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Abstract: The development of efficient mucosal vaccines is strongly dependent on the use of ap-
propriate vectors. Various biological systems or synthetic nanoparticles have been proposed to
display and deliver antigens to mucosal surfaces. The Bacillus spore, a metabolically quiescent and
extremely resistant cell, has also been proposed as a mucosal vaccine delivery system and shown
able to conjugate the advantages of live and synthetic systems. Several antigens have been displayed
on the spore by either recombinant or non-recombinant approaches, and antigen-specific immune
responses have been observed in animals immunized by the oral or nasal route. Here we review the
use of the bacterial spore as a mucosal vaccine vehicle focusing on the advantages and drawbacks of
using the spore and of the recombinant vs. non-recombinant approach to display antigens on the
spore surface. An overview of the immune responses induced by antigen-displaying spores so far
tested in animals is presented and discussed.
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1. Introduction

Vaccinations are the most effective strategy to control bacterial and viral infections.
The World Health Organization (WHO) considers immunization campaigns as
global health success stories, estimating that they prevent millions of deaths yearly
(https://www.who.int/health-topics/vaccines-and-immunization (accessed on 14 April
2023)). By mimicking the pathogen infection, vaccines induce the activation of the immune
system and, therefore, the response against the pathogen [1]. After the immunization, the
delivered antigen is recognized by the pattern recognition receptors (PRRs) of the innate im-
mune cells (macrophages and dendritic cells), stimulating the production of cytokines and
chemokines and leading to an increase in the number of antigen-presenting cells (APCs).
These uptake, process, and present the antigen to the T cells that, in turn, induce B cells
to produce antigen-specific antibodies [1,2]. When the pathogen has been eliminated, the
adaptative immune system develops the immunological memory, the basis of long-term
protection and the final goal of a vaccine, since it leads to the persistence of antibodies
and the generation of memory cells able to quickly react upon re-exposure to the same
pathogen [1,2].

Vaccines can be administered through either parenteral or mucosal routes. Most
authorized vaccines are administered parenterally, i.e., injected subcutaneously (SC), intra-
dermally (ID), or intramuscularly (IM). All three parenteral routes of vaccine administration
have advantages and pitfalls, with the ID route inducing a stronger immune response than
IM or SC, but also requiring special devices for the administration and causing more seri-
ous adverse reactions at the administration site [3]. In general, parenteral vaccines elicit a
strong immune response but weak mucosal protection, and do not prevent infection by the
pathogen [4]. In addition, they require trained personnel for the administration (injection),
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making immunization campaigns difficult and expensive, especially in third-world coun-
tries [3]. On the other hand, mucosal vaccines are expected to induce protective cellular and
humoral responses at both mucosal and systemic levels [5,6]. A strong induction of adap-
tive immunity at mucosal sites, involving secretory antibodies and tissue-resident T cells,
would prevent pathogen entry into the animal body, thus preventing the infection by the
pathogen and its transmission [7]. Since mucosal vaccines do not require an injection, they
are not invasive and are easy to administrate facilitating mass immunization campaigns.
The use of oral vaccinations is also preferable for animal husbandry and aquaculture, since
they reduce the costs of animal management and the stress caused to animals [8]. However,
mucosal vaccines also have drawbacks that have so far limited their use. Oral vaccines
generally have low immunogenicity due to the high levels of tolerance induced by ingested
antigens and to the lack of efficient mucosal adjuvants and delivery systems able to prevent
antigen degradation at the mucosal sites [7]. Therefore, antigens administrated by the
mucosal route often cannot efficiently reach the inductive site of the mucosa-associated
lymphoid tissues (see below) and trigger a strong immune response. As a consequence,
the effectiveness of mucosal vaccines is often hindered and only a few mucosal vaccines,
all based on live attenuated or death-inactivated pathogens, are currently approved for
human use (Table 1).

Table 1. Licensed mucosal vaccines for human use a.

