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Abstract: Maintaining optimal one-carbon metabolism (OCM) is essential for health and pregnancy.
In this cross-sectional study, folate status was assessed based on 5-methyltetrahydrofolate (5-MTHF)
levels, and the association between 5-MTHF and OCM-related metabolites was investigated in
227 female Japanese university students aged 18–25 years. The participants were divided into high
and low 5-MTHF groups based on their folate status. Serum samples of the participants were collected
while they were fasting, and 18 OCM-related metabolites were measured using stable-isotope dilution
liquid chromatography–electrospray tandem mass spectrometry. The association between serum
5-MTHF and OCM-related metabolite concentrations was assessed using Spearman’s rank correlation
coefficient. Serum 5-MTHF concentrations were negatively correlated with total homocysteine (tHcy)
concentrations and positively correlated with S-adenosylmethionine (SAM) and total cysteine (tCys)
concentrations. Serum 5-MTHF concentrations demonstrated a stronger negative correlation with
tHcy/tCys than with tHcy alone. The negative correlation between betaine and tHcy concentrations
was stronger in the low 5-MTHF group than in the high 5-MTHF group. The 5-MTHF status could be
linked to Hcy flux into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be
a more sensitive indicator of the 5-MTHF status than tHcy alone. Furthermore, a low 5-MTHF status
can enhance Hcy metabolism via betaine.

Keywords: one-carbon metabolism; 5-methyltetrahydrofolate; betaine; homocysteine; S-adenosylmethionine;
S-adenosylhomocysteine; transsulfuration pathway; cysteine; choline; methionine

1. Introduction

One-carbon metabolism (OCM) comprises a folate cycle and choline metabolic path-
way linked to a methionine cycle; homocysteine (Hcy) in the methionine cycle is connected
to the transsulfuration pathway (Figure 1). OCM is mainly involved in the transfer of
one-carbon units required for S-adenosylmethionine (SAM)-dependent methyl transfer
reactions [1], nucleic acid synthesis [1,2], and amino acid metabolism, all of which support
numerous physiological processes [2,3].

Folate mediates the transfer of one-carbon units in OCM [2]. Folic acid (FA) in sup-
plements and fortified foods is reduced to tetrahydrofolate (THF) before entering the
folate cycle [4]. THF is primarily metabolized to 5,10-methyleneTHF by obtaining the
hydroxymethyl group from serine [5]. Subsequently, 5,10-methyleneTHF is irreversibly
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reduced to 5-methyltetrahydrofolate (5-MTHF) by vitamin B2-dependent MTHF reductase
(MTHFR; EC 1.5.1.20) [6]. The major folate molecular species is 5-MTHF, accounting for
82 to 93% of the total folate in the blood [7,8]. Methionine synthase (EC 2.1.1.13) uses the
methyl group of 5-MTHF to remethylate Hcy to methionine, and demethylated THF is
recycled to the folate cycle [3,7,8]. Choline is oxidized to betaine primarily in the liver and
kidneys [9]. Betaine is catalyzed by betaine–homocysteine S-methyltransferase (BHMT;
EC 2.1.1.5), which is expressed primarily in the liver and kidneys and remethylates Hcy
to produce methionine and dimethylglycine (DMG) [10,11]. Methionine forms SAM in a
reaction catalyzed by methionine adenosyltransferase (EC 2.5.1.6) [12]. SAM is used in
methylation reactions that regulate the biological processes of various cellular components
and is subsequently metabolized to S-adenosylhomocysteine (SAH) [13]. Methylation
reactions include epigenetic modifications of gene expression (e.g., methylation of DNA
and histones), biosynthesis of molecules (e.g., protein, phosphatidylcholine, polyamines,
creatine, and sarcosine), and oxidation–reduction reactions [14,15]. SAH is reversibly de-
graded to Hcy and adenosine [16]. Both the folate cycle and choline metabolic pathway
can independently supply methyl groups for the remethylation of Hcy to methionine;
however, these two pathways are considered to be interrelated [17]. Hcy is also irreversibly
metabolized to the sulfur-containing amino acid cysteine (Cys) via the transsulfuration
pathway in the liver, pancreas, intestine, kidney, and possibly brain [18,19]. Hcy is first
metabolized to cystathionine by the B6-dependent enzyme cystathionine-β-synthase (CBS;
EC 4.2.1.22), which condenses serine to Hcy thiol [18,20]. Then, cystathionine is hydrolyzed
by the B6-dependent enzyme cystathionine γ-lyase (CSE; EC 4.4.1.1) to Cys [18,21]. Cys is a
precursor to sulfur metabolites, such as taurine, glutathione, and hydrogen sulfide [18,19].
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Figure 1. Overview of one-carbon metabolism. OCM-related metabolites are indicated by rectan-
gular boxes, with the folate cycle in green, choline metabolic pathway in blue, methionine cycle
in red, and transsulfuration pathway in yellow. Other vitamins are shown in orange and amino
acids and others are shown in purple. The filled rectangular boxes indicate OCM-related metabo-
lites measured in this study. Each arrow represents a biochemical reaction, and the dotted rect-
angle on the arrow is labeled with the first letter of the enzyme catalyzing the reaction. Abbre-
viations: 5-MTHF, 5-methyltetrahydrofolate; B12, cobalamin/methylcobalamin; B2, riboflavin; B6,
pyridoxal phosphate (pyridoxine/pyridoxal/pyridoxamine); BAD, betaine aldehyde dehydrogenase;
BHMT, betaine–homocysteine methyltransferase; CBS, cystationine-β synthase; CHD, choline de-
hydrogenase; CSE, cystathionine γ-lyase; DMG, dimethylglycine; FA, folic acid; MAT, methionine
adenosyltransferase; MS, methionine synthase; MTHFD1, methylenetetrahydrofolate dehydroge-
nase; MTHFR, methylenetetrahydrofolate reductase; MTRR, methionine synthase reductase; SAH,
S-adenosylhomocysteine; SAHH, SAH hydrolase; SAM, S-adenosylmethionine; SHMT, serine hy-
droxymethyltransferase; THF, tetrahydrofolate; TS, thymidylate synthase.
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OCM metabolic markers have been linked to various diseases. Intracellular Hcy
concentrations increase when OCM fails to function adequately [16,22]. The excess Hcy is
then excreted from the cells, leading to its increased concentration in the circulation [16,22].
High plasma Hcy concentrations have been linked to cardiovascular diseases [23,24],
stroke [25,26], Alzheimer’s disease [27,28], schizophrenia [29,30], macular degeneration [31],
diabetes [32], fractures [33], pregnancy complications [34–36], small-for-gestational-age
offspring [37], and cancer [38]. This suggests that Hcy is an important indicator of health
status [39,40]. However, the effects of Hcy-lowering interventions have been modest [41],
and whether Hcy is a marker or a causative agent of these diseases remains unclear [39].
Some studies have reported that high plasma SAH concentrations are a considerably more
sensitive indicator of cardiovascular diseases than total Hcy (tHcy) concentrations [40].
Homocysteic acid, produced by Hcy and methionine superoxide oxidation, is hypothesized
to be an early diagnostic marker for mild cognitive impairment [42]. Low folate status in
the blood during early pregnancy increases the risk of fetal neural tube closure defects [43].
In addition, midpregnancy choline status [44] and prepregnancy choline and betaine
intake [45] have been linked to the risk of fetal neural tube closure defects. Increased flux
in the transsulfuration pathway has been proposed to delay aging and extend life span [46].
During pregnancy, the mother’s OCM status is also important for fetal development and
health [47,48]. Therefore, maintaining optimal OCM is essential for health and pregnancy,
and thus, a comprehensive understanding of OCM is required.

