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Abstract: Cancer is a complex and diverse disease characterized by the uncontrolled growth of
abnormal cells in the body. It poses a significant global public health challenge and remains a leading
cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate
need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT)
has emerged as a potential treatment for various types of cancer, including skin, lung, bladder,
and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells
while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents
(PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT
reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional
therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic
purposes has a long history dating back thousands of years and continues to be an integral part of
healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the
ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species
(ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on
the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future
research. Nanotechnology has also played a pivotal role in medical advancements, particularly in
the development of targeted drug delivery systems. Therefore, this review explores the potential of
utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in
the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds
holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the
scientific potential of plant-based compounds for PDT, we can pave the way for innovative and
sustainable treatment strategies.
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1. Introduction

Cancer is a disease with a complex and diverse nature that originates from the un-
controllable growth of atypical cells within the body [1]. It is regarded as a major public
health problem worldwide and a leading cause of death [2]. The development of cancer is
a multistep process that involves genetic alterations, epigenetic changes and interactions
with the tumour microenvironment [3]. It is estimated that 1,958,310 new cancer cases and
609,820 cancer deaths will occur in the United States in 2023 [4]. According to GLOBOCAN,
the international agency for research on cancer, the worldwide occurrence of cancer is
estimated to total 19.3 million cases in 2020 and is predicted to increase to 30.2 million
cases by 2040 [5]. Several risk factors can be attributed to the increase in the occurrence and
fatality rates of cancer. Various factors can contribute to certain health conditions, such as
alcohol consumption, advanced age, hormonal imbalances, genetic susceptibility, and poor
lifestyle choices [6]. The predominant treatment approaches employed in the management
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of breast cancer comprise surgical procedures, radiotherapy, chemotherapy, and hormonal
therapy [7]. Typically, patients with cancer may undergo surgery and radiotherapy as the
initial or standard treatment, followed by adjuvant therapy which may consist of either
hormonal therapy or chemotherapy [8]. Conventional cancer treatment modalities, such
as chemotherapy, radiation therapy, and surgery, have certain limitations that can impact
patient life. Chemotherapy is known to cause significant side effects such as fatigue, hair
loss, and nausea. Unfortunately, it can also destroy healthy cells while not effectively
targeting cancer cells [9]. Chemotherapy regimens that are frequently utilized can carry
some risks, both in the short and long term, even if they are relatively minor. This is
particularly relevant for breast cancer patients, who tend to be older and may have other
health issues. In addition, older women may face a greater potential for complications that
result in decreased functionality as a result of receiving adjuvant chemotherapy [10].

When considering radiation therapy, it is important to note that it can lead to several
adverse effects. These may include skin irritation, fatigue, and harm to healthy tissue, while
the therapy may not be effective for certain types of cancer. Surgery can be invasive and
may require a long recovery time, and it may not be feasible for some patients depending
on the site and extent of cancer [8]. Furthermore, these treatments can often be expensive
and may not be affordable to all patients, particularly those in developing countries. As
a result, there is a growing interest in developing alternative or complementary cancer
treatments, such as immunotherapy, targeted therapy, and integrative medicine, that can
address some of these limitations to improve patients’ lives [11].

2. Photodynamic Therapy

Photodynamic therapy (PDT) is a type of cancer treatment that uses a photosensitizer
(PS) to create reactive oxygen species (ROS) by exposure to light, and these ROS can
kill cancer cells. PDT has been applied to treat different kinds of cancer, including skin,
lung, bladder, and oesophageal cancer [12]. One of the advantages of PDT is that it
can selectively target cancer cells while sparing normal cells. This is because the PS is
preferentially taken up by cancer cells and the light used to activate the PS can be precisely
targeted to the tumour site [13]. This reduces the risk of damage to surrounding healthy
cells, which is a common side-effect of conventional therapies such as chemotherapy and
radiation therapy [14]. The ROS generated by PDT can also induce various biological
responses, including immune system activation and inflammation which can contribute
to the destruction of cancer cells [15]. As shown in Figure 1, the essential components for
PDT include light, PS, and molecular oxygen. During PDT, the administered PS undergoes
activation when it is exposed to a specific wavelength light, thus resulting in its transition
from ground to an excited state [16]. Upon returning to the ground state, it releases energy
that is transferred to oxygen, leading to the production of cytotoxic reactive oxygen species
(ROS) such as free radicals and singlet oxygen [12]. Herein, we review the classification of
PSs, PDT’s mechanism of action, highlight its limitations in cancer therapy, and the role of
phytochemicals in PDT of cancer.