Pathogen Trade Name Composition Route, Dose Immunological
Mechanism Efficacy

Rotavirus Rotarix;
RotaTeq Live attenuated Oral,

3 doses
sIgA and systemic
neutralizing IgG Over 70–90%

Poliovirus
Orimune; OPV;
Poliomyelitis

vaccine
Live attenuated Oral,

3 doses
sIgA and systemic

IgG Over 90%

Salmonella typhi Vivotif; Ty21A Live attenuated Oral,
3–4 doses

sIgA, systemic IgG
and CTL responses

Variable, but
more than 50%

Vibrio cholera Dukoral; ORC-Vax;
Shanchol Inactivated V. cholera Oral,

2–3 doses

Antibacterial,
toxin-specific and
LPS-specific IgA

Over 85%

Influenza Virus A FluMist
Quadrivalent®

Antigens incorporated
into live attenuated, cold
adapted influenza vector

Nasal,
1 dose

Mucosal IgA and
systemic IgG Over 90%

Influenza Virus A
and B Fluenz Tetra®

Antigens into live
attenuated, cold-adapted

influenza vector

Nasal,
1 dose

Mucosal IgA,
systemic IgG and

CTL responses

Variable, but
more than 50%

a Data from references [2,7].

This review will discuss the recent advancements in mucosal delivery systems, focus-
ing on the use of bacterial spores as vaccine vehicles able to conjugate the advantages of
live cells and synthetic nanoparticles.

2. Mucosal Surfaces and Mucosal Immune System

The mucosal surfaces of the human body present structural and functional differences
at the various body sites, i.e., the gastrointestinal, urogenital, respiratory tracts and oral and
ocular cavities. In the gastrointestinal tract (GIT), the mucus is secreted by the Goblet cells
and covers columnar epithelial cells. Antigens are transported from the lumen to dendritic
cells (DCs) mainly through M cells, allowing antigen presentation to the mucosal immune
system, and inducing the production of IgG and secretory IgA (sIgA) (Figure 1). A similar
structure with Goblet and M cells interspersed with columnar epithelial cells is observed
in the nasal cavity, where a fibrous layer with lymphocite-enriched zones is beneath the
epithelium. In other cases, such as the oral and ocular cavities, the mucus layer covers a
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multilayer squamous epithelium and no M cells and Goblet cells are present. In these cases,
other tissues (glands) secrete the mucus, the DCs migrate to the adjacent lymph nodes
upon antigen recognition, and only an IgG response is induced without the production of
sIgA [9].
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specific T cells and IgA-committed B cells migrate to effector sites through blood circulation. IgA-
committed B cells differentiate into IgA-producing plasma cells in the presence of cytokines pro-
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Figure 1. Gut-associated mucosal immune system. (A) Antigens within the intestinal lumen are
transferred to the Peyer’s patches via M cells and recognized by DCs. In the mesenteric lymph nodes,
the activated DCs prime naïve T cells by the secretion of tissue-specific adhesion molecules and
cytokines. The T helper cells are responsible for fighting different types of pathogens. Th1s secrete
IFN-γ, activating macrophages and cytotoxic T cells against intracellular pathogens. Th2 cells produce
IL-4, IL-5, and IL-13, which activate the humoral immune responses against extracellular pathogens
by the activation of B cells. Finally, Th17s are responsible for antifungal and antibacterial immunity.
T cell-dependent activation of IgA-committed B cells is also induced. (B) Then, antigen-specific T
cells and IgA-committed B cells migrate to effector sites through blood circulation. IgA-committed B
cells differentiate into IgA-producing plasma cells in the presence of cytokines produced by Th2 cells,
and they subsequently produce dimeric forms of IgA. Finally, the IgA dimeric forms are secreted
and released in the intestinal tract, where they play critical roles in mucosal immune responses,
such as immune exclusion, antigen excretion, and intracellular virus neutralization. Created with
https://www.biorender.com/ (accessed on 2 May 2023).