Previous studies have assessed folate concentrations in circulation using a microbio-
logical assay [49]; however, this assay measures all folate molecular species, including FA
and 5-MTHF, and can only assess “total folate” [50,51]. In particular, FA in the blood is
biologically inactive and does not accurately reflect its true physiological state, leading to
inaccurate and misleading results [52]. Therefore, using liquid chromatography–tandem
mass spectrometry is encouraged to quantify individual folate molecular species [49].
Although the total folate concentration in the blood is considered to influence OCM dynam-
ics [53], the association between OCM and 5-MTHF, a major reduced folate, remains unclear.
Our study focused on the association between 5-MTHF status and choline metabolism,
methionine cycle, and the transsulfuration pathway. A few studies have investigated the
metabolic dynamics of OCM [46,54–60]. However, to the best of our knowledge, no studies
have comprehensively investigated the folate cycle, including 5-MTHF, methionine cycle,
including SAM and SAH, choline metabolic pathway, or transsulfuration pathway. Further-
more, sex differences in OCM have been reported [54,61,62] because sex hormones, such
as estrogen, can upregulate or downregulate various enzymes in OCM [62]. To account
for the effects of sex hormones, OCM should be assessed in relation to sex, and women’s
characteristics should be further divided into those related to menstruation, pregnancy, and
menopause. Therefore, this study aimed to comprehensively measure key OCM-related
metabolites in serum collected from young menstruating women and collect basic data
regarding the association between 5-MTHF status and OCM.

2. Results
2.1. Distribution of Serum 5-MTHF Concentrations in Low and High 5-MTHF Groups

Figure 2 depicts the histograms of serum 5-MTHF concentrations in the low and high
5-MTHF groups. Serum 5-MTHF concentrations exhibited a positively skewed distribution,
with the low 5-MTHF group showing a clumped distribution and the high 5-MTHF group
showing a scattered distribution.

2.2. Characteristics of the Study Population

The characteristics of the study population are summarized in Table 1. No significant
differences in age, height, weight, body mass index (BMI), body fat percentage, or blood
pressure were observed between the low and high 5-MTHF groups.
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Figure 2. Histograms of low (A) and high (B) 5-methyltetrahydrofolate (5-MTHF) groups. The
low and high 5-MTHF groups were divided based on the median serum 5-MTHF concentration of
19.2 nmol/L. Abbreviations: 5-MTHF, 5-methyltetrahydrofolate.

Table 1. Characteristics of the study population.

Variables Overall Population
(n = 227)

Low 5-MTHF Group
(n = 113)

High 5-MTHF Group
(n = 114)

Median 25th 75th Median 25th 75th Median 25th 75th p-Value a

Age (years) 20 19 21 20 19 21 20 19 21 0.873
Height (cm) 158 155 162 159 155 162 158 155 163 0.858

Body weight (kg) 51.2 47.4 55.3 50.8 47.0 55.3 51.6 47.5 55.4 0.887
BMI (kg/m2) 20.2 19.1 21.6 20.1 19.1 21.8 20.3 19.0 21.4 0.855

Body fat
percentage (%) 24.9 22.5 28.4 24.9 23.0 28.4 24.9 22.2 28.3 0.480

Mean systolic blood
pressure (mmHg) 106.5 100.0 114.5 106.5 100.5 113.3 106.8 99.0 116.1 0.985

Mean diastolic
blood pressure

(mmHg)
68.0 64.0 74.0 68.5 65.0 73.5 67.8 62.5 75.1 0.474

a p-values were calculated using Mann–Whitney U test (low vs. high 5-MTHF groups). There were no missing
values. Abbreviations: BMI, body mass index; 5-MTHF, 5-methyltetrahydrofolate.

2.3. Energy and Nutrient Intakes

Table 2 summarizes the dietary survey results. The high 5-MTHF group had sig-
nificantly higher energy intake and higher total fiber, potassium, calcium, magnesium,
iron, vitamin A, thiamin, vitamin B6, folate, and vitamin C intakes, but significantly lower
sodium intake than the low 5-MTHF group.

2.4. Distribution of Serum OCM-Related Metabolite Concentrations

The serum OCM-related metabolite concentrations in the high and low 5-MTHF
groups and in the overall study sample are summarized in Table 3. The high 5-MTHF
group exhibited significantly higher betaine and total cysteine (tCys) concentrations and
betaine/DMG ratios than the low 5-MTHF group. A similar trend was observed for SAM
(p = 0.059). However, tHcy and cystathionine concentrations and tCys/tHcy ratios were
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significantly lower in the high 5-MTHF group than in the low 5-MTHF group. Serum
homocysteic acid, pyridoxamine, and pyridoxine concentrations were below the limit of
quantification in all samples.

Table 2. Energy and nutrient intakes of the subjects.