One of the primary limitations of PDT is the requirement for a light source that can
effectively activate the PS. The depth of light penetration is limited, which restricts the use
of PDT to surface tumours or tumours that can be reached by an endoscope or catheter [16].
Moreover, the PSs used in PDT can have some limitations, such as limited selectivity for
cancer cells, potential for skin photosensitivity, and accumulation in non-targeted tissues,
leading to off-target side effects [17]. In addition, PDT can induce the manifestation of other
side effects e.g., pain, swelling, redness, and blistering at the site of treatment [18]. Overall,
while PDT holds great promise as a cancer treatment modality, its clinical application is
limited by several factors, including the depth of light penetration, the pH of the tumour
microenvironment, and off-target side effects of the PSs.
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Figure 1. Schematic representation of the mechanism of action of photodynamic therapy. Excitation 
of light-illuminated photosensitizer from ground state to excited singlet states (S1 and S2), internal 
conversion (IC), intersystem crossing (ISC), and triplet excited state of a photosensitizer (T1) inter-
acts with molecular oxygen (O2) in Type I and Type II pathways, thus leading to the formation of 
reactive oxygen species (ROS) and free radicals. 
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rins and their derivatives, such as hematoporphyrin derivatives (HpD), which were 
among the first PSs used in PDT [20]. There is some evidence that HpD can be used for 
certain types of cancers, such as brain, cervical, endobronchial, oesophageal, bladder and 
gastric cancers. After purification, HpD was found to be ineffective for localizing tumours. 
However, modifications were made to the original structure by adding acetic-sulfuric acid 
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limitations, such as a complex composition and a low light absorption rate. The study 
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Figure 1. Schematic representation of the mechanism of action of photodynamic therapy. Excitation
of light-illuminated photosensitizer from ground state to excited singlet states (S1 and S2), internal
conversion (IC), intersystem crossing (ISC), and triplet excited state of a photosensitizer (T1) interacts
with molecular oxygen (O2) in Type I and Type II pathways, thus leading to the formation of reactive
oxygen species (ROS) and free radicals.

2.1. Classification of Photosensitizers Used in PDT

The classification of therapeutic PSs involves a multifaceted process that assigns
various PSs into specific classes. Multiple schemes may be used to classify PSs, depending
on the context of the research and/or application. PSs can be classified based on their
chemical structures, mechanism of action, and applications. Some of the common classes of
PSs are the first, second, and third generation [16,19]. The first generation of PSs includes
porphyrins and their derivatives, such as hematoporphyrin derivatives (HpD), which
were among the first PSs used in PDT [20]. There is some evidence that HpD can be used
for certain types of cancers, such as brain, cervical, endobronchial, oesophageal, bladder
and gastric cancers. After purification, HpD was found to be ineffective for localizing
tumours. However, modifications were made to the original structure by adding acetic-
sulfuric acid mixtures to the HpD compound [21]. Clinical studies have revealed that
photofrin has limitations, such as a complex composition and a low light absorption rate.
The study conducted preclinical trials on mice models to assess the dosage of PDT, the level
of apparent reacted singlet oxygen, and to predict the local control rate of tumours induced
by radiation-induced fibrosarcoma [22].

The second generation of photosensitizers, such as benzoporphyrin derivatives (BPD)
and mono-L-aspartyl chlorin e6 (NPe6), are synthetic compounds that offer significant
improvements over the first generation. These improvements include a better composition
and structure, increased photosensitivity, a wider absorption spectrum, and improved
tissue selectivity. The first-generation photosensitizers had complex components, which
led to poor tissue selectivity and slow response times in photodynamic damage inten-
sity. Examples of second generation photosensitizers include benzoporphyrin, purpurin,
texaphyrin, phthalocyanine, naphthalocyanine, and protoporphyrin IX [23]. Other pho-
tosensitizers, such as chlorins and phthalocyanines, have also been developed for PDT



Int. J. Mol. Sci. 2023, 24, 10931 4 of 21

applications [24]. In 1984, J.S. McCaughan et al. employed PDT as a therapeutic approach
for treating oesophageal cancer. Similarly, Balchum et al. utilized PDT to manage lung
cancer patients in the same year. One year later, Hayata et al. applied PDT as a treatment
option for patients with gastric carcinoma. These studies demonstrate the use of PDT in
cancer therapy during the mid-1980s [16,25,26]. As all these studies indicated favourable
outcomes in patients with early-stage cancers, PDT was suggested as a viable alternative for
patients who could not undergo surgery due to other medical complications [16]. During
the mid-1990s, J.C. Kennedy and his colleagues published their findings on the effective
treatment of skin disorders using topically applied 5-ALA. Since then, the use of PDT that
involves the localized administration of 5-ALA has become increasingly common in the
detection and treatment of superficial lesions [27].

