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Abstract: The endocannabinoid system (ECS) governs and coordinates several physiological pro-
cesses through an integrated signaling network, which is responsible for inducing appropriate
intracellular metabolic signaling cascades in response to (endo)cannabinoid stimulation. This intri-
cate cellular system ensures the proper functioning of the immune, reproductive, and nervous systems
and is involved in the regulation of appetite, memory, metabolism, and development. Cannabinoid
receptors have been observed on both cellular and mitochondrial membranes in several tissues and
are stimulated by various classes of cannabinoids, rendering the ECS highly versatile. In the context
of growth and development, emerging evidence suggests a crucial role for the ECS in cellular growth
and differentiation. Indeed, cannabinoids have the potential to disrupt key energy-sensing metabolic
signaling pathways requiring mitochondrial-ER crosstalk, whose functioning is essential for success-
ful cellular growth and differentiation. This review aims to explore the extent of cannabinoid-induced
cellular dysregulation and its implications for cellular differentiation.

Keywords: stem cells; cannabinoids; mitochondria; cellular differentiation; endoplasmic reticulum;
oxidative stress; cellular metabolism

1. Endocannabinoid Signaling

The endocannabinoid system (ECS) is an endogenous system of neuromodulatory
signaling that includes anandamide (AEA) and 2-arachidonoylglycerol (2-AG), collectively
referred to as endocannabinoids, as well as the target receptors and enzymes that regulate
endocannabinoid homeostasis. Canonical endocannabinoid receptors include cannabinoid
receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), which are expressed at varying
levels across different tissues [1,2]. The activation of CB1 and/or CB2 receptors leads to
fast or slow downstream signaling events in the form of modulation of electrochemical
gradients or induction of intracellular signaling cascades (e.g., cAMP-PKA, ERK, MAPK,
PI3K), respectively. Synthetic endocannabinoids and phytocannabinoids have all been
shown to interact with other receptors, including vanilloid receptors TRPv1, TRPv2, and
TRPA1, G-protein coupled receptors (GPCRs) GPR55, GPR18, and GPR19, as well as nuclear
receptors, such as the peroxisome proliferator-activated receptor gamma (PPARγ) [3,4].

Since initially being discovered in the brain, CB1 receptors have been well-characterized
in the coordination of several brain processes, such as motor function, memory formation,
cognition, and even appetite regulation [5,6]. Interestingly, at the cellular level, CB1
activation has been linked to adult neurogenesis in the subventricular zone (SVZ) in a
murine neuronal model. Xapelli et al. showed that stimulating CB1R with the synthetic
endocannabinoid (R)-(+)-Methanandamide (R-m-AEA) increased cellular proliferation
after 48 h and promoted cellular differentiation of murine neural stem cells (NSCs) after
7 days [7]. CB2 receptors are more broadly expressed in peripheral tissues, such as immune
cells, where they facilitate immunomodulation [8,9]. Moreover, CB2 agonists have been
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demonstrated to promote chemotaxis and enhance colony formation in hematopoietic stem
cells (HSCs) [10]. Together, these key findings establish a crucial position for ECS signaling
in tissue regeneration and development, which will be explored further below.

Although both CB1 and CB2 are classified as GPCRs embedded in the plasma mem-
brane, these receptors are activated and antagonized by different classes of cannabinoids
with different potencies [11]. For instance, endogenous AEA is a partial agonist of CB1
and a weak partial agonist of CB2 [12]. Likewise, cannabinoids derived from the cannabis
plant, or "phytocannabinoids,” are able to interact with CB1 and/or CB2 receptors with
varying affinities. A major cannabinoid derivative from the cannabis plant, delta-9-
tetrahydrocannabinol (THC), has been shown to partially agonize both CB1 and CB2
receptors, whereas another major phytocannabinoid, cannabidiol (CBD), is a negative
allosteric modulator of CB1 and a weak antagonist of CB2 [11].

2. Cellular Differentiation

Across embryonic development to late adulthood, highly regulated cellular differenti-
ation is imperative for proper development and growth, as well as for the maintenance of
specialized tissues throughout life. In general, this crucial cellular process underlies organo-
genesis and tissue regeneration, and its dysregulation or pathological dysfunction may
accelerate aging and/or the onset of disease. Furthermore, the effects of cannabinoids on
cellular differentiation are seen across a broad variety of tissues, including many peripheral
tissues such as muscle, bone, and blood [13]. While we will not address the comparison
of signaling pathways between tissues, our review will focus more specifically on central
pathways related to mitochondrial function and endoplasmic reticulum (ER) stress, both of
which are well known to impact cellular differentiation.

2.1. Stem Cell Characteristics

Cells that have the ability to develop into more specialized cell types by undergoing
differentiation are collectively referred to as "stem cells." The dynamic range and ability of
stem cells to differentiate into more mature cell types allow them to be further categorized
in terms of cell potency [14]. For instance, stem cells that can potentially differentiate
into all cell types are totipotent, whereas stem cells that can differentiate into most but
not all cell types are pluripotent. Embryonic stem cells (ESCs) are defined as totipotent
and pluripotent, as they give rise to multipotent stem cells. Additionally, other stem
cells have the ability to differentiate into a specifically related family of cell types and are
thus multipotent. For example, NSCs are among the most well-appreciated multipotent
stem cells, with a large body of literature dedicated to adult neurogenesis that takes place
within the SVZ and hippocampal regions [15]. Multipotent mesenchymal stem cells (MSCs)
can differentiate into bone, cartilage, muscle, and skin tissues. Immune cell populations
originate from a common multipotent hematopoietic stem cell [16].

All stem cells share two fundamental characteristics: their inherent ability to both
(1) self-renew and (2) differentiate into specialized cell types [17]. To elaborate, undifferen-
tiated or partially differentiated stem cells receive metabolic signals that induce them to
either self-renew, thereby replenishing the existing stem cell population, or to commit and
differentiate into specialized tissues through asymmetric division [18]. The tendency of
stem cells to favor one fate decision over another is dependent on several intracellular and
extracellular signaling cues. Stem cells are not constitutively active; rather, a quality control
mechanism exists wherein a subset of stem cells enter quiescence, a state of metabolic de-
pression, to maintain a functional pool of stem cells throughout adulthood [19]. Within this
subset of metabolically inactive stem cells, there exist naïve and primed pluripotency states,
which possess inherent epigenetic distinctions [20]. In humans, the former closely resemble
premature embryonic epiblast stem cells, and the latter resemble post-implantation epiblast
cells [20,21]. The dynamic ability of stem cells to maintain or exit pluripotency is reliant on
the coordination of pro-differentiation or pro-self-renewal genes at the transcriptional level.
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2.2. Key Intracellular Signaling Pathways Involved in Stem Cell Function and Differentiation

In response to chemical signals in their microenvironment, stem cells undergo tran-
scriptional changes at the nuclear level to facilitate developmental and regenerative pro-
cesses. Extrinsic pressures due to oxygen tension and the presence of inflammatory cy-
tokines have been demonstrated to mediate stem cell differentiation by altering cellu-
lar transcriptional programs [22]. Stem cells are maintained through the actions of the
Wnt and Notch signaling pathways, both of which have been implicated in promoting
“stemness” [23–28]. In general, the canonical Wnt/β-catenin signaling pathway leads to the
stabilization of β-catenin, followed by the accumulation and localization of β-catenin in the
nucleus, where it crucially regulates genes related to pluripotency [29,30]. In naïve human
embryonic stem cells (hESCs), Xu et al. demonstrated that the inhibition of Wnt signaling
decreases the proliferative capacity of the naïve stem cell population and further promotes
a primed stem cell phenotype [31]. The addition of recombinant Wnt3 partially rescued the
proliferative potential of hESCs, demonstrating that Wnt signaling is critical in maintaining
self-renewal [31]. During placentation in early pregnancy, hypoxic conditions (2.5% O2)
dominate the trophoblast microenvironment before the reestablishment of normoxic levels
(20% O2) following placentation [32].