Overall Population
(n = 227)

Low 5-MTHF Group
(n = 113)

High 5-MTHF Group
(n = 114)

Median 25th 75th Median 25th 75th Median 25th 75th p-Value a

Energy (kcal)a 1731 1460 1964 1672 1408 1896 1797 1496 2082 0.110
Protein (% energy) 14.2 13.1 15.5 14.0 12.9 15.3 14.3 13.3 15.8 0.222

Fat (% energy) 31.9 28.5 35.1 31.6 28.3 35.4 32.0 29.2 34.2 0.799
Carbohydrate

(% energy) 52.4 49.0 55.5 51.9 48.8 55.5 52.4 49.3 55.3 0.942

Methionine
(mg/1000 kcal) 740 657 832 730 631 823 745 663 840 0.566

Cystine
(mg/1000 kcal) 489 452 527 492 453 522 489 446 535 0.841

Total
sulfur-containing

amino acids
(mg/1000 kcal)

1229 1113 1351 1223 1096 1348 1233 1113 1355 0.582

Glycine
(mg/1000 kcal) 1448 1286 1625 1452 1297 1623 1442 1276 1628 0.998

Serine (mg/1000 kcal) 1547 1405 1665 1546 1394 1646 1551 1413 1696 0.327
Saturated fatty acids

(% energy) 10.0 8.6 11.2 9.8 8.4 11.5 10.1 8.7 11.1 0.997

Polyunsaturated fatty
acids (g/1000 kcal) 6.53 5.76 7.27 6.48 5.56 7.22 6.65 5.86 7.42 0.109

n-3 polyunsaturated
fatty acids

(g/1000 kcal)
1.02 0.85 1.23 0.99 0.83 1.22 1.03 0.85 1.23 0.297

n-6 polyunsaturated
fatty acids

(g/1000 kcal)
5.44 4.80 6.11 5.43 4.64 6.04 5.47 4.96 6.18 0.099

Total fiber
(g/1000 kcal) 7.09 6.16 8.34 6.68 5.81 7.76 7.67 6.79 8.81 <0.001

Sodium
(mg/1000 kcal) 1911 1681 2220 2006 1692 2353 1855 1662 2123 0.025

Potassium
(mg/1000 kcal) 1092 973 1228 1051 943 1139 1176 1025 1287 <0.001

Calcium
(mg/1000 kcal) 258 223 311 252 206 296 266 230 321 0.006

Magnesium
(mg/1000 kcal) 118 105 135 113 99 126 126 111 138 <0.001

Iron (mg/1000 kcal) 3.76 3.32 4.16 3.55 3.19 4.05 3.84 3.46 4.27 0.001
Zinc (mg/1000 kcal) 4.12 3.77 4.51 4.11 3.80 4.57 4.15 3.73 4.51 0.907

Vitamin A (µg
retinol activity

equivalent/1000 kcal)
243 196 295 235 189 278 258 205 326 0.011

Vitamin D
(µg/1000 kcal) 2.28 1.37 3.32 2.12 1.46 3.35 2.34 1.33 3.34 0.589

Thiamin
(mg/1000 kcal) 0.498 0.433 0.612 0.476 0.419 0.597 0.518 0.448 0.663 0.010

Riboflavin
(mg/1000 kcal) 0.596 0.538 0.684 0.573 0.525 0.674 0.613 0.550 0.698 0.094

Vitamin B6
(mg/1000 kcal) 0.568 0.494 0.667 0.537 0.460 0.626 0.631 0.535 0.706 <0.001

Vitamin B12
(µg/1000 kcal) 2.49 1.62 3.76 2.42 1.63 3.78 2.56 1.54 3.71 0.716

Folate (µg dietary
folate equiva-

lents/1000 kcal)
144 123 170 136 113 160 162 135 187 <0.001

Vitamin C
(mg/1000 kcal) 41.9 32.4 54.2 37.1 28.2 48.3 44.2 35.5 59.7 <0.001

Values are expressed as medians and 25th–75th percentile values. a p-values were calculated using Mann–Whitney
U test (low vs. high 5-MTHF groups). Abbreviations: 5-MTHF, 5-methyltetrahydrofolate.
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Table 3. Concentrations of one-carbon metabolism-related metabolites.

Overall Population
(n = 227)

Low 5-MTHF Group
(n = 113)

High 5-MTHF Group
(n = 114)

Analytes
(unit) Median 25th 75th Median 25th 75th Median 25th 75th p-Value b

Folate cycle
5-MTHF
(nmol/L) 19.2 14.4 24.2 14.4 11.8 16.7 24.1 21.4 29.6 -

FA (nmol/L) 1.08 0.62 1.91 0.99 0.59 1.95 1.18 0.74 1.89 0.503

Choline metabolic
pathway

Choline
(µmol/L) 7.56 6.55 8.43 7.44 6.41 8.30 7.58 6.69 8.61 0.299

Betaine
(µmol/L) 38.7 32.9 45.5 37.7 32.0 42.5 40.9 34.5 47.5 0.004

DMG
(µmol/L) 2.97 2.50 3.60 3.01 2.52 3.78 2.91 2.40 3.48 0.207

Betaine/DMG 13.2 10.5 15.4 12.4 10.0 14.4 13.9 11.5 16.9 <0.001

Methionine cycle

Methionine
(µmol/L) 24.2 22.0 26.9 24.5 22.0 28.0 24.0 22.0 26.6 0.302

SAM (nmol/L) 55.6 50.7 60.6 54.5 48.8 60.2 56.9 51.6 61.3 0.059
SAH (nmol/L) 14.5 12.1 17.1 14.8 11.5 17.4 14.4 12.4 17.1 0.928

SAM/SAH 3.92 3.15 4.96 3.88 3.11 4.95 3.97 3.22 5.04 0.732
tHcy (µmol/L) 6.39 5.53 7.41 6.92 5.89 7.96 6.07 5.21 6.75 <0.001
Homocysteic

acid (µmol/L) 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a -

Transsulfuration
pathway

Cystathionine
(nmol/L) 90.0 73.5 111.0 96.4 80.7 116.5 84.0 68.9 100.6 <0.001

tCys (µmol/L) 199 185 211 194 181 208 203 191 213 0.009
tHcy/tCys 0.0322 0.0287 0.0370 0.0354 0.0308 0.0400 0.0302 0.0265 0.0328 <0.001