The third generation of photosensitizers includes nanomaterial-based photosensitizers,
such as gold nanoparticles which have shown promise in improving the efficacy and
specificity of PDT. As shown in Table 1, gold nano-clustered hyaluronan nano-assemblies
were used to target the orthotopic breast tumour model [28]. To enhance absorption of
chlorin E6 (Ce6) by the tumour as well as to increase ROS production, Ce6 was incorporated
into nanoparticles via ion complexation. In addition to improving cancer imaging and
treatment, Ce6 was also developed to encapsulate gold vesicles due to its strong NIR
absorption (in the near-infrared range between 650 and 980 nm) [29–31]. Clinical trials are
currently underway to investigate more selective and potent sensitizers. The effectiveness
of PDT could be enhanced by various factors such as the use of new drugs, improved
localization techniques, and the implementation of better protocols and equipment [32,33].

A fascinating approach involves modifying a photosensitizer by attaching it to a
cytotoxic warhead, which offers both targeted tissue distribution and additional chemother-
apeutic effects. This dual functionality proves especially advantageous as photodynamic
therapy (PDT) typically treats a limited area in a single application and is less effective
against metastatic cancer [34,35]. By incorporating a cytotoxic warhead, the conjugate
can also target and eliminate cancer cells in non-illuminated regions. Consequently, this
conjugate acts synergistically as a bimodal agent, possessing both photodynamic and
chemotherapeutic properties. Research has demonstrated that combining a photosensi-
tizer with a chemotherapeutic drug in the same treatment regimen exhibits significantly
greater potential compared to using a single approach [36]. Transition metal complexes
are widely recognized for their remarkable effectiveness against tumours. This has led to
the development of numerous potent compounds, some of which have become integral
components of contemporary chemotherapy treatments [37,38]. Typically, the antitumor
metal complexes are combined with a photosensitizer (PS) to form conjugates that exhibit
amphiphilic properties and excellent solubility in water. This is primarily attributed to the
inclusion of a hydrophilic metal-containing component [38].

Table 1. General classification and examples of photosensitizers used in cancer therapy.

PS Name Class Chemical Structure Application Wavelength Ref.

Hematoporphyrin
(HpD) Photofrin
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Table 1. Cont.

PS Name Class Chemical Structure Application Wavelength Ref.
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medicinal purposes or to manage health conditions [42,43]. The use of plants for medicinal
purposes dates back thousands of years, and it continues to be an important aspect of
healthcare in many cultures around world [44]. Phytotherapy has been gaining attention in
combination with PDT due to its various benefits, including lower toxicity, higher selectiv-
ity, and a broad range of phytochemicals with diverse mechanisms of action [45,46]. The
use of natural products, including plant extracts and phytochemicals, has been shown to
enhance the therapeutic efficacy of PDT by increasing the production of reactive oxygen
species (ROS) and inducing apoptosis in cancer cells [47,48]. Moreover, some plant-derived
compounds, such as curcumin and resveratrol, have been found to possess photoprotective
effects, preventing damage to healthy cells during PDT [49]. Several studies have inves-
tigated the potential of plant extracts in enhancing the efficacy of PDT. For instance, the
combination of curcumin and PDT has been shown to induce cell death in pancreatic cancer
cells and enhance the production of ROS [50]. Figure 2 shows the phytochemical extraction
and characterization techniques.
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Phytocompounds, which are naturally occurring compounds found in plants, offer
sever advantages over conventional therapies. Firstly, they are generally considered to
be safer and have fewer adverse effects compared to synthetic drugs. Many phytocom-
pounds have been used for centuries in traditional medicine with minimal side effects [51].
Secondly, phytocompounds have a broad range of therapeutic effects due to their com-
plex chemical structures, which can interact with various cellular targets. For example,
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flavonoids have been shown to have anti-inflammatory, anticancer, and antiviral activi-
ties [52]. Thirdly, phytocompounds are relatively inexpensive to produce and are easily
accessible, particularly in developing countries where traditional medicine is still widely
used. Lastly, phytocompounds have the potential to act synergistically with other phyto-
compounds or with conventional therapies to produce better therapeutic outcomes. For
example, the combination of curcumin and chemotherapy has been shown to be more
effective in treating cancer than chemotherapy alone [42,53].