In some cases, stem cells respond to oxygen deprivation by recruiting stable hypoxia-
inducible factors (HIFs), which promote vascularization and preserve cellular homeostasis
through the regulation of bioenergetic pathways. Activated HIF transcription factor sub-
units localize to the nucleus and bind to the hypoxia response element (HRE), which
promotes the transcription of cell proliferation and survival genes. However, the transcrip-
tion factor HIF2α has also been shown to activate Wnt and Notch signaling pathways. To
illustrate the key role of HIFs during trophoblast stem cell differentiation, an early study
found that HIF1α- and HIF2α- null embryos fail to undergo placental morphogenesis as
a result of dysfunctional stem cell fate determination [33]. Interestingly, Caniggia et al.
observed substantial levels of HIF1α and TGFβ3, an inhibitor of extravillous trophoblast
(EVT) differentiation, during early pregnancy [34], and further uncovered that HIF1α is
located upstream of TGFβ3 gene expression, thus mediating cell fate genes [35].

The exact role of inflammation in mediating stem cell homeostasis is still unclear [36].
Some studies have reported a negative regulatory role for inflammation, wherein stem
cell proliferation is diminished [37]. To emphasize the inhibitory role of inflammation
on neurogenesis, Monje and colleagues found that treatment with indomethacin, an anti-
inflammatory drug, rescued neural stem cell function following endotoxin-induced inflam-
mation [38]. Likewise, in a mouse model of cortical development, it was observed that
induced, systemic maternal inflammation resulted in less ventricular proliferation in the
fetus, indicating negative regulation of stem cell function [39]. Finally, in mice lacking the
tumor necrosis factor receptor 1 (TNFR1), it was shown that cell proliferation was consider-
ably elevated in the dentate gyrus, suggesting that negative regulation might be the result of
pro-inflammatory responses mediated by TNFR1 [37]. In contrast, Wolf et al. demonstrated
that neural stem/progenitor cells (NSPCs) in the mouse hippocampus display enhanced
proliferative capacity following bacterial endotoxin-induced inflammation [40]. Previous
in vitro studies have identified key inflammatory cytokines, TNFα and IL-1β, as promoters
of NSPC proliferation and differentiation by activating either NFKβ or JNK signaling
pathways [41,42]. Taken together, it is apparent that inflammation plays a complex and
multifaceted role in mediating stem cell function.

In addition to oxygen-sensing mechanisms, there exist various nutrient-sensing sys-
tems designed to coordinate cellular homeostasis with nutrient availability. Among these,
the mammalian target of rapamycin (mTOR) protein kinase and AMP-activated kinase
(AMPK) emerge as fundamental intracellular nutrient sensors with opposing downstream
effects [43]. To elaborate, the activation of mTOR enhances anabolic processes, including
cell growth, protein translation, and mitochondrial metabolism, whereas, under low nutri-
ent conditions, AMPK activation promotes catabolic activities, such as glucose metabolism
and autophagy. The cross-regulation of autophagy by mTOR and AMPK points to a cru-
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cial role in autophagic processes in stem cell dynamics. In HSCs and satellite cells, the
deletion of an autophagy-related gene, Atg7, resulted in the loss of both HSC and satel-
lite cell pools, phenotypes that were associated with increased ROS production and the
accumulation of damaged mitochondria [44,45]. Likewise, Atg12-deficient HSCs exhibited
similar deficits in HSC self-renewal [46], suggesting that autophagy might play a role in
removing mitochondria to regulate stem cell bioenergetics. mTORC1 is complexed with
several proteins, including the regulatory-associated protein of mTOR (Raptor) and the
DEP-domain-containing mTOR interacting protein (Deptor), which have a range of func-
tions from substrate recognition to the regulation of mTOR activity, respectively. The major
downstream targets of mTOR, a serine/threonine kinase, include the ribosomal protein
S6 kinase (S6K1) and the eukaryotic initiation factor 4E-binding protein (4EBP1), which
function in amino acid and ATP sensing. Specifically, being fundamental components for
protein synthesis, amino acids indeed promote mTORC1 complex assembly, while ATP
availability supports the energy requirement for downstream anabolic processes [47]. Upon
its phosphorylation and activation by mTORC1, pS6K1 further phosphorylates eIF4B, a
cofactor required for mRNA translation initiation due to its RNA helicase activity, and
PDCD4, an inhibitor of eIF4B, thus promoting its degradation [48]. Alternatively, the
native function of 4EBP in preventing the formation of the eIF4E complex required for
translation by binding to and inhibiting eIF4E is hindered by mTORC1 phosphorylation,
which ultimately dissociates 4EBP from eIF4E [49]. In addition, these mTORC1 effectors
may possess multifaceted roles in cellular growth. For instance, de novo lipogenesis can
be induced directly through an mTORC1-mediated pathway, wherein S6K1 activates the
sterol-responsive element binding protein (SREBP), or indirectly, in which the absence of
mTORC1 signaling leads to the association of Lipin1 and SREBP, thus preventing its activa-
tion [50]. Taken together, a complex interplay of feedback loops guiding mTORC1 signaling
is responsible for promoting anabolic processes during conditions of substrate abundance.

