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Abstract: The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central
role in the early defense against infection. Thus, the SARS-CoV-2 viral load, miRNAs, cytokines,
and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD)
COVID-19 patients. Here we showed that of the 84 miRNAs analyzed, 8 were differently expressed in
the plasma and saliva of SD patients. In particular: (1) miRNAs let-7a-5p, let-7b-5p, and let-7c-5p were
significantly downregulated; and (2) miR-23a and b and miR-29c, as well as three immunomodulatory
miRNAs (miR-34a-5p, miR-181d-5p, and miR-146) were significantly upregulated. The production
of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9, and TNFα) and chemokines (CCL2 and
RANTES) increased in both the saliva and plasma of SD and MD patients. Notably, disease severity
correlated with NA and immune activation. Monitoring these parameters could help predict disease
outcomes and identify new markers of disease progression.

Keywords: miRNA; non-coding RNA; COVID-19; SARS-CoV-2; epigenetic profile

1. Introduction

SARS-CoV-2 is an airborne pathogen transmitted by asymptomatic, pre-symptomatic,
and symptomatic individuals through close contact via exposure to infected droplets
and aerosols [1,2]. Saliva plays a key role in virus spread and transmission. However,
saliva is also critical in protecting the oral cavity against microorganisms, as it harbors
several components that intervene in the early host defense against invasive pathogens.
Thus, saliva composition and function can be critical for determining the course of the
infection. Immune-associated factors present in saliva include neutralizing antibodies,
chemokines, and cytokines, as well as epigenetic factors such as microRNA (miRNA),
which can direct the host response through the modulation of gene expression. In line with
this, recent studies corroborated the diagnostic value of salivary miRNAs as biomarkers of
disease [3–6].

MiRNAs are noncoding (18–25 nt length) intracellular molecules that downregu-
late or repress the expression and/or translation of protein-coding genes by binding the
3-untranslated region (3′-UTR) and the coding sequence of mRNA molecules [7]. MiR-
NAs can also be found in the extracellular space, including biofluids such as plasma and
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saliva [8], where they act as signaling molecules to regulate a broad array of physiological
and pathological processes. In viral infections, several studies argue that miRNAs can
promote viral inactivation and neutralization; this might occur by directly repressing viral
RNA translation and/or by targeting host genes to improve the immunological response
against the virus [9]. As for SARS-CoV-2, ex vivo studies documented an altered plasma
miRNA profile in different COVID-19 cohorts [10]. As assessed by computational predic-
tion studies, these different profiles could mirror distinct phases of the disease, from its
onset to recovery [9].

Studies assessing miRNA profiles in the oral mucosa of COVID-19 patients are very
limited [11]. We verified whether SARS-CoV-2 infection affects the composition and the
expression of salivary miRNA and if such an effect is different in patients with diverse
degrees of COVID-19 severity. We also analyzed other salivary immune parameters in
the same patients in the attempt to define salivary immune profiles that could predict
COVID-19 severity. Finally, we verified whether SARS-CoV-2 infection induces similar
alterations of immune profiles in saliva and plasma. Results suggest that salivary miRNA
molecular phenotyping could represent a valuable, non-invasive diagnostic biomarker.

2. Results
2.1. Study Population

A total of 20 COVID-19-positive patients were enrolled in the study, 10 with mild dis-
ease and 10 with severe disease, divided according to COVID-19 disease severity following
the National Institute of Health (NIH) guidelines for COVID-19 treatment. In particular:

Mild disease (MD) refers to individuals who had any of the various signs and symptoms
of COVID-19 (e.g., fever, cough, sore throat, malaise, headache, muscle pain, nausea,
vomiting, diarrhea, and loss of taste and smell) but did not have shortness of breath,
dyspnea, or abnormal chest imaging.

Severe disease refers to individuals who had an SpO2 < 94% in room air at sea level,
a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2)
< 300 mm Hg, a respiratory rate > 30 breaths/min, or lung infiltrates > 50%.

Hydroxychloroquine was prescribed to 47 patients (80%), 22 of whom were treated
with a protease inhibitor (Lopinavir/RTV, 9 pts, or Darunavir/COBI, 10 pts), in line with
the standard of care at the time of the patients’ hospitalization. Five patients (4%) also
received Tocilizumab in combination with one of the aforementioned treatments. Thirteen
patients (16%) did not receive any therapy.