The mucosal surfaces represent contact sites between the body and the external en-
vironment and are in direct contact with all microbes, viruses, and molecules present in
air, water, and foods. Physical, chemical, and immunological barriers are then essential to
protect the mucosal surfaces and maintain homeostasis, avoiding chronic inflammatory
responses due to the high antigen load. The dense mucus layer, which prevents adherence
to the epithelium, and the tight junctions, connecting epithelial cells and controlling access
to the underlying tissues, are the physical barriers protecting the mucosal surfaces. Such
physical protection is aided by pH differences and antimicrobial substances (biochemical
barriers) and by the action of the innate and adaptive immune systems (immunological
barriers) [2]. The innate immune system is naturally present in the organism and is the
first line of defense to respond quickly to bacteria and antigens. It recognizes a limited
number of evolutionarily conserved molecules and does not retain a memory of a previous
response. On the other hand, the adaptive immune system is acquired during lifetime

https://www.biorender.com/
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upon the exposure to pathogens, is highly specific and retains a memory of a previous
response. Both systems cooperate to efficiently recognize and eliminate pathogens. The
immune system is, in part, located along the mucosal surfaces (mucosal immune system)
and has an important role in immune surveillance.

The mucosal immune response is coordinated by the mucosa-associated lymphoid
tissue (MALT) diffused in various submucosal sites. The MALT is composed of DC,
macrophages, intraepithelial T cells (CD8+), regulatory T cells (Treg), and plasma cells that
are organized into inductive sites, where antigens are recognized, and effector sites where
the adaptive immune responses are mediated (Figure 1) [10,11]. The MALT is commonly
subdivided into mucosa-specific lymphoid tissues, for example, the gut-associated lym-
phoid tissue (GALT) or the nasal-associated lymphoid tissue (NALT). In the intestine, a
large number of immune cells are found beneath the Peyer’s patches (PP) that are formed
by groups of M cells (specialized phagocytic cells with high transcytotic activity) [11]. At
the level of the PP, antigens are transported from the intestinal lumen across the intestinal
barrier and are taken up by the DCs and presented to naïve T cells in the local mesenteric
lymph nodes [12]. In this district, the activated DCs promote naïve T cell differentiation
into distinct T helper cells (Th1, Th2, or Th17) or T reg cells by secreting different types
of pro-inflammatory cytokines (Figure 1A). In a health situation, DCs produce IL-10 and
TGF-β inducing tolerance; thus, DCs have a dual function: they either boost the immune
system or dampen it, leading to tolerance and maintenance of the immune homeostasis. In
a stimulus-dependent manner, IL-2, IL-18, and INF-γ induce a Th1 response, IL-4 induces
a Th2 response, and IL-6 and IL-23 induce a Th17 response [10]. In turn, the T cells inter-
act with B cells to promote antibody production at multiple mucosal sites. In particular,
activated B cells produce antigen-specific IgG and secretory IgA (sIgA) antibodies [10,11].

Although the mucosal tissues of the body share some common features, each tissue
has a peculiar structure (epithelia, mucus, lymphoid structures, and resident immune cells)
and a specific commensal microbiota. These specificities affect the nature of the immune
inductive sites (GALT and mesenteric lymph nodes in the intestine, NALT and Cervical
lymph nodes in the nose), the type of immune response, and its duration. Therefore, all
these factors affect the mucosal immune response and are relevant for the design of a
mucosal vaccine. The various mucosal sites induce different immune responses with oral
vaccinations that are particularly adapted to induce a response in the GIT, salivary glands,
and mammary glands, and nasal vaccinations that are particularly adapted for an immune
response in respiratory, gastric, and genital tracts [13]. However, the various mucosae are
connected and, therefore, immunization at a single site promotes at least some immune
responses at distant sites [14,15]. A full understanding of the crosstalk between the various
mucosal sites is critical to designing novel vaccines that can potentially target mucosae
distant from the vaccination site.

3. Mucosal Adjuvants and Delivery Systems

A full development of mucosal vaccines has been so far limited by the lack of appro-
priate antigens, adjuvants, and delivery systems. Most antigens, when exposed to the harsh
environmental conditions of the mucosa, are degraded before they can be recognized by
mucosal APCs (including DCs, macrophages, B cells) [16]. Although typical adjuvants
used in parenteral vaccinations, for example, aluminum hydroxide (alum), complete Fre-
und’s adjuvant, and incomplete Freund’s adjuvant, do not successfully stimulate mucosal
immune responses, significant progresses have recently been made to develop appropriate
mucosal adjuvants.