In the context of aging, it is becoming increasingly apparent that mTOR contributes
to tissue homeostasis by modulating stem cell maintenance, differentiation, and prolifer-
ation [51]. In a phosphoinositide 3-kinase (PI3K)/Akt-dependent manner, mTORC1 has
been shown to promote the differentiation or proliferation of NSCs, HSCs, and mammary
and germline stem cells upon stimulation by growth factors such as IGF [52–54]. IGF-
mediated stimulation has been implicated in neuronal differentiation, wherein it induces
an intracellular signaling cascade that results in the phosphorylation of Akt at Ser473 and
Thr308 residues in differentiating olfactory bulb stem cells (OBSCs) [55]. Likewise, exit
from pluripotency and initiation of differentiation have been linked to mTOR in hESCs,
where these signaling cascades are tightly regulated. Easley et al. knocked down the
rapamycin-insensitive companion of the mammalian target of rapamycin (Rictor), an as-
sociated protein of the mTORC2 complex, and tuberous sclerosis complex 2 (TSC2), an
inhibitor of mTORC1 [56], using siRNA-mediated technology, and found increased activa-
tion of p70 S6K coupled with greater differentiation in hESCs [57]. In contrast, a recent study
by Lee et al. found that inhibiting the well-established negative regulator of PI3K signaling,
phosphatase, and tension homolog (PTEN), led to increased human NSC proliferation [58].
Furthermore, Schaub et al. demonstrated that mTORC1 and mTORC2 are involved in
coordinating osteoblastic differentiation in MSCs [59]. In brief, MSC differentiation is
achieved in vitro by incubating cells in an osteoblast induction medium for three weeks,
after which the expression of key osteoblast marker proteins, such as osteopontin, collagen
I and III, and Cbfa1, is highly expressed. However, it was found that osteoblast marker
proteins were markedly reduced in MSCs treated with rapamycin, an mTOR inhibitor [59].
More specifically, their findings revealed that rapamycin exposure led to decreased phos-
phorylation of p70-S6K, a downstream effector of mTORC1, whereas mTORC2 activity
was increased under the same conditions. Taken together, these observations suggest the
existence of an intricate feedback loop between intracellular signaling targets, mTORC1,
and mTORC2, in their co-regulation of cellular function.
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3. Metabolic Regulation of Stem Cell Fate Decisions
3.1. Mitochondrial Dynamics

Emerging evidence emphasizes the critical regulation of cell fate programmes through
intricate metabolic networks coupled with intracellular cross-talk between organelles. To be-
gin, the role of mitochondrial dynamics and metabolism in regulating cell fate decisions has
been well appreciated, considering that mitochondrial morphological alterations directly
influence the metabolic landscape. Mitochondrial dynamics refers to the inherent ability of
mitochondria to undergo fusion or fission processes in response to microenvironmental
conditions. Elongated mitochondria preferentially promote oxidative phosphorylation
(OXPHOS), often characterized as an oxygen-rich, high-ATP-producing energy state, due to
their well-defined and abundant cristae folds that provide greater surface area to accommo-
date electron transport chain (ETC) machinery. Since mitochondria are double-membrane
bound, mitochondrial fusion is accomplished through the combined activities of dynamin-
related GTPases, optic atrophy protein 1 (Opa1), and mitofusins 1 and 2 (Mfn1/2), which
govern inner mitochondrial membrane (IMM) fusion and outer mitochondrial membrane
(OMM) fusion, respectively [60,61]. Additionally, the ultrastructure of mitochondria and
the extent of cristae remodeling are heavily contingent upon Opa1 activity, a mechanism
through which cytochrome c release is tightly controlled, further suggesting a critical role
for mitochondrial dynamics in programmed cell death. [62].

Alternatively, mitochondrial fragmentation is linked to a glycolytic energy state and
contributes to quality control (QC) mechanisms within the cell by providing additional
mitochondria to support cell growth and division while priming damaged mitochondria
for mitophagy [63,64]. Mitochondrial fission occurs when a cytosolic form of dynamin-
related protein 1 (Drp1) is phosphorylated on specific serine residues, such as serine 616
(S616), by active ERK2 during MAPK signal transduction, thus promoting its subsequent
translocation to the mitochondrial membrane [65]. Here, Drp1 aggregates with either
mitochondrial fission 1 (Fis1) protein or mitochondrial fission factor (MFF) to facilitate
cleavage of the mitochondrion [66]. In contrast, the phosphorylation of serine 637 (S637) by
PKA terminates Drp1 activity and promotes mitochondrial elongation [67]. Evidently, post-
translational modifications to the phosphorylation status of key mitochondrial dynamics
markers can critically regulate their activity.

3.2. Metabolic Switch as a Driver of Stem Cell Differentiation

As mentioned above, the mitochondrial phenotype is dominated by either OXPHOS
or aerobic glycolysis, both of which generate ATP and, to some degree, metabolic by-
products such as mitochondrial reactive oxygen species (mtROS). Contrary to the popular
narrative that free radicals compromise cellular integrity, increasing evidence is pointing to
a crucial cellular signaling role for mtROS [68,69]. For instance, following the stimulation
of rat vascular smooth muscle cells (VSMCs) by platelet-derived growth factor (PDGF),
Sundaresan et al. observed elevated levels of hydrogen peroxide (H2O2) [70]. Interestingly,
these PDGF-induced cellular effects were inhibited once H2O2 was neutralized, suggesting
that free radicals could participate in growth signaling [70]. In general, mtROS production
is relatively low during aerobic glycolysis and becomes elevated during OXPHOS, with the
majority of mtROS being generated from electron leakage that occurs at Complexes I and
III [71,72].

A growing body of evidence suggests a crucial role for mitochondria upstream of
stem cell fate decisions. Generally, self-renewing stem cells are primarily reliant on aero-
bic glycolysis and characterized by low levels of intracellular ROS. Aerobic glycolysis is
favorable for self-renewing cells as it provides both metabolic intermediates and increased
rates of ATP production to support cell division [73]. At the onset of stem cell commitment
and differentiation, stem cells undergo an apparent metabolic shift from glycolysis to
OXPHOS, during which ROS and ATP production are increased to sustain escalating ATP
demands [74–77]. Indeed, these transient metabolic changes are accompanied by mito-
chondrial morphological changes in stem cell populations [78]. Thus, prior to and during
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cellular differentiation, predominantly fragmented and spherical mitochondria in primitive
stem cell populations emerge as elongated mitochondria containing well-defined cristae,
capable of supporting oxidative respiration [79–81]. To further emphasize the link between
mitochondrial morphology and stem cell fate decisions, recent literature has demonstrated
that mitochondrial dynamics occur upstream of stem cell fate decisions. In NSCs, the
deletion of mitochondrial fusion proteins, Opa1 and Mfn1/2, promoted mitochondrial
fragmentation and neural stem cell commitment and differentiation, suggesting that acute
metabolic shifts confer stem cell functionality. Further, they elucidated a role for ROS in
activating an NRF2-dependent pathway that suppressed self-renewal genes and promoted
the expression of differentiation genes [82]. Similarly, Luchsinger and colleagues observe
that although quiescent long-term hematopoietic stem cells (LT-HSC) possess primarily
fragmented mitochondria, their differentiation into short-term hematopoietic stem cells
(ST-HSC) is coupled with elevated levels of Mfn2 and mitochondrial elongation [83]. In
addition, this differentiation is seemingly impaired following the deletion of Mfn2, as the
LT-HSC pool remains consistent in size [83]. Overall, an overwhelming body of literature
recognizes the integrated role of mitochondrial dynamics during stem cell differentiation
(Figure 1).
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Figure 1. Interplay of mitochondrial dynamics and metabolic reprogramming during stem cell
differentiation. Stem cells either undergo self-renewal in order to maintain the stem cell population
or undergo differentiation, giving rise to more specialized cell types. Self-renewing and quiescent
stem cells, such as hematopoietic stem cells (HSCs), neural stem cells (NSCs), and mesenchymal
stem cells (MSCs), possess low metabolic activity, generally favoring glycolytic metabolism, and
exhibit fragmented mitochondrial phenotypes. The metabolic shift from glycolysis to oxidative
phosphorylation (OXPHOS) marks the onset of stem cell commitment and differentiation, which
is accompanied by a transiently elongated mitochondrial phenotype and greater reactive oxygen
species (ROS) production. In NSCs, acute ROS production serves to activate downstream nuclear
targets, thereby upregulating NRF2 transcription and promoting NSC differentiation gene expression.
Created with Bio Render.com. Accessed on 19 June 2023.