D. anomala is a perennial herb distributed throughout Sub-Saharan Africa. The aerial
parts of this plant have been the subject of analysis for the detection of various phyto-
chemical compounds. The roots and leaves of Dicoma anomala (D. anomala) have been
utilized in Africa for treating a variety of illnesses, and its extracts are known to possess
anticancer properties that are particularly useful for treating breast and lung cancers. Some
of the compounds found in Dicoma species sesquiterpenes listed in Table 2 have been
identified as having anticancer effects [54,55]. In 2006, Steenkamp and Gouws conducted
a study to evaluate the cytotoxic effects of plant extracts commonly used for cancer treat-
ment in South Africa. Their findings indicated that aqueous extract obtained from the
D. capensis plant exhibited anticancer properties against three different types of breast
cancer cell lines, including MCF-7, MDA-MB-231, and MCF-12A [56]. In a study conducted
by Tripathy et al., the researchers examined the potential antiproliferative effects of silver
nanoparticles synthesized from the roots of D. anomala Sond. They evaluated these effects
in vitro, specifically against MCF-7 breast cancer cells and NF54 parasitic strains [57]. Ad-
ditionally, the study also investigated aqueous root extracts from D. anomala to explore
their potential in reducing postprandial hyperglycaemia and modulating the activities of
carbohydrate-metabolizing enzymes [58,59]. The pharmacological properties of D. anomala
have been investigated for their potential in the treatment of various diseases. Extracts from
D. anomala have been shown to possess a range of beneficial properties, including antibacte-
rial, anti-inflammatory, antiviral, antioxidant, anticancer, and anti-plasmodial activities [58].
The anticancer properties of D. anomala have attracted the attention of researchers in the
field of biomedicine, leading to a focus on its potential therapeutic applications. Aloe vera
(A. vera), a gel-bearing plant from the Xanthorrhoeaceae family, is widely distributed in
various continents, although it is native to Africa. The gel found in the leaves of this plant
is known to contain a wide range of beneficial compounds such as vitamins, minerals,
amino acids, enzymes, mono- and polysaccharides, anthraquinones, phenolics, saponins,
lignin, and salicylic acid. These phytoconstituents are responsible for various biological
properties. The major secondary metabolites in A. vera are anthraquinones and tricyclic
aromatic quinines [60–62]. Emodin and aloe-emodin have been found in A. vera to possess
PDT effects through Type-I and Type-II reactions [63]. Berberis aristata is a plant with
medicinal properties that is native to India and Nepal. It is predominantly found in the
Himalayas and Sri Lanka, and is commonly used in Ayurvedic medicine to treat a range of
health issues such as diarrhoea, jaundice, skin disorders, syphilis, chronic rheumatism, and
urinary bladder disorders [64,65].

In Indian traditional medicine, Curcuma longa from the Zingiberaceae family has been
historically utilized to treat a variety of ailments including infections and inflammation, as
well as hepatic, gastric, and blood disorders. Curcumin is a phytochemical of curcuma longa
used for the treatment of prostate, colorectal, breast, pancreatic, head and neck cancers
as shown in Table 2. Another plant, Ficus religiosa, belonging to the moraceae family, is
originally from the sub-Himalayan region, Bengal, and central India, but its cultivation has
led to its widespread distribution worldwide. This plant has been traditionally utilized
in herbal medicine to treat various health conditions related to the central nervous and
endocrine system, gastrointestinal tract, and the reproductive and respiratory systems [66].
The phytochemical furanocoumarin is used for ovarian and breast cancer treatment. Ipo-
moea mauritiana, a plant commonly used in Ayurvedic and Folkloric medicine, has shown
potential medicinal properties. The tuberous root of I. mauritiana displays multiple de-
sirable characteristics. It has a sweet flavour and provides a refreshing sensation. This



Int. J. Mol. Sci. 2023, 24, 10931 8 of 21

root is known for its appetizing effects, ability to promote lactation, and rejuvenating
properties. Moreover, it acts as a stimulant, aids in digestion, and serves as a general
tonic. Its composition consists of various phytochemicals, such as taraxerol, taraxerol
acetate, β-sitosterol, scopoletin, 7-O-β-D glycopyranosyl scopoletin caffeoyl glucose, and
5-methoxy-6,7-furanocoumarin. Studies suggest that PDT utilizing furanocoumarins may
be an effective treatment for autoimmune disorders and skin diseases [67,68]. Scopoletin,
one of the phytochemicals of I. mauritiana, is used for the treatment of liver, lungs, skin,
and breast cancer. Rubia cordifolia, a significant plant in Ayurveda, is utilized as a blood
purifier and diuretic with vasodilating effects, as well as having diverse pharmacological
benefits, including antiplatelet, antioxidant, calcium-channel-blocking, antidiabetic, and
antistress properties. Its traditional use also includes treating ulcers, urinary discharges,
jaundice, leukoderma, and piles [69]. As shown in Table 2, the phytochemical Rubiadin
from Rubia cordifolia is used for the treatment of cervical and larynx cancers. In conclusion,
the advantages of phytocompounds over conventional therapies and photosensitizers in-
clude their safety, broad range of therapeutic effects, affordability, and potential synergistic
effects with other therapies.

Table 2. Summary of plant derived phytochemicals used in cancer studies.

Medicinal Plants Phytochemicals Application Ref.