Oxygen was administered to 44 patients (75%), the majority of whom (27 pts, 61%)
received oxygen therapy in a Venturi mask. Six patients (14%) required high-flow nasal
(HFN) oxygen support, and five (11%) required non-invasive ventilation (NIV). Seven
patients (12%) with severe SARS-CoV-2 pneumonia were transferred to the ICU; three
of them received mechanical ventilation. We chose ten of thirteen patients who did not
receive any therapy. We excluded 3 of those 13 patients because they lacked some biological
samples. As for MD patients, non-smokers and patients without comorbidities were
considered for analysis. The 10 HC were non-smoker subjects. All patients and HC were
matched for age and sex (Table 1).

2.2. SARS-CoV-2 Titers and Neutralizing Activity (NA) in Saliva and Plasma

To verify if COVID-19 clinical severity was correlated with viral replication, we evalu-
ated SARS-CoV-2 viral titers in all saliva and plasma samples. Not unexpectedly, higher
salivary viral titers were detected in SD patients, compared to MD patients, for both N1 and
N2 (p < 0.05 for both comparisons) (Figure 1A), with SARS-CoV-2 being totally undetectable
in the saliva of HC.
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Table 1. Enrolled subjects divided according to phenotype.

Patients Age Sex Therapy Co-Infection

MILD Mean ± SD
66.4 ± 16.97 F = 40%

1 45 F 1, 4 -
2 57 F 1, 3 -
3 85 F 0 -
4 71 M 1, 2 -
5 86 M 1, 2, 6 -
6 59 F 1, 2 -
7 70 M 1, 4 -
8 40 M 1, 4, 5 -
9 62 M 0 -
10 89 M 1 -

SEVERE Mean ± SD
65.8 ± 12.20 F = 20%

1 89 M 1 -
2 49 M 1, 2, 3 -
3 59 M 1, 4, 5 -
4 49 F 1, 4, 5 -
5 63 M 1, 2, 3, 4, 5 -
6 75 M 1 -
7 75 M 1, 2 -
8 66 M 0 -
9 64 F 1, 3 -
10 69 M 0 -

HC Mean ± SD
62.5 ± 17.04 F = 60%

1 52 F 0 -
2 87 F 0 -
3 74 M 0 -
4 40 F 0 -
5 55 M 0 -
6 79 M 0 -
7 44 F 0 -
8 81 F 0 -
9 47 F 0 -
10 66 M 0 -

Therapy legend: 0 = No therapy; 1 = Hydroxychloroquin; 2 = Lopinavir; 3 = Darunavir-c; 4 = Darunavir/r;
5 = Tocilizumab; 6 = Other.

To verify whether the different viral replication rates seen in SD patients, compared
to MD patients, could be associated with different salivary and/or plasma neutralization
activities, a neutralization assay was performed next on all saliva. Results showed that
neutralization activity was indeed more potent in saliva samples from MD patients, com-
pared to SD patients (p < 0.05) (Figure 1B), suggesting that a stronger NA at the mucosal
level is able to properly contain viral replication and spread, thus avoiding the onset of
severe symptoms.

Notably, a comparison of the strength of NA in saliva with viral titers in all the subjects
enrolled in the study showed the presence of a statistically significant negative correlation
between these two parameters (p < 0.05) (Figure 1D).

In contrast with these results, no differences were observed when plasma NAs from
MD and SD patients were compared (Figure 1C).
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Figure 1. SARS-CoV-2 viral replication and neutralizing activity in saliva and plasma samples of MD
and SD patients. Viral replications N1 and N2 of SARS-CoV-2 are reported in panel (A). Neutralizing
activity (NA) from saliva and plasma of 10 MD patients (light blue bars) and 10 SD patients (blue
bars), measured by virus neutralization assay (vNTA), are reported in panels (B) and (C), respectively.
The Spearman correlation between the SARS-CoV-2 viral copy and NA level (D). Significance was
indicated as follows: * = p < 0.05.

2.3. MiRNA Expression in Saliva from SD Patients, MD Patients, and HC

The expression of 84 miRNAs known to be endowed with immunomodulatory and/or
antiviral functions was assessed by real-time qPCR in the saliva of all the enrolled subjects.
Results showed that SD patients were characterized by a peculiar miRNA profile that was
different, compared to that of MD patients and HC (Figure 2A) (Supplementary Figure S1A).