3.1. Mucosal Adjuvants

A vaccine adjuvant is a molecule or particle able to activate innate immunity by
inducing the production of proinflammatory molecules, chemokines, and cytokines by
APCs. In recent years, various mucosal adjuvants have been proposed and extensively
reviewed [9,16]. Adjuvants proposed for mucosal vaccinations include modified bacterial
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toxins, flagellin, and other immunomodulatory molecules of bacterial or cellular origin [16].
The best characterized mucosal adjuvants are non-toxic variants of bacterial enterotoxins,
in particular, of the cholera toxin (CT) of Vibrio cholerae and of the heat-labile toxins (LT)
of enterotoxigenic strains of Escherichia coli (ETEC). The multiple mutant cholera toxin
(mmCT) and the double mutant heat-labile toxin (dmLT), carrying, respectively, multiple
mutations in the A subunit of the CT or two amino acid replacements (R192G and L211A)
in LT, have low or no toxicity, but retain the adjuvant activity of the full toxins and have
been shown to potentiate the immune responses of various experimental mucosal vaccines
against pathogens, such as Streptococcus pneumoniae, Helicobacter pylori, V. cholera, and
ETEC [16,17]. Also, flagellin, the main structural component of the bacterial flagella, has
been proposed as a mucosal adjuvant. Orally dosed flagellin of Salmonella typhimurium
induces an inflammatory response by interacting with the Toll-Like receptor 5 (TLR5) and
was shown to potentiate the immune response induced by mucosally administered bacterial
and viral antigens [16]. In addition to enterotoxins and flagellin, other molecules have been
proposed as mucosal adjuvants, including enterocyte binding proteins (for example, InlA
of Listeria monocytogenes and FnBPA of Staphylococcus aureus) [18], cell surface proteins from
the protozoan Giardia lamblia, M cell-targeting peptides [19], DC-targeting molecules [20],
cytokine-derived molecules, and the Fc region of antibodies [21]. Immune potentiator
molecules, such as cytokines, have also been proposed as mucosal adjuvants, particularly
for vaccines based on live-attenuated pathogens and/or live vectors (non-pathogenic
microorganisms modified to express heterologous antigens) [22]. Interferon-γ (IFN-γ),
IL-1β, IL-12, IL-6, IL-10, and IL-12 have all been tested as adjuvants of live-attenuated
vaccines against a variety of infectious diseases [22].

Quiescent spores of Bacillus toyonensis, a widely used animal probiotic, have been
shown to act as a parenteral [23] and mucosal [24] adjuvant of vaccines against a Clostridium
perfringens infection and the tetanus toxin, respectively.

3.2. Mucosal Delivery Systems

Various approaches have been used to deliver antigens to mucosal surfaces, including
live cells, bacterial-derived vesicles, viruses, virus-like particles, and synthetic materials.
All these techniques rely either on the discovery and optimization of proteins/peptides
to be used as antigens (subunit vaccines) or on the delivery of DNA/RNA coding for
antigens (genetic vaccines) [25]. For subunit vaccines, antigens can be either produced
in vitro and later formulated in vaccine preparations, or their coding genes can be used
to obtain antigen synthesis in vivo by a live vaccine carrier. Several pathogenic and non-
pathogenic bacteria have been tested as live vehicles of heterologous antigens [26,27].
Initially, epitopes of the hepatitis B virus [28], of the cholera toxin [29], or of the parasite
Plasmodium falciparum [30] were displayed on the surface of non-virulent strains of the
pathogenic bacterium Salmonella. Antigen-specific immune responses were observed when
the recombinant bacterial cells were used for the mucosal immunization of mice, providing
clear evidence that an attenuated bacterium can be effectively used as a vaccine vehicle
to deliver heterologous antigens [29,30]. Later on, non-pathogenic, commensal bacteria
were also used to display and deliver antigens to mucosal surfaces to avoid the use of
engineered, attenuated pathogens [31].