Taurine
(µmol/L) 112 97 129 111 99 131 113 96 127 0.633

Amino acids
Serine

(µmol/L) 146 130 167 144 129 164 151 130 168 0.421

Glycine
(µmol/L) 202 180 225 205 179 229 198 180 221 0.402

Vitamins

Riboflavin
(nmol/L) 11.8 7.9 17.5 11.0 8.0 17.0 12.5 7.8 17.6 0.415

Pyridoxamine
(nmol/L) 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a -

Pyridoxine
(nmol/L) 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a -

a Below the limit of quantification. b p-values were calculated using Mann–Whitney U test (low vs. high 5-
MTHF groups). Abbreviations: 5-MTHF, 5-methyltetrahydrofolate; DMG, dimethylglycine; FA, folic acid; SAH,
S-adenosylhomocysteine; SAM, S-adenosylmethionine; tCys, total cysteine; tHcy, total homocysteine.

2.5. Correlation between Serum OCM-Related Metabolite Concentrations

Supplementary Figure S1 shows correlation matrices, scatter plots, and histograms
of serum OCM-related metabolite concentrations. In addition, Figure 3 shows a graphical
network depicting their associations. Serum 5-MTHF concentrations exhibited significantly
positive correlations with betaine, SAM, and tCys concentrations and significantly negative
correlations with tHcy and cystathionine concentrations. Conversely, FA concentrations
did not correlate with the serum concentrations of OCM-related metabolites associated
with 5-MTHF.

2.6. Correlation between OCM-Related Metabolites Stratified by 5-MTHF Status

The correlation matrix between serum OCM-related metabolite concentrations when
stratified via dichotomous 5-MTHF concentrations is summarized in Supplementary Table
S1, and a graphical network depicting their associations is shown in Figure 3. The negative
correlation between betaine and tHcy concentrations was stronger in the low 5-MTHF
group (ρ = −0.401, p < 0.001) than in the high 5-MTHF group (ρ = −0.097, p = 0.303). The
positive correlation between DMG and tHcy concentrations was weaker in the low 5-MTHF
group (ρ = 0.058, p = 0.541) than in the high 5-MTHF group (ρ = 0.249, p = 0.007). The
correlation matrix between serum OCM-related metabolite concentrations and enzyme



Int. J. Mol. Sci. 2023, 24, 10993 7 of 20

activity indices is summarized in Table 4. Similarly, the negative correlation between
betaine/DMG ratios and tHcy concentrations was stronger in the low 5-MTHF group
(ρ = −0.374, p < 0.001) than in the high 5-MTHF group (ρ = −0.290, p = 0.002). The 5-
MTHF concentrations and betaine/DMG ratios showed a significant positive correlation.
The significant negative correlation between 5-MTHF concentrations and tHcy/tCys ra-
tios (ρ = −0.602, p < 0.001) was stronger than the correlation between 5-MTHF and tHcy
concentrations alone (ρ = −0.456, p < 0.001; Supplementary Figure S1).
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Figure 3. A graphical network depicting the correlation between one-carbon metabolism-related
metabolites. Overall population (A) as well as low (B) and high (C) 5-methyltetrahydrofolate (5-
MTHF) groups. Correlations were evaluated using Spearman’s correlation coefficient. Significant
positive correlations are indicated by blue lines, whereas significant negative correlations are in-
dicated by red lines. The strength of the correlation is indicated by the thickness of the edges.
Abbreviations: 5-MTHF, 5-methyltetrahydrofolate; DMG, dimethylglycine; FA, folic acid; SAH,
S-adenosylhomocysteine; SAM, S-adenosylmethionine; tCys, total cysteine; tHcy, total homocysteine.
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Table 4. Correlation matrices between serum one-carbon metabolite-related metabolite concentrations and enzyme activity indices.

Enzyme
Activity
Indices

5-MTHF FA Choline Betaine DMG Methionine SAM SAH tHcy Cystathionine tCys Taurine Serine Glycine Riboflavin

Overall
population

(n = 227)

Betaine/DMG 0.284 ** 0.073 0.062 0.503 ** −0.642 ** 0.020 −0.028 −0.084 −0.385 ** −0.158 * −0.110 −0.034 −0.032 −0.001 0.127
SAM/SAH 0.059 0.132 * −0.299 ** −0.053 −0.095 −0.177 ** 0.313 ** −0.895 ** −0.149 * −0.090 −0.154 * −0.289 ** −0.237 ** −0.174 ** −0.063
tHcy/tCys −0.602 ** −0.007 0.025 −0.324 ** 0.120 0.022 −0.090 0.086 0.877 ** 0.189 ** 0.034 0.128 0.086 0.090 −0.071

Low 5-MTHF
group

(n = 113)

Betaine/DMG 0.173 0.072 0.076 0.498 ** −0.654 ** −0.032 −0.001 −0.212 * −0.374 ** −0.164 −0.052 −0.057 −0.066 −0.087 0.103
SAM/SAH 0.091 0.269 ** −0.388 ** 0.107 −0.081 −0.174 0.248 ** −0.883 ** −0.147 −0.003 −0.095 −0.389 ** −0.261 ** −0.309 ** −0.149
tHcy/tCys −0.450 ** −0.057 −0.022 −0.444 ** 0.045 −0.030 −0.064 0.119 0.894 ** 0.037 0.136 0.126 0.083 0.086 −0.010

High 5-MTHF
group

(n = 114)

Betaine/DMG 0.150 0.053 0.037 0.461 ** −0.641 ** 0.105 −0.108 0.027 −0.290 ** −0.027 −0.239 * −0.010 −0.026 0.112 0.093
SAM/SAH 0.065 −0.019 −0.197 * −0.213 * −0.110 −0.174 0.398 ** −0.900 ** −0.159 −0.189 * −0.219 * −0.188 * −0.195 * −0.042 0.001
tHcy/tCys −0.439 ** 0.059 0.137 −0.087 0.146 −0.014 −0.022 0.074 0.854 ** 0.123 0.144 0.131 0.184 0.067 −0.093