In an attempt to better define the miRNA profile associated with severe SARS-CoV-2
infection, we focused on antiviral and immunomodulatory miRNAs, whose expression was
differentially modulated in SD patients, compared to MD patients and HC (Figure 2B,C).
In SD patients, compared to MD patients and HC, several members of the let-7 antiviral
family, including let-7a, let-7b, and let-7c, were downregulated (p < 0.05 for all comparisons),
whereas miR-23 and miR-29c were significantly upregulated (miR-23: p < 0.05; miR-29c:
p < 0.01, Figure 2B). As for miRNAs known to be endowed with an immunomodulatory
function, miR-34, miR-146, and miR-181 were significantly upregulated in SD patients,
compared to both MD patients and HC (miR-34: p < 0.01, miR-146: p < 0.05, miR-181:
p < 0.05) (Figure 2C). Notably, miR-34 and miR-146 were overexpressed in MD patients,
compared to HC (miR-34: p < 0.05 and miR-146: p < 0.05) as well, suggesting that the
modulation of miRNA salivary profiles occurs even at low viral replication rates.

2.4. MiRNA Expression in Plasma from SD Patients, MD Patients, and HC

The same miRNA panel was evaluated in plasma collected from all the individuals
enrolled in the study. The expressions of the 84 miRNAs analyzed in plasma were different
in the three groups examined, with a significant up-regulation of a number of miRNAs
characterizing SD patients (Figure 3A) (Supplementary Figure S1B). The miRNA row data
are available on NCBI platform with GSE accession number: GSE236017.
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Figure 2. MiRNA expression analysis in saliva samples by PCR array. miRNA profile of SD patients,
compared to MD patients (A). Analyses of miRNA with antiviral (B) and immunological functions
(C) were performed in saliva samples of 10 HC (white bar), 10 MD patients (light blue bars), and
10 SD patients (blue bars). Results were calculated relative to the arithmetical mean of the references
available in the arrays RNU6-2. Values were mean ± SEM. Significance was indicated as follows:
* = p < 0.05, and ** = p < 0.01.

In SD patients in particular, both antiviral (vs. MD: miR-23a: p < 0.05; miR-23c: p < 0.01,
miR-29c: p < 0.05, and miR-98: p < 0.05) and immunomodulatory (vs. MD: miR-34a, miR-
146, and miR-181: p < 0.05 for all comparisons) (vs. HC: miR-34a, miR-146, and miR-181:
p < 0.05 for all comparisons) miRNAs were significantly upregulated (Figure 3B,C). In
addition, miR-23a, miR-29c, and miR-181 (p < 0.05 in all cases) were upregulated in MD
patients, compared to HC. Finally, significant downregulations of let-7 family members
were observed in SD patients (let-7a, let7b, and let-7f: p < 0.05 in all cases) and MD patients
(let-7a: p < 0.05; let-7b: p < 0.05; let-7f: p < 0.01), compared with HC, and for let-7f in SD
versus MD patients (p < 0.05) (Figure 3B).

Notably, most miRNAs were similarly modulated by infection in saliva and plasma,
validating the assumption that their regulation is a virus-specific event and highlighting
their potential as biomarkers to monitor viral infection.

2.5. Gene Expression of Immune/Antiviral-Selected Effectors in PBMCs from SD and MD Patients

We evaluated the mRNA expressions of 40 selected genes in PBMCs of SD and MD
patients. In SD patients, compared to MD patients, the expression pattern was characterized
by a significant increase in the expression of: (1) activation markers (CD69: p < 0.05; CD38:
p < 0.01); (2) pro-inflammatory (IL-1β, IL-6, and IL-22: p < 0.05 for all comparisons) and
anti-inflammatory cytokines (IL-10: p < 0.05); (3) chemokines (CCL2 and CCL5: p < 0.05),
and (4) host antiviral effector genes (IFITM1 and IFITM3: p < 0.01) (Figure 4). These
results offer further confirmation to the observation that an overstimulation of the immune
response is seen in severe COVID-19 infection, a situation where antiviral mechanisms are
exacerbated as well.
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Figure 4. mRNA expression of genes involved in the antiviral/immune response. Quantigene Plex
Gene expression technology was applied to quantify gene expression on RNA extracted from PBMCs
isolated from 10 MD patients (light blue bars) and 10 SD patients (blue bars). Results were calculated
relative to the arithmetical mean of the references available in the panel: GAPDH, b-Actin, and PPI.
Only statistically significant p-values from the t-test comparison between SD and MD patients are
shown * = p < 0.05, and ** = p < 0.01.