Dicoma anomala Sesquiterpenes Breast, lung, prostate cancers [70]

Aloe vera Aloe emodin, Emodin Head and neck cancer, glioblastoma, colon, breast cancer, and
gastric carcinoma [63,71]

Curcuma longa Curcumin Prostate, colorectal, breast, pancreatic, and head and neck cancers [72,73]

Ipomoea mauritiana Scopoletin Lung, liver, skin and breast cancer [74–76]

Berberis aristate Berberine Breast and colorectal cancer [77,78]

Ficus religiosa Furanocoumarin Breast and ovarian cancer [79,80]

Rubia cordifolia Rubiadin Human cervical, and larynx cancer [69,81–83]

Green photodynamic therapy (PDT) is an emerging field that harnesses the power of
plant-derived phytochemicals and nanoparticles for therapeutic purposes. While it offers
great potential, several challenges and limitations must be addressed for its successful
implementation [84]. Nanoparticles used in green PDT can interact with biological systems,
potentially leading to unintended side effects. It is essential to comprehensively understand
the interactions between nanoparticles and cells/tissues to ensure their safety. Studies have
focused on evaluating nanoparticle toxicity, biodistribution, and long-term effects [85]. The
integration of nanotechnology in medicine raises regulatory and ethical concerns. Stringent
regulations are necessary to ensure the safety and efficacy of green PDT-based therapies.
Ethical considerations involve addressing issues such as informed consent, privacy, and
equitable access to nanomedicine [86].

2.2.1. Nanotechnology

Nanotechnology is a scientific and engineering discipline dedicated to the design and
manipulation of materials and devices at the nanometre scale, aiming to achieve functional
organization at this tiny level. This means that the size of the smallest unit in at least
one dimension is one billionth of a meter. When dealing with materials or devices at
incredibly small scales, it is essential to consider the behaviour of individual molecules
and groups of molecules to comprehend their properties. By controlling the molecular
structure of these materials, scientists can manipulate their macroscopic chemical and
physical properties [87]. The term ‘nanotechnology’ was first introduced by physicist
Richard Feynman in his 1959 talk “There’s Plenty of Room at the Bottom” [88]. Since
then, the field has grown exponentially, with significant contributions from researchers
all over the world. Scientists consider silicon to be a highly promising nanomaterial for
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biomedical applications, particularly in the areas of bioimaging and disease treatment,
compared to other nanomaterials [89]. Among silicon-based materials, Mesoporous silica
nanoparticles (MSNPs), exhibit exceptional physical and chemical properties that make
them highly attractive for biomedical applications. As a result, they are considered a
promising new class of inorganic materials in this field [90]. In the 1960s, a British scientist
named Bangham discovered lipid nanoparticles, which are made up of one or more lipid
bilayers [91]. The hydrophilic part of the phospholipid molecule faces the surrounding
water, while drugs that are soluble in fat can be incorporated into the inner, hydrophobic
part of the lipid nanoparticles [83]. Liposomes, depicted in Table 3, are commonly employed
for the delivery of chemical drugs, genes, and siRNAs [83,92]. However, their mechanical
stability is limited due to their thin membrane, resulting in a higher likelihood of drug
leakage [93]. To enhance the effectiveness of liposomes in drug delivery, researchers have
devised various techniques to address their limitations. These methods involve modifying
the composition of phospholipids and introducing new components to enhance stability
and reduce drug leakage. For instance, incorporating cholesterol can increase the membrane
stiffness of liposomes, thereby improving their performance [94]. Micellar nanoparticles
are created through the self-assembly of surfactants or amphiphilic block copolymers when
their concentration surpasses a critical threshold in an aqueous solution. These particles
are typically no larger than 200 nm in size [95].

The broad range of applications for polymer-based nanoparticles in biological prepa-
rations can be attributed to their versatility in synthesis. These nanomaterials possess a
notable responsiveness to various stimuli encountered within the body, including enzymes
and pH levels [96]. Most nanoparticles used for siRNA are cationic nanoparticles since
siRNA is negatively charged, compressing it into delivery systems that can contribute to
its uptake by cells. While cationic nanoparticles have high siRNA loading efficiency, their
high charge may cause more toxicity to normal cells. Materials that are noncationic are
likely to be a better choice in this situation [91,97]. The nanosphere is also used as a vehicle
for drug delivery, as shown in Table 3. Spherical nanoparticles that are concentrically
structured consist of a gold nanosphere coated with silica and surrounded by an outer layer
of gold. These nanoparticles exhibit optical resonances that can be precisely adjusted based
on their geometric properties, all while maintaining a compact size below 100 nm [98].
Gold nanorods are nanoparticles with an elongated shape, and their extinction spectra
display two distinct plasmon resonances, as discussed in Table 3. The compact size of gold
nanorods can be advantageous for photothermal therapies due to their ability to easily
penetrate tissues and the permeable blood vessels found in tumours [99].

