
freezing stress.

Extremely low temperatures not only cause freezing damage to plants but also result
in the accumulation of intracellular ROS. If the antioxidant defense system fails to maintain
the ROS level in a normal state, oxidative damage will occur. Excessive ROS leads to
increased MDA content and electrical conductivity, which are biomarkers of cell membrane
damage [33]. Overexpressing OsMYB4 can reduce MDA content and electrical conductivity,
thereby enhancing the cold tolerance of Arabidopsis, tomato and apple [25,34–36]. The
overexpression of pgMYB4 and LcMYB4 can increase Pro content and confer stronger
freezing tolerance to Arabidopsis [26,37]. In this study, the OE-TaMYB4 lines had a higher
Pro content and lower EC, MDA content and ROS content than WT under freezing stress
(Figures 9 and 11). These results coincide with those of previous studies and illustrate that
TaMYB4 is able to improve plant freezing tolerance.



Int. J. Mol. Sci. 2023, 24, 11090 16 of 22

In plants, the antioxidant defense system consists of nonenzymatic and enzymatic an-
tioxidant substances, which maintain the homeostasis of ROS. The enzymatic antioxidants
comprise APX, MDHAR, DHAR, GR, GPX, PRX, CAT and SOD, while the nonenzymatic
antioxidants comprise AsA, GSH, carotenoids, tocopherols, flavonoids, etc. Among them,
AsA, GSH, APX, DHAR, MDHAR and GR constitute the well-known AsA–GSH cycle [38].
MDHAR is a momentous enzyme that maintains the reduced pool of AsA in this cycle [15].
In this study, we found that AtMDHAR2 shares the highest homology with TaMDHAR
(Figure S3D) and contains MYB binding sites in its promoters (Figure S4). OE-TaMYB4 lines
had higher AtMDHAR2 expression and MDHAR activity than WT under freezing stress
(Figure 10). Therefore, we speculate that TaMYB4 can control endogenous AtMDHAR2
expression, thereby enhancing the MDHAR activity of Arabidopsis under freezing stress.
This suggests that the regulatory relationship between TaMYB4 and MDHAR may be con-
served in plants. We found that overexpression of TaMYB4 could promote the expression
of antioxidant enzyme genes in the AsA–GSH cycle under freezing stress (Figure 12). In
addition, OE-TaMYB4 lines had higher antioxidant enzyme activities, AsA/DHA and
GSH/GSSG in the AsA–GSH cycle than WT under freezing stress. These results were
similar to the changes in physiological indices in the OE-TaMDHAR lines under freezing
stress (Figures 13 and 14). This suggests that TaMYB4 may regulate MDHAR expression
to promote AsA–GSH cycle operation in Arabidopsis. Sun et al. found that the ectopic
expression of BrMDHAR confers stronger freezing tolerance by inducing coregulation of
the AsA–GSH cycle and enhancing the antioxidant capacity of host plants [39], which was
consistent with our findings. The DREB/CBF signaling pathway plays an important role
in plant cold resistance [24]. In this study, the OE-TaMYB4 lines had a higher expression
of CBF1, CBF2, CBF3 COR15a, COR47, KIN1 and RD29A than WT at −10 ◦C. And the
expression of CBF1, CBF2 and CBF3 in the OE-TaMYB4 lines was also higher than those in
WT at 24 ◦C (Figure 15). This result was not completely consistent with previous reports,
indicating that TaMYB4 has specific regulation on these cold-responsive genes. However,
the expression of these cold-responsive genes decreased in the OE-TaMYB4 lines after 3 d of
treatment at 4 ◦C. Previous reports have shown that the expression of these genes peaked
after 3 or 24 h of treatment at 4 ◦C, and then gradually decreased [40,41]. This is consistent
with our results. The suppression of the gene expression in the OE-TaMYB4 lines at 4 ◦C
may be to prevent the excessive defense of plants against chilling stress [42]. This suggests
that TaMYB4 may affect the freezing tolerance of plants by regulating the expression of
cold-responsive genes.

In conclusion, the heterologous expression of TaMYB4 promotes the AsA–GSH cycle
operation and is associated with the upregulation of cold-responsive genes, thereby improv-
ing the freezing tolerance of transgenic Arabidopsis (Figure 16). Our findings on the func-
tional role of TaMYB4 will allow additional insight for developing freezing tolerant crops.
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4. Materials and Methods
4.1. Plant Materials

The growing region and cultivation method of winter wheat referred to that used in
previous studies [5]. Briefly, Dn1 and J22 (weakly cold-resistant variety) seeds were sown
in the experimental field on 10 September 2019. When the average value of the lowest tem-
perature of ten consecutive days reached 5 ◦C (1 October 2019), 0 ◦C (1 November 2019),
−10 ◦C (18 November 2019) and −25 ◦C (31 December 2019), the tillering nodes were
sampled. For the greenhouse component of the study, the winter wheat indoor cultiva-
tion method from previous studies was improved upon [7]. Briefly, Dn1 seedlings were
cultivated in a 22 ◦C greenhouse (15 d) and subsequently transferred to a 5 ◦C incubation
chamber for cold acclimation (30 d). Then, the temperature was gradually decreased and
the seedlings were treated for 1 d each at 0, −10 and −25 ◦C. The tillering nodes of wheat
were sampled at the above temperatures.