2.6. Modulation of Cytokine and CHEMOKINE Productions in Saliva and Plasma from SD
Patients, MD Patients, and HC

The production of 27 cytokines and chemokines related to immune activation was
assessed in both plasma and saliva specimens from all the subjects with a Luminex assay.
The cytokine and chemokine patterns were similar in the two anatomical districts and were
characterized by the upregulation of all analyzed proteins in SD patients, compared to both
MD patients and HC. However, the upregulation of specific cytokines reached statistical
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significance only in the plasma of the patients analyzed. In fact, peculiar differences
between the analyzed cohort were far more evident in plasma than in saliva, probably
reflecting the systemic cytokine storm raging in patients with severe symptoms.

In detail, in the saliva of SD patients, such factors included cytokines known to be
involved in the inflammatory process caused by COVID-19, such as IL-1β (SD vs. HC:
p < 0.01; vs. MD: p < 0.05), IL-2 (SD vs. HC: p < 0.05), IL-6 (SD vs. HC and MD: p < 0.05),
IL-8 (SD vs. HC: p < 0.001; vs. MD: p < 0.05), IL-9 (SD vs. HC: p < 0.05), and TNFα (SD vs.
HC: p < 0.01). Some chemokines, including RANTES (SD vs. HC: p < 0.01; vs. MD: p < 0.05)
and CCL2 (SD vs. HC: p < 0.01; vs. MD: p < 0.05), as well as growth factors such as VEGF
(SD vs. HC: p < 0.01) (Figure 5A), were significantly increased in SD patients as well.
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Figure 5. Plasma secretion of cytokines/chemokines that were part of the inflammatory response.
The production of 27 cytokines/chemokines regulating immune response was assessed by Luminex
assay in saliva (A) and plasma (B) specimens of 10 HC, 10 MD patients, and 10 SD patients. Cy-
tokine/chemokine productions (mean values) are shown as a color scale from white to blue (heatmap).
Only statistically significant p-values between at least 2 groups were reported, along with the per-
centage of difference in lower panels of (A, saliva) and (B, plasma).

Notably, saliva concentrations of a number of immune proteins were also increased in
MD patients, compared to HC (IL-1β: p < 0.01; IL-6: p < 0.05; IL-8: p < 0.01; IL-9: p < 0.01;
CCL-2: p < 0.001; RANTES: p < 0.05; TNFα: p < 0.05; and VEGF: p < 0.01) (Figure 5A).

Likewise, in plasma, the concentrations of a number of immune proteins were sig-
nificantly increased in SD patients as follows: IL-1β (vs. HC and MD: p < 0.05), IL-6 (vs.
HC and MD: p < 0.01), IL-8 (vs. HC: p < 0.01) IL-10 (vs. HC: p < 0.05), IL-17 (vs. HC and
MD: p < 0.01), IFNγ (vs. HC: p < 0.05), VEGF (vs. HC: p < 0.001), CCL-2 (vs. HC and MD:
p < 0.01), TNFα (vs. HC and MD: p < 0.05), and RANTES (vs. MD: p < 0.05).

Finally, in plasma samples from MD patients, compared to HC, significantly increased
productions of IL-1β (p < 0.05), IL-6 (p < 0.05), IL-8 (p < 0.05), IL-10 (p < 0.05), IL-17 (p < 0.01),
IFNγ (p < 0.05), CCL-2 (p < 0.001), VEGF (p < 0.001), and TNFα (p < 0.05) were observed as
well (Figure 5B).

3. Discussion

Circulating miRNAs are endogenous, non-coding small RNA molecules that can
be secreted into circulation and biological fluids such as saliva. Similar to intercellular
miRNAs, circulating ones partake in the regulation of both biological processes and the
control or progression of diseases, including infections [12–14]. Indeed, over the course
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of infection, pathogens trigger a significant change in the signatures of cellular and/or
circulating miRNAs, suggesting their use as circulating biomarkers of disease [12]. Due to
collection simplicity and because of extended similarities between mucosal and systemic
miRNA profiles, recent studies have focused on the convenience of the saliva-based liquid
biopsy approach for multiple sampling, early diagnosis, prognosis, longitudinal monitoring
of progression, and treatment response in different pathological conditions [15–17].