Gold nanoparticles (AuNPs) are a type of material that have at least one dimension
with a size of less than 100 nm, and are used for drug delivery as shown in Table 3. Solid
lipid nanoparticles (SLNs) are another type of lipid-based nanoparticle extensively utilized
for drug delivery purposes [100]. They serve a significant role in the field. SLNs are sub-
micron carriers designed to transport drugs, comprising of stable and biodegradable lipids
with a high melting point, ensuring they remain solid at room temperature. These spherical
particles typically range in size from 50 to 1000 nm [101–103]. Upconversion nanoparticles
(UCNPs) are renowned for their remarkable optical characteristics, playing a significant
role in advancing the field of biophotonics when combined with optical bioimaging technol-
ogy [104]. In contrast, polyamide-amine (PAMAM) exhibits fundamental dendrimer traits,
including well-defined molecular structure, hydrophobic cavities within the molecule, and
the ability to regulate molecular size [105]. These characteristics make PAMAM an effec-
tive encapsulating agent for nucleic acids and other therapeutic drugs, thus constituting
a highly suitable carrier for targeted therapy and diagnostic drugs [106,107]. In recent
advancements, drug delivery units incorporating silver nanoparticles (AgNPs) have been
developed to improve the effectiveness of treatments and have shown promising results
in live subjects. These units utilize hybrid molecular structures that contain AgNPs and
are designed to respond to optical, thermal, and pH changes, allowing targeted delivery
for various conditions such as cancer, inflammation, and infections. AgNPs have gained
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popularity as drug carriers due to their excellent biocompatibility and the ability to modify
their surfaces and optical properties through easily accessible synthesis methods [108].

Table 3. Examples of different nanoparticles used in drug delivery system and therapeutics.

Nanoparticle Name Structure Size Excitation
Wavelength (nm) Application Ref.
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2.2.2. Therapeutic Applications of Nanotechnology

Nanotechnology has opened new possibilities in the field of medicine, especially
in the development of therapeutics. One of the most promising applications of nan-
otechnology in medicine is targeted drug delivery. Nanoparticles can be engineered to
selectively target diseased cells or tissues, which increases the efficiency and reduces the
side effects of therapeutic agents [124]. Nanoparticles can also be designed to enhance the
bioavailability of drugs and improve their pharmacokinetics. For instance, cancer cells
are known to be highly vascularized, and they express unique biomarkers that can be
exploited by nanoparticles to selectively target them [125]. Overall, the development of
nanotechnology-based therapeutics is a rapidly evolving field that holds great promise
for the treatment of various diseases. Nanoparticles can encapsulate drugs and selectively
target cells or tissues, allowing for more effective and targeted delivery of therapeutics.
For example, liposomes, solid lipid nanoparticles, and polymeric nanoparticles have been
used to deliver chemotherapeutic agents to cancer cells, reducing systemic toxicity and
increasing efficacy [125,126].

Nanoparticles can be engineered to enhance the contrast of medical imaging modalities
such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound.
This can aid in the early diagnosis and monitoring of diseases such as cancer and cardio-
vascular disease [127,128]. Gene therapy has the potential to revolutionize the treatment of
genetic disorders by enabling the direct correction of disease-causing mutations. Viral vec-
tors are commonly used for gene delivery due to their high transfection efficiency. However,
they can also elicit an immune response and have limited cargo capacity. Nanoparticles can
be used to encapsulate viral vectors and protect them from immune recognition, as well as
to increase their targeting specificity [129,130]. Non-viral vectors, such as liposomes and
polymeric nanoparticles, have also been developed for gene delivery. These vectors are
less immunogenic than viral vectors and can be designed to target specific cells or tissues.
However, their transfection efficiency is often lower than that of viral vectors [131,132].
MSNs possess a large surface area and high pore volume, allowing for high drug loading
and efficient encapsulation of photosensitizers [133,134]. MSNs can be easily functionalized
with targeting ligands to improve specificity and selectivity, facilitating targeted delivery
of the photosensitizer to cancer cells [135]. They exhibit excellent biocompatibility, low
toxicity, and negligible immunogenicity, making them suitable for in vivo applications [136].
MSNs can suffer from limited stability under physiological conditions due to potential ag-
gregation or degradation, which may affect their drug release kinetics [137]. The synthesis
of MSNs can be complex and time-consuming, requiring precise control over particle size
and morphology. In some cases, MSNs may induce an immune response or cause inflam-
mation, necessitating careful consideration of their biocompatibility [134,138]. Micelles
offer efficient encapsulation and solubilization of hydrophobic photosensitizers, enhancing
their stability and bioavailability. The small size of micelles allows for improved tumour
penetration and accumulation, leading to enhanced PDT efficacy [139,140]. Micelles often
have limited drug loading capacity compared to MSNs, potentially leading to suboptimal
therapeutic doses. The release of the photosensitizer from micelles may not be as con-
trolled as in MSNs, which can impact the desired drug release kinetics [141]. Lipid-based
nanoparticles, such as liposomes and lipid nanocarriers, offer excellent biocompatibility,
controlled drug release, and the ability to encapsulate both hydrophilic and hydrophobic
photosensitizers. They can be surface-modified for targeted delivery and improved cellular
uptake [142,143]. Lipid-based nanoparticles may suffer from limited stability, premature
drug release, and difficulties in large-scale production. Additionally, their relatively large
size may hinder deep tissue penetration [124,144]. The development of the CRISPR/Cas9
system for genome editing has revolutionized the field of gene therapy. Nanoparticles
have been used to deliver the CRISPR/Cas9 system to target cells, enabling the correc-
tion of disease-causing mutations [145,146]. RNA interference (RNAi) is a powerful tool
for gene regulation that can be used to treat a variety of diseases. Nanoparticles can be
designed to deliver siRNA to target cells, enabling the specific downregulation of target
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genes [147]. Gold nanoparticles possess excellent biocompatibility, ease of synthesis, and
tuneable optical properties for enhanced light absorption and scattering. They can effi-
ciently generate heat upon laser irradiation, leading to photothermal therapy in addition to
PDT [148,149]. The disadvantage of gold nanoparticles is that they may induce potential
cytotoxicity depending on their size, concentration, and surface modification. Additionally,
their accumulation in certain organs may pose long-term health risks [150,151].