3.3. Endocannabinoid Signaling at Mitochondrial CB1 (mtCB1)

Previous studies have mainly focused on elucidating the effects of THC on cellular
functions such as apoptosis, respiration, and metabolism. Jia et al. conducted in vitro drug
treatments with 10 µM of THC in Jurkat cells and found that THC suppresses downstream
MAPK effectors and leads to the translocation of a pro-apoptotic Bcl-2 protein, Bad, to
mitochondria where apoptosis is initiated [84]. Treatment of BeWo placental cells with
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20 µM THC was associated with elevated mtROS production and oxidative stress, de-
creased ATP production, increased mitochondrial fragmentation as evidenced by elevated
Drp1 expression, and reduced mitochondrial membrane potential after 48 h [85,86]. In
isolated mitochondria, 30 µM of CBD induces mitochondrial calcium (Ca2+) overload and
subsequent formation of mitochondrial permeability transition pores (mPTP), causing
mitochondrial swelling due to an influx of permeable small molecules and eventually
cytochrome c release [87]. Loss of cytochrome c from the mitochondrial matrix disrupts
electron transport chain (ETC) function, which is evident by the apparent loss of ATP
production, and is further involved in apoptosome formation in the cytoplasm. It has been
postulated that CBD may exert these mitochondrial effects by interacting with the mitochon-
drial voltage-dependent anion channel 1 (VDAC1), thereby promoting a configurational
change to a “closed” state that attracts Ca2+ accumulation in the intermembrane space.
Interestingly, <10 µM of CBD promoted autophagy and cell death, whereas ~1 µM CBD
seemingly stimulated cell proliferation, which suggests that Ca2+ regulation by cannabi-
noids is mediated through mitochondria and may depend on the doses employed [87]. In
addition, evidence from human bronchial epithelial cells suggests concentration-dependent
effects of THC, and a synthetic analogue, CP55,940, induced cellular Ca2+ fluxes via both
store-dependent capacitive Ca2+ entry routes as well as non-capacitive routes [13,88]. While
a detailed discussion of these routes is beyond the scope of this review, the possibility that
cannabinoids can impact complex Ca2+ signaling pathways that impact cellular differentia-
tion and function should be borne in mind. Gross et al. also observed a dose-dependent
decrease in mitochondrial oxygen consumption in CBD-treated humans and canine gliomas,
furthering the idea that cannabinoids may interact with and dysregulate mitochondrial
function [89].

Until recently, the effects of THC and CBD on cellular function were mainly attributed
to their activity at the plasma membrane-bound cannabinoid receptors; however, this
notion has been challenged following the discovery of a novel mitochondrial CB1 (mtCB1)
receptor [90]. Specifically, work by Bénard et al. identified drastic differences in the expres-
sion of mtCB1 receptors in wild-type compared to CB1 knockout (CB1-KO) mice, noting
that 30% of CB1+/+ CA1 mitochondria expressed mtCB1 [90]. Additional investigations
revealed that THC directly activates mtCB1, triggering an intramitochondrial G-protein
signaling cascade wherein Complex I is destabilized and mitochondrial respiration is
diminished [91]. The genetic sequence encoding mitochondrial CB1 was elucidated by
Hebert-Chatelain and colleagues, who identified that the first 22 N-terminal amino acids
in the coding region of CB1 account for its mitochondrial localization [92]. Using primary
murine hippocampal cells, Ma et al. investigated how mtCB1 regulates mitochondrial
function following cerebral ischemia/reperfusion (I/R) injuries and discovered that ACEA-
induced mtCB1 receptor activation diminished Ca2+-induced mitochondrial damage, which
was fully blocked and only partially blocked by cell-permeant or cell-impermeant CB1
receptor antagonists, respectively [93]. Similarly, mtCB1 was identified by electron mi-
croscopy in hypothalamic pro-opiomelanocortin (POMC) neurons, where it may function
by facilitating mitochondrial adaptations required for the activation of these neurons, thus
stimulating the sensation of hunger [94]. Importantly, recent studies have identified mtCB1
in male and female reproductive tissues. The distinct localization of mtCB1 to murine
ovarian interstitial glands, which are primarily progesterone-producing cells, suggests a
potential implication for this novel receptor in steroidogenesis [95]. This finding is con-
sistent with an earlier discovery of mtCB1 in sperm cells. Here, Aquila et al. determined
that AEA, an mtCB1 agonist, plays a role in sperm survival and facilitates the acrosome
reaction [96]. Finally, mtCB1 has also been found in muscle tissue, where its known function
is currently limited to regulating mitochondrial respiration [97]. Therefore, although the
role of mtCB1 remains widely unrecognized in the broader context of cellular function, it
appears that cannabinoid signaling influences mitochondrial dynamics and respiration,
regardless of whether these changes are mediated through the mitochondrial or plasma
membrane-bound receptor.
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4. Endoplasmic Reticulum (ER) and the ER Stress Response
4.1. Structure of the ER

Aside from being the largest membrane-bound organelle, the endoplasmic reticulum
(ER) has been primarily recognized for its roles in protein synthesis, calcium homeostasis,
and lipid biosynthesis. In order to develop an appreciation for these crucial cellular roles, we
must first emphasize some key structural domains. To begin, the ER periphery is comprised
of membrane projections referred to as either cisternae (“sheets”) or tubules. While the
cisternae are densely covered in ribosomes, which are the cellular machinery that carries
out protein translation and assist in colocalization to the ER lumen, the tubules, on the
other hand, extend as finger-like projections towards the cytosol and have relatively fewer
ribosomal units [98]. As such, with reference to their relative ribosomal content, cisternae
and tubules are referred to as "rough" ER and "smooth" ER, respectively. Importantly, the
branching nature of ER tubules implies their contact with other intracellular organelles,
which are collectively referred to as membrane contact sites (MCSs), further implying
that the ER contributes to highly coordinated cellular processes that require intracellular
communication between organelles [98]. In fact, up to 20% of the mitochondrial surfaces are
closely affiliated with ER membranes, and these contact sites are more specifically classified
as mitochondria-associated membranes (MAMs) [99]. For instance, in a study conducted by
Gomez-Suaga et al., they demonstrate that autophagy is closely regulated by mitochondrial-
ER tethering between a mitochondrial protein, PTPIP51, and an ER-membrane-associated
protein, VABP, wherein the depletion or overexpression of these proteins leads to increased
or decreased autophagosome formation, respectively [100].