The Arabidopsis (Colombia ecotype) cultivation method was described in previous
studies [4]. Briefly, Arabidopsis seedlings were cultivated in a greenhouse at 24 ◦C for 28 d
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and subsequently transferred to a 4 ◦C incubation chamber for 3 d of cold acclimation.
After cold acclimation, the seedlings were subjected to 2 h of cold treatment at −10 ◦C. The
leaves were sampled at 24, 4 and −10 ◦C. All plant materials mentioned above were stored
at −80 ◦C. After 7 d of recovery culture, the survival rate was determined.

4.2. Quantitative Real-Time PCR

Total RNA was isolated from plants with TRIzol reagent (CWBIO, Beijing, China).
The cDNA was subsequently obtained from mRNA with a HiScript III 1st Strand cDNA
Synthesis Kit (Vazyme, Nanjing, China). Quantitative real-time PCR (qRT-PCR) was used
for gene quantification analysis, and the detailed experimental methods referred to those
used previous studies [6]. The data were analyzed by the 2−∆∆CT method.

4.3. Cloning and Bioinformatic Analysis

The coding sequences (CDS) of TaMYB4 (TraesCS7D02G272400) and TaMDHAR
(TraesCS7D02G277500) were queried in the wheat multiomics database (http://202.19
4.139.32/) (accessed on 1 September 2020) and amplified with specific primers (Table S1).

Subcellular localization prediction, homologous sequence alignment and phylogenetic
analysis of TaMYB4 and TaMDHAR were performed by referring to the method of previous
studies [4].

4.4. Subcellular Localization Analysis

The CDS of TaMYB4 and TaMDHAR were constructed into the pCAMBIA2300-EGFP
vector. Tobacco leaves (30 days old) were then injected with Agrobacterium tumefaciens
GV3101 harboring pCAMBIA2300-EGFP, pCAMBIA2300-TaMYB4-EGFP or pCAMBIA2300-
TaMDHAR-EGFP plasmids. After 72 h of injection, the leaves were harvested to observe
the EGFP signal under a fluorescence microscope. Western blot analysis was performed
to further analyze the subcellular localization results. The detailed experimental methods
refer to those used by the authors in [43]. Anti-EGFP antibody (1:1000, Proteintech, Wuhan,
China) was used as the primary antibody to probe EGFP. Horseradish peroxidase (HRP)-
conjugated anti-rabbit antibody was chosen as the secondary antibody (1:2000, Proteintech).

4.5. Yeast One-Hybrid Assay

TaMYB4 was constructed into the pGADT7 vector as an effector. There are five MYB
binding sites (MRE, MBS, Myb, MYBrs and MYBbs) in the 2000 bp promoter sequence
of TaMDHAR. Three tandem copies of MYB binding sites and the 2000 bp promoter se-
quence of TaMDHAR were separately constructed into the pHis2 vector as reporters. The
protein–DNA interactions were analyzed according to the growth status of the Y187 strain
containing reporter and effector on triple dropout synthetically defined (SD) medium
lacking Leu, Trp and His containing 60 mM 3-AT.

4.6. Transient Expression Assay in Tobacco

To analyze the promoter activity and validate the regulatory relationship between
TaMYB4 and TaMDHAR, a transient expression assay for tobacco (Nicotiana tabacum) was
performed. The sequence of the TaMYB4 promoter (2000 bp) was constructed into the
pBI121-GUS vector. Tobacco leaves (30 days old) were then injected with A. tumefaciens
GV3101 harboring the pBI121-ProTaMYB4-GUS plasmid. After 72 h of injection, the tobacco
was subjected to 2 h of cold treatment at 4 ◦C. The leaves were collected for histochemical
staining. Then, the GUS gene quantitative detection kit (Coolaber, Beijing, China) was
applied for determining GUS activity in tobacco leaves.