Only a few studies so far have focused on identifying saliva biomarkers that can
predict different clinical outcomes in COVID-19 patients [18,19], and our data represent
the first description of epigenetic and immunological determinants at the entry site of
SARS-CoV-2 in saliva of COVID-19 patients prior to vaccination.

Overall, we observed a complex dysregulation of soluble immune factor profiles
following SARS-CoV-2 infection at both systemic and local levels, with an intensity propor-
tional to disease severity. Among all the analyzed cytokines and miRNAs, we focused on
those showing a superimposable trend in saliva and plasma specimens in an attempt to
identify valuable biomarkers for monitoring disease progression.

In particular, in COVID-19 patients, we detected a significant down-regulation of
let-7 miRNA family members in both anatomical districts. Let-7 is a miRNA family that
includes 13 members with established antiviral activity. In fact, it has been reported that
let-7 can attenuate the virulence of the influenza virus, preventing the development of
pneumonia [20], a well-known recurrent feature of SARS-CoV-2 infection [6]. Even more
noteworthy, let-7d, let-7e, let-7f, let-7g, let-7i, and miR-98 were reported to significantly
suppress SARS-CoV-2 spike protein production and/or inhibit membrane protein assembly
by directly targeting SARS-CoV-2 [21]. Further endorsing these observations, lower levels of
let-7 family members were observed in plasma from severe COVID-19 patients, compared
to mild ones and healthy controls [22], and their expression was further reduced in patients
requiring oxygen [10]. Our data in saliva specimens are, therefore, in line with the results
obtained in plasma by other researchers, suggesting their potential use as biomarkers to
monitor SARS-CoV-2 infection at the entry site.

Conversely, in our cohort, miR-23 and miR-29 expressions were significantly up-
regulated in both plasma and saliva of SD patients. MiR-29c is one of the most important
antiviral microRNAs associated with different disease outcomes, depending on the in-
fectious agent. We observed that miR29c expression was significantly higher in PBMCs
and plasma from subjects who did not seroconvert, despite repeated exposure to HIV-1,
suggesting a protective role for this miRNA against HIV-1 infection. Likewise, an increased
miR-29 expression was recently detected in placentas from SARS-CoV-2-infected preg-
nant women [23] in whom vertical SARS-CoV-2 transmissions were not observed. As this
miRNA was predicted to target 11 SARS-CoV-2 sites [24], these results suggest a potential
defensive role of miR-29 in preventing vertical transmission.

Contrariwise, other studies hypothesized a negative role for miR-29, as its expression
was increased in PBMCs of COVID-19 patients, compared to healthy controls during the
acute and post-acute phases [25] and in the plasma of severe patients, compared to mild
patients [26].

As for miR-23, bioinformatics analysis predicted its binding to the 3′UTR of the SARS-
CoV-2 spike protein and the ACE2 cellular receptor [27], and a high concentration of this
miRNA could classify SARS-CoV-2 infection with >99% accuracy [10]. The increased
expression of this molecule we detected in both SD plasma and saliva could, therefore,
be explained as an attempt of the host to counteract SARS-CoV-2 infection once viral
replication exceeds a definite threshold.

As expected, in our cohort, SARS-CoV-2 infection triggered the dysregulation of
several immunomodulatory miRNAs as well. Indeed, as documented by previous studies,
miRNAs can either enable viral immune evasion through targeting some pivotal host
immune reactions [28] or decrease host responses to prevent acute tissue damage by
targeting immunological mediators [29]. Notably, the upregulations of miR-34, miR-146,
and miR-181 in COVID-19 patients were evident in both plasma and saliva. In post-
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mortem lung biopsies from COVID-19 patients, endothelial dysfunction was associated
with miR-34a downregulation [30]. Instead, Chen et al. observed that in septic mice, miR-34
over-expression promoted oxidative stress, pyroptosys, and the consequent production of
pro-inflammatory cytokines, eventually resulting in lung injury [31]. Our findings support
the hypothesis of Chen and colleagues, which state that miR-34a overexpression is a marker
of COVID-19 severity.