4.2. Function of ER in Key Cellular Processes

Although protein synthesis is highly coordinated, dysfunctional and misfolded pro-
teins may arise. As a result, there are inherent protein quality control mechanisms in
place, such as the ER-associated degradation pathway (ERAD), which provides a mech-
anism through which irregular polypeptides may be degraded [101]. Early studies first
identified this lysosome-independent, ER-specific proteolytic pathway upon observing
that T-cell receptor subunits could be degraded without the activity of lysosomal pro-
teases [102]. Since then, the role of the ER proteolytic pathway, now commonly known
as the ubiquitin-proteasome system (UPS), has been well characterized. In brief, proteins
destined for degradation are tagged with special polyubiquitin chains that are recognized
and cleared by the proteasome [103,104]. When protein degradation pathways fail and/or
misfolded or abnormal proteins aggregate, the ER stress response pathway can become acti-
vated, which is prevalent in the progression of pathological conditions such as Alzheimer’s
disease [105,106].

The ER membrane contains many distinct channels and receptors responsible for trans-
porting Ca2+ across the membrane. Given that Ca2+ molecules act as secondary messengers
in signal transduction pathways of all cell types and contribute to the broader physiological
role of certain tissues, such as in the context of muscle contraction or neuronal firing, there
is a critical need to regulate intracellular Ca2+ levels [107]. Normally, the levels of cytosolic
Ca2+ are considerably lower (~100 nM) relative to those of the ER lumen (~100–800), in-
dicating that the latter plays a role in calcium deposition [108]. In general, Ca2+ release is
mediated by the activation of a GPCR that proceeds to stimulate PLC, after which activated
PLC continues to facilitate the cleavage of phosphatidylinositol 4,5 bisphosphate (PIP2) into
diacyl-glycerol (DAG) and inositol 1,4,5 triphosphate (IP3). The ER membrane contains
both Ca2+-uptake channel sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pumps and
several Ca2+-releasing channels, such as ryanodine (RyRs) and IP3 receptors (IP3R) [109]. In
response to increased cytosolic calcium, SERCA pumps increase Ca2+ uptake into the ER lu-
men to prevent mitochondrial calcium overload, a signaling event that is otherwise present
in most pro-apoptotic signaling cascades. In muscle tissue, the sarcoplasmic reticulum (SR)
is reminiscent of the smooth ER, and once Ca2+ enters via SERCA pumps, it can be further
stored by binding to calesequestrin [110]. Similarly, RyRs are found in several cell types,
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including neurons and epithelial cells, and they release calcium through a mechanism
called Ca2+-induced Ca2+ release (CICR) upon sensing increased levels of calcium in the
cytoplasm [111]. Alternatively, IP3R binds IP3 following the upstream signaling cascade
induced by a substrate, wherein PIP2 is cleaved into sub-components, allowing Ca2+ to exit
the ER lumen into the cytoplasm. Although Ca2+ transport is regulated by similar integral
proteins and channels found in the ER, it is simultaneously contained within subcellular
compartments encased by ER-mitochondria contact points. In this manner, unwanted Ca2+

leakage can be tightly controlled, given that mitochondria also possess voltage-dependent
anion channels (VDACs) and mitochondrial calcium uniporters (MCU) that allow for the
passage of Ca2+ from the microenvironment [112,113]. Aberrant Ca2+ accumulation reduces
the efficiency of ER-resident protein folding chaperones, resulting in abnormal protein
folding and concurrent activation of the unfolded protein response (UPR), which we will
discuss in more detail later in the review.

Furthermore, the ER directly fosters cellular growth and differentiation by promoting
lipid biosynthesis, through which it crucially provides structural support in the form of
membrane-bound organelles and cellular membranes, as well as key signaling molecules
and a greater capacity for energy storage. To emphasize this crucial interplay between lipid
homeostasis and cellular function, human HSCs possess distinct lipid arrangements, partic-
ularly in their expression of an ER-membrane-embedded sphingolipid enzyme, DEGS1,
which confers functionality to HSCs [114]. Ultimately, DEGS1 converts dihydroceramide
to ceramide, after which ceramide is further metabolized into another bioactive lipid,
sphingosine-1-phosphate (S1P). Interestingly, the modulation of S1P has been implicated
in the cellular proliferation, differentiation, migration, and survival of MSCs, ESCs, HSCs,
and immune cells [114–117]. The ablation or inhibition of DEGS1 induces autophagy [118],
which promotes the maintenance of stemness programs [114].

4.3. ER and Mitochondrial Cross-Talk Mechanisms

The coordinated signaling processes that exist between mitochondria and ER are likely
dependent upon the abundance of contact sites [119]. To re-emphasize, mitochondrial fis-
sion and fusion are crucial for cellular signaling, especially when it comes to mediating stem
cell differentiation [120]. Notably, it has been demonstrated that the outer mitochondrial fu-
sion proteins dually function in ER-mitochondria tethering, following the observation that
Mfn1-Mfn2 multimers closely link these two organelles [121] In the absence of Mfn2 expres-
sion, these contacts are considerably weakened, making the mitochondria less sensitive to
intracellular calcium levels [121,122]. Moreover, Friedman et al. used electron microscopy
to visualize the extent of ER-mitochondria associations and revealed that ER tubules wrap
around the mitochondrial outer membrane, ultimately leading to the decreased mitochon-
drial diameter at these sites. Essentially, they found that the ER engages in the process of
mitochondrial fragmentation by priming the site of constriction prior to the recruitment
and aggregation of Drp1 at the mitochondrial membrane, where division will take place,
by tracking the translocation of GFP-tagged Drp1 to MAMs [119]. Alternatively, it was
observed that the establishment of MAMs precedes Drp1 translocation and subsequent
activity, as Drp1 knockdown resulted in no changes to these contact sites [119].

In addition, it has become increasingly apparent that mitochondrial morphology and
ER morphology influence one another. In fact, Pitts and colleagues were among the first to
discover that a dynamic-like protein, Dlp1, in yeast, which partially resembles mammalian
Drp1, maintains mitochondrial morphology as well as ER morphology [123]. Furthermore,
mitochondria-ER contacts are involved in mediating cellular processes, such as apopto-
sis, as they create microenvironments where Ca2+ ions may localize and accumulate (see
Figure 2). Iwasawa et al. revealed that Fis1, a mitochondrial fission protein found in
both mammalian and yeast cells, associates with the B-cell receptor-associated protein 31
(Bap31) linked to the peripheral ER membrane. They demonstrated that Fis1 promotes
apoptosis by facilitating the cleavage of Bap31 into its pro-apoptotic form, p20Bap31 [124].
Additionally, they provide evidence for the coupling of pro-caspase 8 to the Fis1-Bap31
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complex during the early phases of apoptosis initiation. Following these early stages of
activation of apoptosis, the signaling cascade results in the release of ER calcium ions,
which perpetuate apoptotic signaling in neighboring mitochondria [124]. Considering
that mitochondrial VDAC1 is Ca2+-permeable, one study showed that mitochondrial Ca2+