Spearman’s correlation coefficient; asterisks indicate the statistical significance of correlation coefficients: ** p < 0.01; * p < 0.05. The enzyme activity indices were the betaine/DMG ratio
for BHMT, SAM/SAH ratio for methyltransferase, and tCys/tHcy ratio for the transsulfuration pathway (CBS and CSE). Abbreviations: 5-MTHF, 5-methyltetrahydrofolate; BHMT,
betaine–homocysteine methyltransferase; CBS, cystathionine-β synthase; CSE, cystathionine γ-lyase; DMG, dimethylglycine; FA, folic acid; SAH, S-adenosylhomocysteine; SAM,
S-adenosylmethionine; tCys, total cysteine; tHcy, total homocysteine.
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3. Discussion

We measured the serum concentrations of OCM-related metabolites in healthy young
women to investigate the association between serum 5-MTHF concentrations and a wide
range of OCM-related metabolites. The findings of this study further contribute to prelimi-
nary research by demonstrating for the first time that the 5-MTHF state is associated with
transsulfuration pathway flux and that betaine-induced Hcy remethylation is enhanced in
the low 5-MTHF state.

As expected, the dietary survey results revealed that the high 5-MTHF group exhibited
significantly higher folate intake (dietary folate equivalents) than the low 5-MTHF group.
On the other hand, the high 5-MTHF group exhibited higher energy and micronutrient
intake than the low 5-MTHF group, suggesting a potential dietary influence on OCM.
Because food nutrients are complex, it is likely that the intake of folate-rich foods, such as
vegetables, altered the intake of other micronutrients. The intake of methionine, cystine,
glycine, serine, zinc, riboflavin, and vitamin B12, which are OCM components, did not
differ significantly between the high and low 5-MTHF groups. However, the high 5-MTHF
group exhibited a significantly higher vitamin B6 intake, an OCM component, than the low
5-MTHF group; this should be considered when interpreting the study results.

Herein, the median serum 5-MTHF concentration in young Japanese women was
19.2 nmol/L, which was comparable to or slightly higher than that reported in previous
studies involving healthy adults in countries where FA fortification of grains is not man-
dated, such as Japan [63,64]. However, it was lower than that reported in young participants
in the 2011–2016 National Health and Nutrition Examination Survey in the United States
where grains are fortified with FA [65]. The median serum betaine concentration in this
study population was 38.7 µmol/L, consistent with other studies on healthy adults [66–68].
Serum pyridoxine, pyridoxamine, and homocysteic acid concentrations were at the limit
of quantification in this study. However, similar results have been reported in previous
studies, implying that their quantification in serum is difficult [69,70].

Concentrations of 5-MTHF exhibited a significant positive correlation with SAM
and tCys concentrations and a significant negative correlation with tHcy concentrations.
Similarly, a previous study involving older adults found a positive correlation between
5-MTHF and SAM concentrations, and FA intervention significantly increased plasma
SAM concentrations in the intervention group compared with the control group [55]. In
addition, previous in-silico studies using mathematical models reported that SAM con-
centrations demonstrated a strong linear association with total folate concentrations [71].
In-silico studies have also revealed that 5-MTHF is an allosteric inhibitor of glycine N-
methyltransferase (EC 2.1.1.20) [72,73], one of the enzymes mediating the methyl transfer
reaction. Thus, it is assumed that an increase in 5-MTHF levels increases SAM by inhibiting
glycine N-methyltransferase and suppressing the methylation reaction. The low positive
correlation coefficient between serum 5-MTHF and SAM concentrations in this study could
be attributed to the ability of SAM to maintain its intracellular concentrations by inhibit-
ing MTHFR [74,75], BHMT [76], and methionine adenosyltransferase [77] and activating
CBS [78]. In addition, in-silico studies have suggested that the plasma concentrations of
OCM-related metabolites do not accurately reflect their intracellular concentrations [79,80].
The negative correlation between blood 5-MTHF and tHcy concentrations has been re-
ported in pregnant women [81], older people [55], and patients with hypertension [82].
Furthermore, the nonlinear negative relationship in patients with hypertension in whom
Hcy concentrations are less likely to be low and approach a plateau as serum 5-MTHF
concentrations increase [82] is consistent with the findings of this study (Supplementary
Figure S1). Interestingly, the mathematical model of the in-silico study estimated that
increased remethylation flux does not reduce Hcy concentrations as it circumnavigates
the methionine cycle back to Hcy [62]. Furthermore, the authors of the in-silico study
concluded that the increased flux in the transsulfuration pathway is due to CBS activation
via SAM and betaine [62]. The present study found that the concentrations of tCys, a
transsulfuration pathway metabolite, were positively correlated with the concentrations
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of 5-MTHF, consistent with the results of the in-silico study [62]. In addition, previous
studies have reported a positive correlation between serum total folate and plasma tCys
concentrations in healthy adults [83,84]. Previous studies have reported that SAM is an
allosteric activator of CBS and regulates the flux of Hcy into the transsulfuration path-
way [78,85]. Previous studies have also reported that SAH activates CBS [86]. Herein, SAM
and SAH concentrations exhibited significant positive correlations with cystathionine, tCys,
and taurine concentrations (Figure 2), implying that SAM and SAH may modulate the
flux of the transsulfuration pathway in a concentration-dependent manner. However, the
correlation coefficients between SAM or SAH and the transsulfuration pathway metabolites
(cystathionine, cysteine, and taurine) varied depending on the 5-MTHF state and require
further investigation (Supplementary Table S1). Accordingly, the 5-MTHF state may be
associated with Hcy flux into the transsulfuration pathway via SAM.