More recently, bacterial-derived materials have been proposed as mucosal vaccine
vehicles. In this context, outer membrane vesicles (OMVs), non-living structures deriving
from gram-negative bacteria, stimulated particular interest [32]. OMVs are formed during
bacterial growth by either a spontaneous or induced budding of the outer membrane.
OMVs obtained from gram-negative pathogens contain periplasmic material and molecules
normally exposed on the outer membrane, and a parenteral vaccine against Neisseria
meningitidis based on OMVs has already been licensed [32]. OMVs can also be obtained
from non-pathogenic, gram-negative bacteria genetically engineered to express a bacterial
or non-bacterial antigen on the cell surface. Recently, a nasally delivered vaccine based on
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OMVs was shown to induce high mucosal and systemic protection against a SARS-CoV-2
infection [33].

A variety of either natural or synthetic molecules has been proposed to deliver and
protect antigens at specific mucosal sites [9,16,25,34]. These include micro- or nano-particles
made of polyanhydrides (PHAs), poly (ethylene-glycol), poly (lactic acid), chitin, alginate,
and several other polymers that are not cytotoxic, biocompatible, mucoadhesive, and that,
by different techniques, are used to coat antigens, therefore protecting them and increasing
their immunogenicity [16,34].

The use of liposomes to deliver antigens to the mucosal surfaces has also attracted
much interest in the possibility of combining the delivery with the adjuvant effect [35].
Liposomes are micro- or nano-metric lipid bilayers that can contain or expose antigens and
be constructed to have an immunomodulatory activity that can induce innate and adaptive
responses [35].

Self-assembling protein nanoparticles, such as virus-like particles or nanoparticles
displaying antigens, have been shown to facilitate antigen uptake and presentation and
are widely applied in developing new vaccines. However, their use has been so far mainly
focused on parenteral vaccinations [36,37].

Various viral vectors, including adenovirus, influenza virus, Newcastle disease virus
(NDV), and other paramyxoviruses, have been proposed as vaccine vectors, mainly for
parenteral immunizations, but more recently for mucosal ones as well [38].

In addition to live bacteria, bacterial or viral-derived particles, and synthetic materials,
dead or quiescent cells have also been proposed as mucosal vaccine vectors. An example
of dead cells is bacterial ghosts (BGs), empty bacterial envelopes of gram-negative bacteria
that do not have nucleic acids. BGs attracted the scientific community’s attention for the
possibility of using highly immunogenic pathogens, also genetically engineered, to express
additional antigens or adjuvants on their surface without the risk associated with the live
cells [39]. BGs differ from classical heat- or chemically-inactivated pathogens that have
long been used as vaccines for their preparation methods. Classical methods to produce
inactivated vaccines were based on formaldehyde or heat treatments that can damage the
surface structures (antigens) and reduce the immunogenicity of the vaccine. BGs can be
prepared by genetic (expression of lytic enzymes, phage proteins, or antimicrobial peptides)
or by chemical (treatments with NaOH, SDS or H2O2) approaches, all able to strongly
reduce viability without altering the surface structures of the cells [39].

The best-characterized example of quiescent cells used as vaccine delivery systems
is the bacterial (endo)spore produced by the gram-positive bacterium Bacillus subtilis.
A genetically engineered spore expressing the C fragment of the tetanus toxin on its
surface [40], induced a protective, mucosal, and systemic immune response [41]. Over the
years, several other antigens have been displayed on the spore of B. subtilis, as well as on
spores of other Bacillus species [27,42], and this spore-display system will be discussed in
detail in the following paragraphs.