The role of miRNA 146 in SARS-CoV-2 infection remains largely controversial, as
contradictory results have been published. It acts as a dominant negative regulator of the
innate immune response [32] by decreasing NK cell degranulation [33] and the expression
of downstream factors of TLR signaling [34]. Switching off the immune response is a
double-edged sword with unforeseeable consequences. Hence, in some viral infections,
miR-146 overexpression is associated with an increased viral replication [35]. In severe
COVID-19 patients, miR-146 deregulation was linked to an over-activation of the immune
system, causing the cytokine storm [36]. Conversely, and in line with our results, some
authors detected a higher expression of miR-146 in severe patients [37] and in the acute and
post-acute COVID-19 phases [38], thus ascribing it a negative role. This notwithstanding,
in another cohort of severe COVID-19 patients, high levels of miR-146 were associated
with a lower thrombotic risk and mortality, due to an inverse correlation with D-dimer
formation [39].

The precise function of miR-181 in SARS-CoV-2 infection is still debated as well.
miR-181-5p was shown to block immune checkpoints by targeting Bcl2 and TNF super
families [40]. An increase in this miRNA was reported in patients with severe COVID-19 [41],
and its expression was associated with a worse outcome [42]. In our cohort, an un-
upregulation of miRNA-181 was detected in both SD saliva and plasma as well. On
the contrary, recent studies reported that miR-181a levels are usually downregulated in
SARS-CoV-2-infected patients, and low levels of miR-181a boost viral entry, as it targets
TMPRSS2 and ACE2 expressions [43,44].

Notably, the miRNA data were not SARS-CoV-2-specific, or, at least, our data could
not prove a direct correlation between SARS-CoV-2 infection and miRNA production. Most
of these miRNAs display antiviral or immunological functions. Indeed, their expression
has already been widely documented in other pathological conditions, including infectious
ones [16,17,27,45]. We, therefore, speculate that this miRNA outline is triggered by the
host response to any invading pathogen, rather than a specific one. However, as their
modulation was significantly different in COVID-19 patients, compared to HC and in
patients with different disease severities, it would be very useful to identify a miRNA
combination suggestive of SARS-CoV-2 infection and outcome, especially in the saliva, to
be used as predictive prognosis and diagnosis tools.

Because of their antiviral and immunomodulatory functions, miRNAs could also
directly intervene in the modulation of NA. Although we did not directly validate this
hypothesis, our data showed a correlation between disease severity and NA, which could
be at least partially attributed to miRNA release, mainly at the mucosal level. Indeed, in
the saliva of MD patients, we observed a robust NA, suggesting that the activation of a
prompt and protective immune response prevents the onset of a severe symptomatology.
Intriguingly, the NA trend observed in the saliva of MD vs. SD patients was opposite to
that detected in the plasma. This inverse tendency has already been documented in other
viral infections. For instance, Nekoua et al. reported that in coxsackievirus infection, NA
was significantly higher in saliva from diabetic patients, compared to controls, but such
differences were no longer evident at the plasma level [46].

It is tempting to speculate that the levels of NA in the plasma mirror the strong and
generalized immune reaction (cytokine storm) that occurs at a systemic level following
viral infection and tissue dissemination. Thus, it is conceivable that plasma NA levels
are proportional to viral titers and to the severity of disease, being higher in SD patients,
compared to MD patients. Instead, NA in the saliva likely mirrors the pattern of an early,
local immune response focused at controlling viral spread and tissue damage. In this case,
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the levels of NA might be inversely proportional to the severity of disease, being higher
in MD patients, compared to SD patients. However, the lack of statistical significance in
salivary NA between MD and SD patients hinders any further speculations.

Accordingly, a paper from Valimaa et al. showed that in Herpes simplex virus (HSV)
infection, NA in saliva from asymptomatic HSV-seropositive subjects was significantly
higher, compared to saliva NA in patients with recurrent labial herpes, suggesting that
salivary defense factors might contribute to controlling the recurrence and, presumably, the
severity of infections [47].

In the plasma of SD patients, we also detected higher levels of pro-inflammatory
cytokines/chemokines possibly responsible for the well-known cytokine storm. Notably,
the same scenario was recorded by profiling salivary immune proteins, suggesting that
SARS-CoV-2 triggers well-defined immune responses already at the entry site. The identi-
fication of cytokines/chemokines and the pathophysiological features of the COVID-19-
induced cytokine storm is relevant in order to predict clinical worsening, any requirement
for hospitalization, intubation, or mortality [29]; after all, this feature has already been
associated with the clinical outcome in many other viral infections, including HIV-1 [48]
and monkeypox [49].