overload is associated with VDAC1 oligomerization, a potential hallmark associated with
apoptosis [125]. Once Ca2+ accumulates in the intermembrane space, mPTP formation
occurs, and mitochondria become permeable to small molecules. Interestingly, Drp1 re-
cruitment to the outer mitochondrial membrane [126] and its subsequent activation are
also stimulated by Ca2+ effluxes from the ER lumen into the mitochondrial microenviron-
ment, ultimately resulting in the release of cytochrome c into the cytoplasm and apoptosis
induction. Despite studies supporting the role of Drp1 in apoptosis initiation, whether
Drp1 is pro-apoptotic or anti-apoptotic remains debated in the literature [127].
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Figure 2. Mitochondria-ER cross-talk in calcium sensing and apoptotic regulation. Mitochondria-
associated membranes (MAMs), including Mfn1-Mfn2 dimers and Fis1-Bap31 binding sites, join
mitochondrial and ER membranes and serve to create microenvironments and proximity for cross-talk
between the organelles. An early event in apoptosis induction occurs when pro-caspase 8 is recruited
to and activated at Fis1-Bap31 sites, where it cleaves Bap31 and ultimately promotes the release
of Ca2+ stores from the ER lumen into the mitochondrial-ER microenvironment. In response to
mitochondrial Ca2+-overload, mPTP forms, and VDAC1 oligomerization renders the mitochondrial
membrane permeable to small molecules. Drp1 translocation and activation are stimulated shortly
thereafter, triggering the release of cytochrome c through mPTP and VDAC1, leading to apoptosis.
The arrows indicate the coupling of procaspase 8 to Bap31 and the subsequent influence of this action
on Ca2+ release from the ER. Created with Bio Render.com. Accessed on 23 June 2023.

4.4. ER-Dependent Unfolded Protein Response

Prolonged endoplasmic reticulum dysfunction brought on by the accumulation of
misfolded proteins and/or disruptions in Ca2+ gradients may induce the Unfolded Protein
Response. Essentially, the UPR pathway implements changes at both transcriptional
and translational levels in order to support a comprehensive response to ER stress. In
general, there are three separate ER transmembrane proteins capable of sensing unfolded
proteins and which activate distinct branches of the UPR: (1) inositol requiring enzyme
1α/β (IRE1), (2) PKR-like ER kinase (PERK), and (3) activating transcription factor 6α/β
(ATF6) [128]. IRE1 contains two domains, an ER luminal domain and a cytosolic domain,
which are responsible for sensing unfolded proteins and initiating UPR through its kinase
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activity [129,130]. Upon stimulation, IRE1 functions as an endonuclease and splices X-box-
binding protein (XBP1) mRNA into a more potent splice variant, or XBP1s [131,132]. XBP1s
is a transcription factor that increases protein folding activity and protein degradation, in
order to lessen the pressure of misfolded and aggregated proteins in the ER lumen [133].

Upon activation, PERK-mediated kinase activity leads to the phosphorylation of
eukaryotic translation initiation factor 2α (eIF2α), which ultimately inhibits ribosomal
activity and briefly halts global translation [129,134]. The fundamental goal of PERK
activation is to prevent additional protein translation to alleviate the protein folding burden
on the ER. Aside from temporarily pausing protein translation, PERK-mediated signaling
leads to the upregulation of activating transcription factor 4 (ATF4), which functions to
increase antioxidant scavenging activity, thus alleviating ER stress [135]. Activated ATF6
translocates to the Golgi apparatus, where it can be cleaved by S1P and S2P proteases, thus
releasing its cytosolic domain. This cytosolic portion, or bZIP transcription factor, enters the
nucleus and upregulates UPR-related genes, such as ER chaperones, which are responsible
for folding proteins [136]. Thus, all three branches are dedicated to mitigating ER stress in
order to prevent further cellular catastrophes, such as the induction of apoptosis.

5. Endocannabinoid Signaling and Intracellular Functions

Despite the fact that phytocannabinoids (THC, CBD) share similar molecular targets
as endocannabinoids (AEA, 2-AG), their individual activities ultimately rely on their
distinct allosteric regulation at each cannabinoid receptor, suggesting that these classes of
cannabinoids should be examined independently to better understand their effects. Earlier
we emphasized how mitochondria possess certain structural features, such as the mtCB1
receptor, which impart an elusive role for the energy-producing organelle in the context
of endocannabinoid signaling. In addition, it is clear that mitochondria and ER are highly
interconnected and that both organelles contribute to several cellular functions, such as
apoptosis. As such, it is crucial to explore the way endocannabinoids affect mitochondrial
and ER function and signaling.

5.1. Regulation of Mitochondrial Function through Endocannabinoid Signaling

In order to develop a comprehensive understanding of mitochondrial function, several
parameters pertaining to mitochondrial respiration and the oxidative state must be consid-
ered, including mitochondrial oxygen consumption rate (OCR), mitochondrial dynamics,
mitochondrial membrane potential, ATP production, the extent of oxidative stress (or
mtROS production), and mitochondrial Ca2+ regulation. An early study revealed that,
compared to tobacco, cannabis smoke exposure disrupted mitochondrial bioenergetics in
epithelial cells [137]. In particular, they demonstrated that rats exposed to cannabis smoke
showed a 75% reduction in ATP production and decreased red fluorescence of a cationic
carbocyanine dye, JC-1, indicating diminished mitochondrial membrane potential [137,138]
(Figure 3). In establishing that mitochondria are implicated in endocannabinoid signaling,
the more recent literature has focused on elucidating the roles of cannabinoid receptor
agonists, AEA and 2-AG, in mediating mitochondrial functions. Athanasiou and colleagues
were among the first to characterize the impacts of AEA in vitro, observing that 100 mM
AEA induced an apoptotic phenotype in human lung cancer cells (H460 cell line). Specifi-
cally, they noted an increased appearance of rounding and unadhered cells combined with
increased cytoplasmic granularity following AEA treatment [139]. Like other cannabinoid
receptor agonists, such as THC, they demonstrated that AEA treatment in isolated rat
mitochondria led to decreased mitochondrial membrane potential upon quantifying Rho-
damine 123 fluorescence using fluorimeter tracing [139]. Most notably, it was discovered
that incremental increases in AEA concentration resulted in slightly enhanced complex
II-III activity at low micromolar doses, which was short-lived as complex II-III activity
drastically decreased while approaching the higher micromolar range [139]. This evident
disruption in ETC activity may be attributed to mtCB1 activation, as Bénard et al. have pre-
viously shown that mtCB1 signaling results in decreased PKA-dependent phosphorylation
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of NDUFS2, a crucial complex I subunit, thus decreasing mitochondrial respiration [90]. In
addition, work by Catanzaro et al. suggests that 50 µM of AEA operates in a time- and dose-
dependent manner to increase mitochondrial swelling and that pretreating simultaneously
desensitizes mitochondria to intracellular Ca2+ levels by decreasing cytochrome c release in
response to calcium [140]. As mentioned earlier, mPTP allows for small molecules to enter
mitochondria and ultimately leads to mitochondrial swelling as a result of Ca2+ influx and
ultimately cytochrome c release. One study exhibited that cyclosporin A (CsA), an mPTP
inhibitor, prevented Ca2+-induced cytochrome c release and showed that 2-AG inhibits
CsA-sensitive Ca2+-dependent cytochrome c release in rat liver mitochondria [141]. Overall,
given that endocannabinoids possess distinct spatial and temporal distribution patterns
in various physiological systems, including reproductive, neuronal, and musculoskeletal
systems, in order to drive intracellular processes and/or maintain tissue homeostasis, their
effects on mitochondrial function are worth investigating further.
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Figure 3. Endocannabinoid dysregulation of mitochondria and ER signaling. AEA and 2-AG
block the production of ATP and prevent the Ca2+ influx into mitochondria, which may have been
dispensed from the ER lumen following Fis1-Bap31 stimulation by pro-caspase 8. AEA promotes
mitochondrial membrane depolarization (decreased J-aggregates in red; increased J-monomers in
green), thus lowering the electrochemical driving force required for ATP production and priming
the mitochondrion for apoptosis. 2-AG promotes the upregulation and localization of GRP78 to
UPR-associated receptors, including IRE1, ATF6, and PERK, and promotes the upregulation of ATF4,
a transcription factor that promotes the transcription of CHOP and genes related to autophagy and
antioxidant production. AEA activates all major branches of the UPR and also upregulates CHOP in
a PERK-mediated manner. AEA and 2-AG have been postulated to exert their ER-stress-mediated
effects through CB1 and CB2, respectively. Left panel: arrows indicate either mitochondrial functions
or procaspase 8 activation and its downstream effects associated with apoptosis induction. Right
panel: arrows indicate downstream transcriptional upregulation of ATF4 following UPR activation
by AEA and 2-AG, which lead to apoptosis. Created with Bio Render.com. Accessed on 14 May 2023.