The negative correlation between serum 5-MTHF concentrations and tHcy/tCys ratios
was stronger than that between 5-MTHF and tHcy concentrations alone (Supplementary
Figure S1 and Table 4). The tHcy/tCys ratio, a substrate/product ratio, is an indicator
of enzyme activity (CBS and CSE) in the transsulfuration pathway. Therefore, higher
5-MTHF concentrations may indicate a lower Hcy and higher Cys association. A pre-
vious cross-sectional study involving patients aged 21–88 (median, 62) years who had
undergone coronary angiography for suspected coronary artery disease or aortic stenosis
revealed a stronger negative association between the plasma total folate concentrations and
tCys/tHcy ratios than that between plasma total folate concentrations and plasma tHcy
concentrations [59]; these findings were consistent with those of the present study. A case–
control study reported comparable results in patients with colorectal cancer and matched
controls [87]. Therefore, the tHcy/tCys ratio is a more sensitive indicator of the 5-MTHF
status than the tHcy concentration. Further investigation into the clinical implications of
increased activation of transsulfuration pathways is warranted. Interestingly, in a previous
study, increased Hcy concentrations and decreased Cys concentrations were observed
in patients with schizophrenia [88], implying that the transsulfuration pathway plays an
important role in the etiology of schizophrenia [88]. This theory suggests that schizophrenia
may be characterized by impaired glutathione synthesis and increased susceptibility to
oxidative stress. In other words, the pathological hypothesis of schizophrenia is centered
on increased oxidative stress and impaired antioxidant function [89]. A previous study also
reported that high plasma Hcy concentrations were associated with increased colorectal
cancer risk, whereas high Cys concentrations were associated with a lower colorectal cancer
risk [89] and that Hcy/Cys ratios were inversely correlated with colorectal cancer risk [87].
Conversely, studies have suggested that high plasma tCys concentrations in healthy women
may cause more damage to the vascular endothelium than tHcy [90]. A similar association
between betaine and tHcy/tCys ratio has also been shown (Appendix A.1). Therefore, the
optimal state of the transsulfuration pathway, including 5-MTHF and betaine, should be
investigated to clarify these findings.

Herein, 5-MTHF concentrations exhibited significant positive correlations with betaine
concentrations or betaine/DMG ratios (Figure 3 and Table 4). Similarly, previous studies
have reported a positive correlation between blood total folate and betaine concentra-
tions [68,91]. According to in-silico studies, SAM concentrations increase with increasing
total folate concentrations, SAM inhibits BHMT, and betaine is less likely to be metabo-
lized, resulting in increased betaine concentrations [71]. In addition, previous intervention
studies have reported that FA supplementation increases plasma betaine concentrations
in both healthy adults [66] and older individuals [92]. Therefore, the findings of this
study support those of previous studies that reported an association between total folate
concentrations and betaine metabolism. Furthermore, when the cohort was divided into
diquantiles based on serum 5-MTHF concentrations, the negative correlation between
betaine concentrations or betaine/DMG ratios and tHcy concentrations was stronger in the
low 5-MTHF group than in the high 5-MTHF group (Figure 3 and Table 4). Conversely, the
positive correlation between tHcy and DMG concentrations was weaker in the low 5-MTHF
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group than in the high 5-MTHF group. Previous studies have reported that blood betaine
concentrations inversely correlate with Hcy concentrations in healthy adults [66,68,93],
clinic attendees [94], pregnant women [95], patients with cardiovascular disease [96,97],
and patients with chronic renal failure [98], indicating that betaine and folate are impor-
tant determinants of plasma Hcy concentrations. If the 5-MTHF concentration is low, the
supply of methyl groups from 5-MTHF to Hcy may be insufficient for Hcy to remethylate
methionine, thus necessitating another Hcy methyl group donation pathway, i.e., betaine
to Hcy. In a previous study, when pregnant women were divided into diquantiles based
on plasma total folate concentration, the low folate group exhibited higher plasma DMG
concentrations and lower plasma betaine concentrations than the high folate group [99].
An interventional study involving healthy men and women reported that an increase in
plasma Hcy concentrations following methionine loading was inversely correlated with
plasma betaine concentrations and that this association was stronger in patients with low
blood folate concentrations than in those with high blood folate concentrations [68,93]. The
findings of previous studies evaluating total folate states are consistent with those of the
present study [68,93]. As a mechanism, methionine synthase expression has been reported
to decrease in the liver of mice fed with a low folate diet [100], and decreased SAM concen-
trations have been reported to activate BHMT in the rat liver [101]. Certainly, the present
study showed a weak positive correlation between SAM and betaine (Appendix A.2). A
previous study also estimated a decrease in SAM concentrations and BHMT response acti-
vation in the liver using a mathematical model based on known enzyme kinetics, assuming
a 50% decrease in folate concentrations [53]. As 5-MTHF can alter the association of tHcy
with betaine or DMG, the betaine/DMG ratio, a measure of BHMT activity, may serve
as a good indicator of Hcy remethylation via the choline metabolic pathway. Conversely,
in-silico studies have reported that the negative association between betaine and tHcy
concentrations in women is due to CBS activation based on betaine concentrations rather
than a faster BHMT reaction [62]. In other words, CBS activation as a result of high betaine
concentrations is less likely to occur when 5-MTHF concentrations are high. Thus, the
5-MTHF status may affect the choline metabolic pathway (Appendix A.3), particularly
BHMT or CBS activity, via betaine concentrations in low 5-MTHF conditions, implying
that the folate cycle and choline metabolic pathway should be evaluated simultaneously in
Hcy studies.

Herein, a negative association between serum 5-MTHF and cystathionine concen-
trations was observed (Figure 3). A negative correlation between blood total folate and
cystathionine concentrations has also been observed in neonates [102] and patients with
coronary artery disease [103,104], possibly because Hcy and cystathionine have similar
kinetics [104]. This correlation was different than that observed between tHcy and tCys,
and the complex transsulfuration pathway needs to be further elucidated.

Serum FA concentrations were not correlated with OCM-related metabolite concen-
trations associated with 5-MTHF concentrations. This suggests that the concentration of
5-MTHF, a bioactive folate molecule species, as a biomarker may be more useful than that
of total folate, which was considered in previous studies [49].

This study has several strengths. Early morning fasting blood samples were collected,
and standardized blood collection protocols were used to minimize the following effects on
OCM-related metabolites: changes in the blood concentration of the measured substance
due to eating immediately before the blood sample is collected; errors related to human
activities at the time of blood collection; and variation in the deterioration of the substance
being measured. Furthermore, the serum concentrations of OCM-related metabolites
were measured using the stable-isotope dilution mass spectrometry method with internal
standards for all measured components, yielding high-quality quantitative results [105].