Although the field of gene therapy using nanotechnology is relatively new, it shows
immense potential in addressing various genetic disorders. While additional research
is required to comprehensively assess the safety and effectiveness of these methods, the
advantages they offer are evident. By utilizing nanoparticles, it becomes possible to specif-
ically target immune cells or tissues, facilitating the direct administration of therapeutic
drugs to sites affected by inflammation or infection. For example, liposomes have been
used to deliver anti-inflammatory drugs to inflamed tissues, reducing inflammation and
promoting tissue repair [152]. They can also be used as biosensors to detect and monitor the
immune response. For example, gold nanoparticles have been used to detect the presence of
cytokines and other immune-signalling molecules in biological fluids [153]. Nanomaterials
can also be used to promote tissue regeneration and repair. For example, scaffolds made of
nanofibers can be used to support the growth and differentiation of stem cells, aiding in
the repair of damaged tissues [154].

3. Green Nanotechnology

Green nanotechnology refers to the development of eco-friendly nanomaterials and
nanotechnology-based processes. One example of green nanotechnology is the use of plant
extracts as reducing agents to synthesize nanoparticles. The synthesis of nanoparticles
using plant extracts has several advantages over traditional methods, including the use
of non-toxic and renewable materials, and the ability to synthesize nanoparticles at room
temperature and pressure [155]. In addition, green nanotechnology can also be applied to
the development of sustainable and environmentally friendly energy sources. For example,
nanocellulose-based materials have shown promise as sustainable and renewable materials
for energy storage and conversion [156].

Green nanotechnology has garnered significant attention in recent years as a potential
solution to address the environmental and health concerns associated with conventional
nanotechnology. This approach offers a promising future perspective in developing safe
and sustainable nanomaterials for various applications, including drug delivery, energy
production, and water treatment. However, as with any emerging technology, the potential
health risks associated with green nanotechnology also need to be evaluated. Nanoparticles,
even those considered eco-friendly, can induce cell death through various mechanisms
such as oxidative stress, apoptosis, and necrosis. Further studies are needed to under-
stand the toxicity mechanisms of green nanomaterials and develop safe practices for
their use [156].

Green nano-biotechnology refers to the process of creating nanoparticles or nanoma-
terials through biological means, utilizing microorganisms, plants, viruses, or their by-
products such as proteins and lipids, with the aid of biotechnological tools. Nanoparticles
produced through green technology exhibit numerous advantages over those manufactured
using physical and chemical methods, considering various factors. For instance, green
techniques eliminate the need for costly chemicals, consume less energy, and yield envi-
ronmentally friendly products and by-products. The twelve principles of green chemistry
have become a widely recognized guide for researchers, scientists, chemical technolo-
gists, and chemists worldwide, enabling the development of less hazardous chemical
products [157]. Green nanobiotechnology presents a promising alternative pathway for
producing stable nanoparticles that are biocompatible [158]. The typical procedure in-
volves using dried plant biomass and metallic salts, where the plants act as bio-reducing
agents and the salts serve as precursors. The antimicrobial and preservative properties
of silver have been recognized for thousands of years. The biologically based synthe-
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sis of nanoparticles follows a bottom-up approach, relying on reducing and stabilizing
agents. The process involves three main steps: selecting an appropriate solvent medium,
utilizing an environmentally friendly and benign reducing agent, and employing a non-
toxic material as a capping agent to stabilize the synthesized nanoparticles [159]. The
researchers synthesized various chlorophyll derivatives and evaluated their photodynamic
activities. They found that these derivatives exhibited excellent singlet oxygen generation
and phototoxicity against cancer cells. In addition, many studies have also demonstrated
the therapeutic potential of chlorophyll-based photosensitizing agents for tumour imaging
and targeted therapy [160]. The researchers employed a plant-extract-mediated green syn-
thesis method to produce various metallic nanoparticles including AuNPs with excellent
stability and biocompatibility. The synthesized AuNPs were then used as carriers for a
photosensitizer and showed enhanced photodynamic therapeutic efficacy both in vitro and
in vivo [161].