5.2. Regulation of ER Function through Endocannabinoid Signaling

Endocannabinoids may influence the delicate balance that exists between pro-survival
and pro-apoptotic pathways mediated by ER function. Several studies have identified AEA
as a potent inducer of apoptosis in tumor cells; however, the signaling pathway(s) through
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which AEA may be promoting apoptosis are not fully understood. A proteomic analysis of
AEA-treated cells revealed an upregulation of several proteins, notably BiP (GRP78), in
parallel with increased apoptosis. GRP78 is an ER molecular chaperone with several crucial
functions, such as modulating the UPR by inhibiting the major UPR receptors: PERK,
IRE1, and ATF6 [142]. Interestingly, Pasquariello and colleagues found that treatment with
SR141716, a CB1 antagonist, reduced the expression of GRP78 and apoptosis in the presence
of AEA, suggesting that apoptosis induction is regulated through CB1 activity. Additionally,
considering that AEA stimulation of CB1 involves p38 and p42/44 MAPK downstream,
the inhibition of these signaling factors eliminated AEA-induced apoptosis, which further
confirmed that CB1 signaling was involved [143]. Cyclooxygenase-2 (COX2) is an enzyme
responsible for metabolizing AEA and is primarily localized in the ER and nuclear regions,
thus positioning AEA metabolism in the ER. Using tumorigenic keratinocytes, Soliman et al.
found that AEA activated all three major pathways of the UPR (PERK, IRE1, and ATF6). In
addition, AEA activated and upregulated ER stress response proteins, including C/EBP
homologous protein-10 (CHOP) and cleaved caspase-3, which are well-known indicators
of ER stress and apoptosis. Furthermore, these effects were neutralized upon inhibiting
ER stress, indicating that the pro-apoptotic signaling cascade initiated by AEA is indeed
ER-stress dependent [144]. Additionally, they showed that AEA cytotoxicity is partially
reliant on its ability to increase oxidative stress due to the fact that pre-treatment with the
antioxidant N-acetyl cysteine (NAC) inhibited AEA-induced oxidative stress and apoptosis.
Considering that pre-treatments with either AM251 (a CB1 antagonist) or AM630 (a CB2
antagonist) did not alter the AEA-induced caspase 3 cleavage and consequent cell death,
it was concluded that AEA pro-apoptotic activity is cannabinoid-receptor independent
and instead depends on ER stress response activation [145]. Alternatively, another major
endocannabinoid, 2-AG, has been implicated in trophoblast cell turnover by promoting
ER-stress-induced apoptosis [146]. Almada et al. discovered that upon treating BeWo cells
with 10 uM 2-AG, there was increased GRP78 gene expression, an ER-resident chaperone
in charge of mediating ER stress signaling pathways, indicating the initiation of the UPR re-
sponse (Figure 3). Additionally, they showed that 2-AG was able to increase the expression
of ATF4, an upstream transcription factor responsible for CHOP activation and subsequent
cell death, whereafter CB1 receptor antagonism failed to rescue the phenotype and CB2
receptor antagonism reversed the effects of 2-AG [146]. Moreover, another study attributed
the pro-apoptotic activity of cannabinoids to the upregulation of the transcriptional co-
activator p8 and its transcriptional target, pseudo-kinase tribble homolog 3 (TRB3) [147].
To emphasize this relationship, Salazar et al. found that the well-known phytocannabinoid
and cannabinoid receptor agonist, THC, induces ER stress and inhibits the Akt/mTORC1
axis, which results in the activation of the p8/TRB3 pathway and induction of autophagy
in human glioma cells [148]. Ultimately, cannabinoids are able to initiate autophagy and
apoptosis via ER-stress-dependent mechanisms in concert with mitochondrial signaling.

6. Potential Impacts of Cannabinoids on Cellular Differentiation

As discussed earlier, cannabinoid activity at the levels of the ER and mitochondria
may modulate specific intracellular signaling pathways that are crucial for maintaining
stemness or initiating differentiation events. Among these pathways, the Wnt signaling
pathway stands out due to its well-investigated role in stem cell homeostasis. In addition,
cannabinoids may influence Wnt signaling through their interactions with PPARγ, as sev-
eral studies have demonstrated a reciprocal negative regulation between Wnt-β-catenin
and PPARγ pathways. Wnt signaling has long been established as a crucial signaling
pathway involved in governing stemness, proliferation, and differentiation in adult mam-
malian tissue stem cells; however, there still remains a debate as to whether Wnt signaling
activation promotes [31] or diminishes the self-renewal capacity of ESCs [30]. For instance,
in the context of gastrointestinal tissue, intestinal stem cells abandon their self-renewal
capacity and consequently differentiate into transit-amplifying (TA) cells following a Wnt-
mediated signaling cascade. To elaborate, Wnt ligands bind and activate Frizzled receptors,