The assessment of cytokine secretion in saliva could, therefore, provide a further
diagnostic tool to properly classify disease severity and progression.

Its suitability was validated from gene expression analyses in PBMCs of SD and
MD patients, indicating the activation of innate and adaptive immune responses that
were proportional to disease severity. Indeed, increased expressions of activation markers
(CD38 and CD69) and interferon-stimulated genes (IFITM1 and IFITM3) were detected in
SD patients.

Apart from configuring saliva cytokine and NA profiling as a suitable diagnostic tool
for COVID-19, the present study identifies circulating miRNA saliva and plasma profiles
associated with COVID-19 severity. Notably, such profiles do not represent a mere marker
of the infection, as several differences were observed by comparing SD and MD patients.
These results suggest that monitoring salivary miRNA expression could help foresee the
outcome of COVID-19. However, the genes, miRNAs, and cytokines/chemokines herein
analyzed are known to correlate to many diseases beyond COVID-19. Thus, the risk
of identifying biological predictors not faithfully correlated to COVID-19 represents a
potential limitation of the present study.

4. Material and Methods
4.1. Participants and Sample Collection

This study included a total of 20 COVID-19-positive patients (as determined by the
SARS-CoV-2 molecular test of nasopharyngeal swabs) enrolled from a larger cohort hospi-
talized at the Infectious Diseases Unit, Policlinic “Riuniti” of Foggia (Italy) between 1 March
and 31 May 2020. Patients were divided into mild patients (MD; n = 10) and severe patients
(SD; n = 10) according to COVID-19 disease severity and following the National Institute
of Health (NIH) guidelines for COVID-19 treatment. Age- and sex-matched uninfected
subjects (HC) (n = 10) were included. HC were negative for SARS-CoV-2 molecular and
anti-N ELISA tests. Blood and saliva samples were collected at hospital admission on the
same day of testing by spitting after repeated mouth-washing with water. Participants
were asked not to eat, drink, or smoke for at least 30 min prior to saliva collection. Saliva
was incubated at 56 ◦C for 10 min and centrifuged at 6000× g for 10 min. Supernatants
were stored at −80 ◦C until use. Plasma was obtained by centrifugation of whole blood
at 1200× g for 10 min and stored at −20 ◦C until use. PBMCs were isolated as previously
described [50] and stored at−150 ◦C. None of the subjects were vaccinated for SARS-CoV-2
at the time of sampling.

The protocol was approved by the local Medical Ethical and Institutional Review Board
of Policlinic “Riuniti” of Foggia (protocol number 49/C.E./2021). Full informed consent
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was obtained from all subjects involved in the study, in agreement with the Declaration of
Helsinki principles.

4.2. SARS-CoV-2 Quantification

Viral RNA was quantified in the saliva of COVID-19 patients by using the Maxwell
RSC Viral Total Nucleic Acid Purification Kit (Promega, Fitchburg, WI, USA) with the
Maxwell® RSC Instrument (Promega, Fitchburg, WI, USA), as previously described [51].
Briefly, single-step, real-time RT-qPCR (GoTaq® 1-Step RT-qPCR, Promega, Fitchburg, WI,
USA) and the 2019-nCoV CDC qPCR Probe Assay kit specifically designed to target two
regions of the nucleocapsid gene of SARS-CoV-2 (N1 and N2) were used on a CFX96
instrument (Bio-Rad, Hercules, CA, USA). An absolute viral copy of SARS-CoV-2 N gene
quantification was performed by generating a standard curve from the quantified 2019-
nCoV_N-positive Plasmid Control (IDT, Coralville, IA, USA). A cycle threshold (Ct) value
of <40 was considered positive, based on CDC guidelines.