The TaMDHAR promoter was truncated according to the MYB binding site distribu-
tion, with the 2000 bp promoter sequence and truncation sequences (P1, P2, P3 and P4)
constructed into the pBI121-GUS vector as reporters. The TaMYB4 overexpression construct
was used as an effector. Tobacco leaves (30 days old) were then injected with A. tumefaciens
GV3101 harboring the reporter and effector in a 1:1 ratio. After 72 h of injection, the tobacco
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was subjected to 2 h of cold treatment at 4 ◦C. The leaves were collected for histochemical
staining and GUS activity assays.

The sequence of TaMDHAR promoter (2000 bp) and truncation sequences were also
constructed into the pGreen II 0800-LUC vector. The TaMYB4 overexpression construct
was used as an effector. Tobacco leaves (30 days old) were then injected with A. tumefaciens
GV3101 (pSoup) harboring the reporter and effector in a 1:1 ratio. After 48 h of injection,
the tobacco was subjected to 2 h of cold treatment at 4 ◦C. The LUC signal was visualized
with a CCD system. Then, the Dual Luciferase Reporter Gene Assay Kit (Yeasen, Shanghai,
China) was applied for determining LUC and REN activities in tobacco leaves.

4.7. Plant Overexpression Vector Construction and Transformation

The CDS of TaMYB4 and TaMDHAR were constructed into the pCAMBIA2300-35S
vector. Plasmids pCAMBIA2300-35S-TaMYB4 and pCAMBIA2300-35S-TaMDHAR were
introduced into A. tumefaciens GV3101. The OE-TaMYB4 and OE-TaMDHAR lines were gen-
erated by transforming pCAMBIA2300-35S-TaMYB4 and pCAMBIA2300-35S-TaMDHAR
plasmids into Arabidopsis utilizing the floral dip method.

4.8. Physiological Indices Determination

The content of H2O2 in Arabidopsis leaves was assessed by DAB staining, and the
content of O2

•− was assessed by NBT staining. The detailed experimental methods refer
to those used by the authors in [44]. H2O2 and O2

•− contents were determined using a
commercial assay kit (Comin, Suzhou, China), and the specific procedures were carried
out as per the manufacturer’s instructions. Briefly, the H2O2 content was determined by
monitoring the absorbance of the titanium–peroxide complex formed by H2O2 and titanium
sulfate at 415 nm [45]. The O2

•−, hydroxylamine hydrochloride, p-aminobenzenesulfonic
acid and α- Naphthylamine reaction generates azo compounds. The O2

•− content was
determined by monitoring the absorbance of azo compounds at 530 nm [46].

The MDA content and EC determination method was carried out in accordance with
a previous study [47]. Pro content was determined using a kit (Comin). Briefly, the pro
content was determined by monitoring the absorbance of the red substance formed by the
reaction of proline and acid ninhydrin at 520 nm [48].

Antioxidant enzyme activity and non-enzymatic antioxidant content were also deter-
mined using kits (Comin), and the specific procedures were carried out in accordance with
the manufacturer’s instructions. Briefly, SOD can remove the O2

•− in the reaction system.
SOD activity was determined by monitoring the absorbance of blue formazan generated
by the reaction of the remaining O2

•− with nitro-blue tetrazolium at 560 nm [49]. APX
catalyzes the oxidation reaction of AsA and H2O2. The APX activity was calculated by
measuring the AsA oxidation rate [50]. DHAR catalyzes the reduction reaction of GSH
and DHA. DHAR activity was calculated by measuring the rate of DHA reduction [51].
MDHAR catalyzes the reduction reaction of NADPH and MDHA. MDHAR activity was
determined by monitoring the absorbance of NADPH at 340 nm [52]. GR catalyzes the
reduction reaction of NADPH and GSSG. GR activity was determined by monitoring the
absorbance of NADPH at 340 nm [53].

The AsA content was determined by monitoring the absorbance of the substance
generated by the reaction of AsA and o-Dianisidine bis (diazotized) zinc double salt at
420 nm [54]. Dithiothreitol reduces DHA to produce AsA. The DHA content was calculated
by measuring the rate of AsA formation in the reaction system [55]. The GSH content
was determined by monitoring the absorbance of the complex formed by the reaction of
5,5′-Dithiobis-(2-nitrobenzoic acid) and GSH at 412 nm. GR catalyzes the reduction of GSSG
to generate GSH in the reaction system. The GSSG content was determined by monitoring
the absorbance of the complex formed by the reaction of 5,5′-Dithiobis-(2-nitrobenzoic acid)
and GSH at 412 nm [56]. The experimental data were calculated with fresh weight.
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4.9. Statistical Analysis

Each experiment was performed with at least three biological replicates. All data,
mean ± SD (standard deviation), were analyzed using the Student’s t-test and ANOVA
(analysis of variance) with GraphPad Prism 9.0 at significance levels of * p < 0.05, ** p < 0.01,
*** p < 0.001 and **** p < 0.0001.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241311090/s1.
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