Int. J. Mol. Sci. 2023, 24, 11003 14 of 22

a cytoskeletal adaptor protein and transcriptional co-regulator, β-catenin, accumulates
and associates with Rac1 in order to translocate into the nucleus. Within the nucleus,
β-catenin displaces the transcriptional repressor complex and subsequently binds to key
transcription factors, such as TCF1, LEF1, and TCF4, to influence broader cellular processes
including stemness, proliferation, and differentiation [149–151]. Interestingly, CB2 acti-
vation has been demonstrated to promote the nuclear translocation of β-catenin, which
leads to exacerbated kidney fibrosis [152]. Similarly, in neurodegenerative diseases such
as glaucoma and Alzheimer’s disease, Wnt signaling is downregulated, whereas GSK3-β,
an inhibitor of the Wnt pathway, is upregulated [153]. Moreover, CBD has been demon-
strated to downregulate GSK3-β, and, in turn, upregulate Wnt/β-catenin signaling in
both models of neurodegeneration [154,155]. Additionally, CBD has been established as
a PPARγ agonist, and previous studies have suggested that the inhibition of GSK3-β by
CBD is mediated through PPARγ stimulation [154,156]. In human and mouse MSCs, CBD
has been demonstrated to induce adipogenic differentiation by activating PPARγ, thus
promoting lipid accumulation and the expression of adipogenic genes, effects that were
reversed with the treatment of a PPARγ antagonist, T0070907 [157]. As Wnt signaling
has been shown to inhibit adipogenesis [158], and the suppression of Wnt/β-catenin sig-
naling by PPARγ has been established to promote adipocyte differentiation [159], this
suggests that CBD-induced PPARγ activation may alter Wnt activation and dysregulate
adipogenesis. As PPAR agonists have been implicated in inducing autophagy, CBD has
also been found to induce autophagy by activating ERK1/2 and suppressing Akt in CB1-,
CB2- and TRPV1-dependent manners in neural cells, a cellular process that maintains
stem cell pluripotency [160]. Taken together, aberrant cannabinoid and ECS activity could
dysregulate the cross-talk between key differentiation modulators, as highlighted in the
context of adipogenesis, and may alter key cellular processes, such as autophagy, linked to
stem cell self-renewal.

Moreover, by employing an in vitro model of mouse intestinal epithelial stem cells con-
taining a mutant of β-catenin, LS174T, Heijmans et al. subjected cells to ER-stress-inducing
conditions on the basis that intestinal stem cell differentiation is reliant on the induction of
ER stress and UPR activation downstream in a PERK-eIF2α-dependent manner [161]. Based
on previous studies, it is known that PERK-eIF2α activation arrests protein translation and
results in the rapid depletion of nascent proteins. As such, a Wnt-dependent transcription
factor, c-MYC, which is implicated in balancing self-renewal and differentiation aspects of
stem cell function, is primarily affected by PERK-eIF2α arrests in protein translation due
to having a short half-life [162]. Additionally, a proteomics screen revealed a novel tran-
scription factor, CtBP2, whose expression was decreased following ER stress and rescued
following PERK inhibition [163]. Given the observation that CtBP2 was overexpressed in
mouse and human colorectal adenomas and that the inducible overexpression of CtBP2
partially restored stemness in ER-stress-induced LS174T cells, these findings suggest that
CtBP2 is indeed implicated in regulating stemness [163] and that its expression may be
regulated, in part, by the ER stress pathway.

7. Conclusions

We previously highlighted how endocannabinoids and phytocannabinoids can al-
ter mitochondrial and ER function and signaling in the context of cellular differentia-
tion and growth. First, the metabolic switch coordinated by mitochondria from being
primarily glycolytic to oxidative is crucial in signaling stem cell commitment and dif-
ferentiation [74,164]. Accordingly, this metabolic shift is accompanied by mitochondrial
morphological changes, wherein mitochondria transition from being predominantly frag-
mented to being elongated [83,120]. Both AEA and 2-AG directly target mitochondria to
diminish ATP production and membrane potential, whereas THC has been demonstrated
to induce mitochondrial fragmentation [85], indicating that these CB1 receptor agonists
may indirectly promote stemness by inhibiting the crucial metabolic switch required to
exit pluripotency. Furthermore, cellular differentiation relies on sufficient ATP production
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to meet demanding energy requirements, which may be impaired in the presence of AEA
and 2-AG. We discussed the necessity of autophagy in self-renewing and quiescent stem
cells, and cannabinoids, such as CBD, have been shown to promote autophagy, thereby
supporting pluripotency [160]. Indeed, at low micromolar concentrations, CBD increases
cell proliferation in Jurkat cells, which could suggest concentration-dependent alterations
to stem cell proliferation.

In breast cancer cells, AEA has demonstrated the ability to inhibit Wnt/β-catenin
signaling. Following AEA treatments, there was a significant reduction in β-catenin
levels and ultimately less transcriptional activation of the TCF responsive element, which
is otherwise reflective of β-catenin signaling [165]. In contrast, a recent study identified
increased expression of Cnr1+ hepatic progenitor cells (HPCs) undergoing liver regeneration
along with increased AEA levels. They determined that AEA promoted nuclear localization
of β-catenin and possessed the ability to modulate OXPHOS depending on substrate
availability in HPCs [166]. Additionally, upon stimulation of CB1 (encoded by Cnr1) with
50nM AEA, they observed increased HPC proliferation [166], suggesting a potential avenue
for CB1 agonists to modulate the proliferative capacity of stem cells. Furthermore, Nalli
et al. have demonstrated that CBD and its homolog, cannabidivarin, are able to inhibit
Wnt/β-catenin signaling in a dose-dependent manner [167]. Ultimately, the inhibition
of Wnt/β-catenin signaling could pose implications for cellular differentiation in that
β-catenin would otherwise be required to upregulate the transcription of stem cell identity-
affiliated genes. Alternatively, with regards to ER stress-induced stem cell differentiation,
(endo)cannabinoids including AEA, 2-AG, and THC have been shown to induce ER stress
and activate the UPR, thus promoting the acute depletion of CtBP2 and the initiation of
cellular differentiation in a PERK-eIF2 dependent manner [144,145,148]. All in all, due to
the integrity of the ECS across several tissue systems, there exist many potential routes
through which cannabinoid-induced dysregulation of cellular differentiation may occur;
however, this idea requires further investigation to elucidate whether cannabinoids impact
stem cell homeostasis. Metabolic pathways are differentially regulated in order to mediate
stem cell fate decisions, and any perturbances could result in stem cell dysfunction and
ultimately pathological consequences. We discussed earlier how mTORC1 and mTORC2
function in opposition to regulate cellular differentiation, and taking into consideration
the recent evidence that THC inhibits the Akt/mTORC1 axis [148], we presume a potential
point of metabolic dysregulation resulting from phytocannabinoid activity that results in
stunted cellular differentiation. Taken together, it will be critical to consider the broad
implications of disruption of metabolic homeostasis by cannabinoids in trophoblast cells,
including immune signaling and oncogenesis, and its associated therapies.

The ability of stem cells to retain their key functional characteristics, in other words,
to be able to selectively maintain stemness or commit and differentiate into specific sub-
lineages, is a crucial process that renders developmental and/or regenerative potential to
certain tissues. Embryonic differentiation and placentation are key events contributing
to early fetal development and relying on the functions of embryonic stem cells and
trophoblast stem cells, respectively. Ultimately, cannabis use during gestation has been
linked to poor maternal and fetal outcomes, including pre-eclampsia, low fetal birthweight,
preterm birth, and stillbirths. As such, understanding the impacts of cannabinoids on stem
cell homeostasis will be critical in order to avoid disruption of fetal development in the
event that these unwanted pregnancy outcomes result from cannabinoid actions on these
stem cell populations. Similarly, adult stem cells, such as those found in the liver, bone,
brain, and skeletal muscle tissues, are responsible for regeneration following tissue injury
or death. Without their inherent self-renewal capacity, the adult stem cell pool would
become exhausted and thus lack the long-term regenerative potential that is necessary to
sustain recurring tissue injuries throughout life. Thus, despite the accumulating evidence
suggesting that cannabinoids impact stem cell function, there remain gaps in the literature
that need to be urgently investigated.
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