4.3. SARS-CoV-2 Virus Neutralization Assay

A neutralizing activity assay was performed as previously described [52].
Briefly, 50 µL of plasma, starting from a 1:10 dilution, and 50 µL of whole saliva

were diluted 1:2 by serial twofold series in 96-well plates. Fifty microliters of SARS-CoV-2
TCID50 was added to each well and incubated for 2 h at 37 ◦C at 5% CO2. After incubation,
100 µL of the solution containing plasma and/or saliva and virus were transferred to
microplates seeded with 2 × 104 VeroE6 cells and incubated for 72 h at 37 ◦C and 5% CO2.
At the end of incubation, cells were fixed with 4% formaldehyde 37% m/v (Merck KGaA,
Darmstadt, Germany), for 20 min and stained with 0.1% m/v crystal violet solution (Merck
KGaA Darmstadt, Germany). A positive titer was equal to or greater than 1:10 or 1:2 for
plasma and saliva samples, respectively. Every test included plasma (1:10 dilution) or
saliva controls (undiluted), as well as cell (VeroE6 cells alone) and viral controls (threefold
series dilution).

4.4. MiRNA Expression in Saliva and Plasma Specimens

Maxwell® RSC miRNA from plasma or a serum kit (Promega, Fitchburg, WI, USA)
was used to extract miRNA from saliva and plasma using the Maxwell® RSC Instrument
(Promega, Fitchburg, WI, USA).

One-hundred nanograms of mature miRNAs were reverse-transcribed into first-strand
cDNA in a 20 µL final volume at 37 ◦C for 60 min using a miScript II RT Kit (Qiagen, Venlo,
The Netherlands), in accordance with the manufacturer’s protocol. The expression level of
84 miRNAs with antiviral and/or immunological functions was evaluated using a miRNA
PCR Array (MIHS-105Z) Qiagen, Venlo, The Netherlands). Arrays were performed on the
CFX ConnectTM Real-Time PCR system (BIO RAD, Hercules, CA, USA). Undetermined
raw CT values were set to 35. The expression profile was analyzed using the PCR Array
Gene Expression Analysis Software (Qiagen, Venlo, The Netherlands). For each miRNA, Ct
values were transformed into relative quantities using a normalization factor RNU6-2 for
saliva and plasma. A fold regulation of ±2.5 was considered positive.

4.5. Quantigene Plex Gene Expression Assay

Total RNA was extracted from PBMCs, as previously described [53], and 100 ng of
RNA was used for gene expression analyses by QuantiGene Plex assay (Thermo Scientific,
Waltham, MA, USA). This approach provided a fast and high-throughput solution for
multiplex gene expression quantitation, allowing for the simultaneous measurement of
40 custom-selected genes of interest in a single well of a 96-well plate. The QuantiGene
Plex assay is hybridization-based and incorporates branched DNA technology, which uses
signal amplification for the direct measurement of RNA transcripts. Results were calculated
relative to GAPDH, β-Actin, and PPIB as housekeeping genes and expressed as ∆Ct.
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4.6. Cytokine and Chemokine Measurements

A concentration of 27 cytokines/chemokines was assessed in the saliva and plasma us-
ing immunoassays formatted on magnetic beads (Bio-Rad, Hercules, CA, USA), according
to the manufacturer’s protocol, via Luminex 100 technology (Luminex, Austin, TX, USA).
Some of the targets that resulted were over-range, and an arbitrary value of 4000 pg/mL
was assigned, while 0 pg/mL was attributed to values below the limit of detection.

4.7. Statistical Analyses

The student’s t-test was applied when appropriate to compare continuous and cate-
gorical variables. One-way ANOVA was applied for the parametric multiple comparison.
A p-value < 0.05 was chosen as the cut-off for significance. Data were analyzed using
GRAPHPAD PRISM version 11 (GraphPad software, La Jolla, CA, USA).

5. Conclusions

SARS-CoV-2 infection modulates the immune/miRNA balance at both the systemic
and oral levels with an intensity that is proportional to disease severity. Monitoring these
parameters over time can help predict disease outcome and identify new markers of dis-
ease progression. Saliva presents many advantages over blood, with its collection being
easy, safe, non-invasive, and cost-effective. The assessment of salivary NA, cytokines,
and miRNAs as biomarkers to monitor SARS-CoV-2 infection can represent a significant
step forward in the diagnosis and prognosis of COVID-19. Further studies will be needed
to validate these results and to verify if and how, following vaccine and/or therapy ad-
ministration, such profiles are altered in SARS-CoV-2-infected and vaccinated subjects.
Overall, these results advise about the possibility to employ saliva-based biomarkers, in-
cluding microRNAs, to diagnose infections and outcomes using airborne methods, even in
combination with other non-invasive bio-specimens, such as breath.
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