However, this study has several limitations. First, given the cross-sectional survey
design, it is impossible to establish a causal association between OCM metabolic dynamics.
Further intervention studies on FA or 5-MTHF are required. Second, serum OCM-related
metabolites do not always directly reflect OCM dynamics in organ cells. Third, 5-MTHF-
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dependent Hcy remethylation is a vitamin B12-dependent reaction, and vitamin B12 is
an important determinant of Hcy [106,107]; however, it was not measured in this study.
Fourth, recruitment and regional influences, such as only including women from one
university who majored in nutrition, might have introduced a sampling bias. Furthermore,
FA-fortified rice was routinely served in the university cafeteria. Therefore, generalizing
the findings to the Japanese population should be considered with caution. Fifth, Hcy is
influenced by numerous factors, including lifestyle [106]; however, confounding factors
influencing blood Hcy concentrations were left unadjusted. Sixth, while postprandial OCM
kinetic variability was minimized by fasting, the potential impact of habitual diet cannot be
ruled out [108,109]. In particular, vitamin B6 intake may have promoted transsulfuration
pathway flux. Finally, single-nucleotide polymorphisms may have an impact on OCM [56];
however, they have not been considered.

4. Materials and Methods
4.1. Study Design

This study was conducted at Kagawa Nutrition University, Saitama, Japan, between
October and December 2018. This was a cross-sectional study designed to investigate the
association between diet and blood components such as biochemical test values, OCM-
related metabolites, fatty acids, and antioxidants; we reported associations between serum
OCM-related metabolites.

4.2. Participants

Healthy female university students aged 18–25 years majoring in nutrition were
included. The following students were excluded: (1) those with health conditions that may
affect the biomarker concentration; (2) those with a history of, or who have serious hepatic,
renal, cardiac, pulmonary, gastrointestinal (including gastrectomy), or organ disorders;
diabetes; food allergies; or other serious diseases; (3) those receiving medicines that can
affect lipid metabolism or FA metabolism or anti-inflammatory and antioxidant drugs that
may affect the measured values in this study; (4) those pregnant and lactating or planning
for pregnancy and lactation; (5) those with systolic blood pressure <90 mmHg; (6) those
who had previously donated large amounts of blood; (7) those participating in other clinical
trials or studies or within 4 weeks of the end of those studies; (8) those with BMI >25
because BMI may affect blood SAM and SAH levels [110,111]; and (9) those judged by the
principal investigator to be ineligible for this study. The participants were recruited via a
university bulletin board.

A total of 258 eligible participants consented to the study, including proxy consent for
minors. After the study began, 31 participants dropped out owing to consent withdrawals
(n = 9), lost contact (n = 6), health problems (n = 1), busyness (n = 4), and withdrawals
(n = 11), leaving 227 participants. The participants completed a lifestyle questionnaire and
underwent physical measurements, and their fasting blood samples were collected after at
least 10 h of fasting.

4.3. Ethics

The study protocol was approved by the Ethics Committee of Kagawa Nutrition
University (protocol code no. 204) and was conducted in accordance with the Helsinki
Declaration. All participants provided written informed consent before participating in
the study.

4.4. Sample Collection and Processing

To minimize dietary effects [63,67,112], the study participants were instructed to stop
eating and drinking by 10 pm and consume nothing but water until blood collection. The
participants visited the laboratory in the morning, where 15 mL of venous blood was
collected in the supine position and delivered into a serum separation tube. The blood
was allowed to clot at room temperature for 30 min, centrifuged at 4 ◦C for 10 min at
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2000× g, and the serum was then separated within an hour and frozen at −80 ◦C. Under
these storage conditions, the concentrations of OCM-related metabolites measured in this
study have been reported to be generally stable [51,113,114].

4.5. Measurement of Serum OCM-Related Metabolites

We previously described the method for measuring OCM-related metabolites [81]. Af-
ter combining the methods of Guiraud et al. [70] and Zheng et al. [115], we set up multiple
reaction monitoring transitions for 18 OCM-related metabolites and their corresponding
18 internal standards (m/z 460.2→313.2 (5-MTHF), m/z 465.2→313.2 (5-MTHF−13C5), m/z
442.2→295.2 (FA), m/z 447.2→295.2 (FA−13C5), m/z 104.0→60.1 (choline), m/z 113.0→69.1
(choline-d9), m/z 118.1→58.0 (betaine), m/z 129.0→66.1 (betaine-d11), m/z 104.1→58.1
(DMG), m/z 110.1→64.0 (DMG-d6), m/z 150.1→104.0 (methionine), m/z 153.0→107.0
(methionine-d3), m/z 399.1→250.3 (SAM), m/z 402.2→250.2 (SAM-d3), m/z 385.2→134
(SAH), m/z 389.2→136.2 (SAH-d4), m/z 136.0→90.0 (Hcy), m/z 140.0→93.9 (Hcy-d4), m/z
184.1→138.3 (homocysteic acid), m/z 188.1→142.0 (homocysteic acid-d4), m/z 223.2→134.1
(cystathionine), m/z 227.1→138.1 (cystathionine-d4), m/z 122.1→59.1 (Cys), m/z 124.2→61.0
(Cys-d2), m/z 126.1→107.8 (taurine), m/z 128.1→110.2 (taurine−13C2), m/z 106.1→60.1
(serine), m/z 109.1→63.1 (serine-d3), m/z 76.0→30.0 (glycine), m/z 78.0→31.9 (glycine-d2),
m/z 377.1→243.1 (riboflavin), m/z 383.2→249.1 (riboflavin−13C4

15N2), m/z 169.2→152.2
(pyridoxamine), m/z 172.1→155.1 (pyridoxamine-d3), m/z 170.1→134.1 (pyridoxine), and
m/z 172.1→136.0 (pyridoxine-d2)) [105]. Hcy and Cys were detected in reduced forms
as tHcy and tCys, respectively, under the influence of reducing agents. For liquid chro-
matography, an Agilent 1200 Series (Agilent Technologies, Tokyo, Japan) was used, and the
ion source was a Turbo Ion Spray (Applied Biosystems SCIEX, Tokyo, Japan). The triple
quadrupole mass spectrometer was a 4000 QTRAP System (Applied Biosystems SCIEX).
The measurement time was 13 min, and the mobile phase flow rate was 500 µL/min, with
“A” being a 5 mmol/L perfluoroheptanoic acid solution, “B” being an acetonitrile gradi-
ent, and the separation column being an XSelect HSS T3 Column, 2.5 µm, 100 × 2.1 µm
(Nihon Waters, Tokyo, Japan). The measurements were taken twice, and the mean value
was used. For precision control, eight-point calibration curves were created every 24 h,
and quality control measurements were taken every 12 h. The intra-assay and interassay
coefficients of variation were 0.3% to 9.1% and 0.5 to 13.5%, respectively. When measuring,
control sera were under low-concentration conditions in a preliminary validity test [116].
Analyst 1.6.3 software was employed to process and quantify the data. The concentration
value was 0 if the peak could not be detected or the signal-to-noise ratio was <10 as the
quantification limit.