3.1. Synthesis and Characterization

Nanoparticles are tiny particles with dimensions typically ranging from 1 to 100 nm,
and they have unique properties due to their small size and large surface area. The synthesis
and characterization of nanoparticles are essential for their use in various fields such as
medicine, electronics, and environmental remediation [162].

3.1.1. Synthesis Methods

Chemical reduction method is one common method for the synthesis of nanoparti-
cles, which involves the use of reducing agents to convert metal ions into nanoparticles.
This method has been extensively studied for the synthesis of metal nanoparticles, such
as gold and silver nanoparticles [163]. Sol-gel is another method employed in the syn-
thesis of nanoparticles; it involves the hydrolysis and condensation of metal alkoxides
to form a gel. In this method, the synthesized gel is dried and calcined to produce the
desired nanoparticles [164].

3.1.2. Characterization Methods

There are different characterization methods employed in nanotechnology. These
methods aim to investigate the characteristics of nanoparticles. Examples of characteri-
zation methods for nanoparticles include transmission electron microscopy (TEM), scan-
ning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared
spectroscopy (FTIR). These techniques provide valuable insights into the properties and
structure of nanoparticles. These techniques can provide information on the size, shape,
crystal structure, and chemical composition of nanoparticles [165].

Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM) is a highly valuable method for analysing and
characterizing nanoparticles. This technique utilizes a focused electron beam to examine
thin samples, typically less than 200 nm thick, enabling the generation of high-resolution
images that provide exceptional spatial resolution for nanoscale materials [166]. TEM
allows for the examination of the crystalline structure of specific microscopic areas within
crystalline materials with spatial confinement and focusing of the electron beam, which
results in the detection of electron diffraction patterns. This technique enables researchers
to analyse the crystallographic orientation of nanoparticles, defects, and grain boundaries
in high resolution [167].

Scanning Electron Microscopy (SEM)

The scanning electron microscope works by detecting the secondary electrons that
are emitted from the sample when it interacts with the electron beam. This allows for
imaging of the surface of the sample [168]. SEM and TEM are both imaging techniques
commonly used for the characterization of nanoparticles. In scanning electron microscopy
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(SEM), the use of lower beam energies is common for imaging samples. This choice of
energy limits the depth to which the electron beam can penetrate, resulting in sensitivity
only to the surface of the specimen. As a result, SEM is particularly valuable for examining
the morphology of relatively thick samples (>100 nm) that cannot be adequately analysed
using transmission electron microscopy (TEM). On the other hand, TEM provides higher-
resolution imaging of the internal structure and composition of nanoparticles, but is limited
to thin samples [165,169].

Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) is a type of scanning probe microscopy technique
that enables probing and visualization of the surface, as well as several other force-related
quantities, of objects with nanometre-sized or even atomic-sized dimensions [170]. AFM is
a technique that uses a sharp tip attached to a cantilever to measure interactions with the
surface of a sample. The cantilever may experience either a vertical or lateral deflection, or
a change in amplitude, frequency, or phase of an oscillating cantilever, depending on the
measurement mode used. There are three main modes of operation in AFM: contact mode,
non-contact mode, and tapping mode. In contact mode, the tip remains in constant contact
with the sample surface, and the deflection of the cantilever is caused by the repulsion
of the tip and the surface atoms of the sample. This deflection can reveal information
about the surface topography of the sample. Nanoparticle characterization is a diverse and
intricate field that plays a crucial role in nanoscience. However, in the dynamic landscape
of nanotechnology, the process of measuring and standardizing nanoparticles often lags
behind the rapid advancements in new materials and their various applications. Despite
the challenges, nanoparticle characterization is essential for understanding and optimizing
the properties of nanoparticles for their various applications [171].

4. Conclusions

In conclusion, green nanotechnology offers an exciting prospect for sustainable and
environmentally friendly nanomaterials. However, the potential health risks associated
with green nanomaterials should be thoroughly investigated to ensure their safe and
responsible use. Although synthetic drugs have been extensively studied for photodynamic
therapy (PDT), there has been relatively little investigation into medicinal plant extracts or
bioactive compounds obtained from plants, which are generally considered to be safer than
synthetic chemicals. This approach using plant-based photoactive compounds for PDT is
considered eco-friendly, and this review offers valuable insights for future research in this
field. Ultimately, determining the scientific potential of using green photodynamic therapy
with plant-based compounds may lead to new treatment alternatives for various chronic
illnesses. Further, an advantage of PDT is that it can be carried out in low-resource settings
and at a reasonable cost, which gives patients the chance to avoid more invasive surgical
procedures. With carefully planned and executed clinical trials, it can be determined
whether this potential benefit can be fully realized.
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