4.6. Attribute Data

Data regarding the participants’ ages were collected using a self-administered ques-
tionnaire.

4.7. Nutrient Intake

Dietary data were collected for 7 days before blood collection using a continuous,
non-weighted dietary record in conjunction with digital images captured using a digital
camera or smartphone according to a validated dietary survey method [117–119]. In brief,
the participants were instructed to photograph all their meals except water while writing
the menu name, ingredients used, and portion size on a self-administered food record form.
The photographs were captured before and after the meal, and the participants were asked
to place a designated card that would serve as a scale to measure the food. If they ate out
or consumed products, they were asked to record the restaurant and brand names of the
food. Trained nutrition students and researchers used digital images and dietary records
to infer the type and weight of individual food items consumed by the participants based
on the standardized Dietary Survey Manual [120] and obtained additional information
from the participants when information was unclear. Individual food items were coded
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based on Japan’s Standard Tables of Food Composition, 2015 [121], and food codes that best
approximated the state of the food at the time of eating were selected. Estimated energy and
nutrient intakes were calculated using Excel eiyoukun, Version 8.2 (Kenpakusha, Tokyo,
Japan). Nutrient intakes were averaged over 7 days, and energy was adjusted for each
nutrient intake using the density method.

4.8. Blood Pressure Measurement

Blood pressure was measured using a P2000 Electronic Blood Pressure Monitor
(TERUMO, Yamanashi, Japan). The mean systolic and diastolic blood pressure was mea-
sured twice in the resting state according to the Japanese guidelines for managing hyper-
tension [122].

4.9. Anthropometric Data

The participants’ anthropometric measurements were collected using standardized
methods during laboratory visits for blood sampling. Body weight and body fat percentage
were measured using TBF-110 (TANITA, Nagano, Japan).

4.10. Statistical Analysis

The distribution of subject characteristics data, nutrient intake, and serum concen-
trations of OCM-related metabolites used in the analysis were mostly non-normal and
continuous variables were expressed as medians (25–75th percentile values). Since there
are no thresholds established for serum 5-MTHF concentrations such as deficiency, insuf-
ficiency, sufficiency, or excess, based on a previous study [99], a median serum 5-MTHF
concentration of 19.2 nmol/L was used to stratify the participants into high and low 5-
MTHF groups, and the Mann–Whitney U test was used to compare these groups. The
enzyme activity indices included the betaine/DMG ratio [98] for BHMT activity, SAM/SAH
ratio [54] for methyltransferase activity, and tCys/tHcy ratio [59] for enzyme activity in
the transsulfuration pathway (CBS and CSE). The significance level was set at a two-tailed
p-value of <0.05. IBM Statistical Package for the Social Sciences Statistics, Version 28 (IBM,
Japan) was used for statistical analysis.

5. Conclusions

Previous studies assessed folate status without considering folate molecular species.
Thus, we extended the findings of previous studies by comprehensively measuring OCM-
related metabolites, including 5-MTHF, a major reduced folate. FA showed no association
with important OCM-related metabolites, indicating that blood 5-MTHF levels could be
useful for evaluating folate status. The 5-MTHF state could be linked to the Hcy flux
into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be a
more sensitive indicator of the 5-MTHF status than tHcy concentrations alone. A low
5-MTHF status may affect the choline metabolic pathway, particularly BHMT or CBS
activity via betaine, implying that the folate cycle and choline metabolic pathway should
be evaluated simultaneously in Hcy studies. Further intervention studies on FA or 5-MTHF
are warranted to determine the causal association between the abovementioned findings.
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Abbreviations

5-MTHF 5-methyltetrahydrofolate
BHMT Betaine–homocysteine S-methyltransferase
BMI Body mass index
CBS Cystathionine β-synthase
CSE Cystathionine γ-lyase
Cys Cysteine
DMG Dimethylglycine
FA Folic acid
Hcy Homocysteine
MAT Methionine adenosyltransferase
MTHFR Methylenetetrahydrofolate reductase
OCM One-carbon metabolism
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
tCys Total cysteine
tHcy Total homocysteine
THF Tetrahydrofolate

Appendix A

Appendix A.1. Association between Betaine Concentrations and tHcy/tCys Ratio

Similar to the correlation between 5-MTHF concentrations and tHcy/tCys ratios, the
correlation between betaine concentrations and tHcy/tCys ratios (ρ = −0.324, Table 3) was
stronger than that between betaine and tHcy concentrations alone (ρ = −0.292, Supple-
mentary Table S1). This was also reported in a previous study [59], and the tHcy/tCys
ratio could serve as a sensitive indicator of the betaine status and a simple indicator of the
complex folate cycle and choline metabolic pathway.

Appendix A.2. Association between Betaine and SAM Concentrations

Similar to 5-MTHF, betaine concentrations that remethylate Hcy had a significant
positive correlation with SAM concentrations. A previous study also reported that be-
taine concentrations positively correlated with SAM concentrations in healthy men and
women [123], indicating the significance of considering betaine status in addition to 5-
MTHF status in OCM methyl group metabolism. However, the association between betaine
and SAM could be indirect, since 5-MTHF and betaine are positively correlated.

Appendix A.3. 5-MTHF Status and its Association with Choline Metabolic Pathways

Herein, significant correlations were detected between choline and betaine, choline
and DMG, and betaine and DMG concentrations, with a stronger correlation in the high
5-MTHF group than in the low 5-MTHF group (Supplementary Table S1). These associa-
tions have also been reported in previous studies involving pregnant women and healthy
adults [67,68,93], and they may be explained by the fact that choline is a precursor to be-
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taine and DMG [68]. The findings of the present study imply that the association between
these choline metabolic pathways may be influenced by the 5-MTHF status.
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