4. The Bacillus Spore as Mucosal Vaccine Vehicles
4.1. The Bacillus Spore

The B. subtilis spore, like that produced by most members of the Bacillus and Clostridium
genera, is a particularly stable and resistant cell formed in the cytoplasm of a vegetative
cell when the environmental conditions no longer allow cell growth and/or survival
(Figure 2A) [43]. The released spore can survive indefinitely in the absence of water
and nutrients, and in the presence of toxic chemicals, lytic enzymes, and extremes of
temperature and pH [43]. The quiescent spore responds to the renewed presence of
nutrients and favorable conditions by germinating and, thus, originating vegetative cells
able to grow and eventually sporulate again (Figure 2A) [44].
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Figure 2. Schematic view of sporulation process (A) and spore structure (B) of B. subtilis. (A) In harsh
conditions, such as nutrient depletion, the vegetative cells start the alternative cycle of sporulation.
Mature released spores can remain dormant for an indefinite period before they germinate and
resume the vegetative cycle. Adapted from Mutlu (2018) [44]. (B) Cartoon of a typical B. subtilis spore.
Spore structural layers of the spore protect the genome contained in the partially dehydrated core.
The dotted circle shows a detail of TEM micrograph of a spore stained with ruthenium red. Created
with https://www.biorender.com/ (accessed on 2 May 2023).

The spore stability and resistance are in part due to its peculiar structure. A partially
dehydrated cytoplasm contains a copy of the chromosome and forms the spore interior
(core), which is surrounded and protected by a thick peptidoglycan-like cortex, a multi-
layered, proteinaceous coat, and, in B. subtilis, a crust made of proteins and glycoproteins
(Figure 2B). Other spore-forming species either do not have an additional layer outside the
coat or have an exosporium, a balloon-like structure also made of glycoproteins that loosely
surrounds the spore and mediates its interactions with the environment [45]. Proteins
and glycoproteins on the outermost spore layers [46,47] make the spore surface negatively
charged and relatively hydrophilic [46,48]. Some spore surface proteins self-assemble
around the spore [49–51], forming remarkably robust structures [52].

In addition to a survival strategy, producing a spore is also a successful mechanism for
the dispersal of these organisms on Earth. Spores are found in almost every environmental
niche, including the gut of terrestrial and aquatic animals [53,54]. Seminal experiments with
a murine model have shown that ingested spores of B. subtilis safely transit the stomach,
germinate, and proliferate in the upper part of the intestine [55], and that re-sporulate in the
lower part of the intestine [56]. In the GIT, B. subtilis spores and germination-derived cells
interact with intestinal epithelial and immune cells, contributing to the normal development
of the GALT [57,58] and protecting the host from enteropathogens [59]. Also, based on
these properties, spores of several Bacillus species are widely commercialized as probiotic
preparations for animals and humans [60,61].

4.2. The Spore Delivery Systems: Recombinant Approach

The spore structure and stability suggested its use as a platform to display heterologous
molecules [40]. In a proof-of-concept study, the coat protein CotB of B. subtilis was selected
as a carrier for the spore display of a model passenger protein, the C fragment of the tetanus
toxin (TTFC) of C. tetani [40]. DNA coding for TTFC was fused in frame with the cotB
gene and inserted on the B. subtilis chromosome under the transcription and translation
signals of cotB, thus ensuring genetic stability and proper expression of the chimera [40].
An average of 1.5 × 103 TTFC molecules per spore was displayed [40], and mucosally
administered spores were able to induce an antigen-specific immune response in mice [41].

https://www.biorender.com/
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The gene fusion, integrated on the chromosome and expressed under the transcription
and translation signals of the anchor protein, produces a chimera in the mother cell. The
chimera is then driven on the spore surface by the spore surface protein used as an anchor,
thus, leading to the release of a mature spore fully decorated with the selected antigen
(Figure 3).
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Figure 3. Strategy of recombinant spore-surface display. A gene fusion is constructed between DNA
coding for a coat protein (violet) and for an antigen (blue). The fusion is under the transcriptional
and translational signals of the spore surface gene and is integrated into B. subtilis chromosome.
During sporulation, the recombinant protein is expressed in the mother cell and assembled on the
forming spore.

The same recombinant approach has been used to display a variety of antigens fused
to CotB and several other coat proteins as an anchor (Table 2).

Table 2. Coat proteins of B. subtilis proposed as carriers to display antigens.

Carriers Antigens References

CotB

TTFC of Clostridium tetani [40]
LTB of Escherichia coli [62]

FliD of Clostridium difficile [63,64]
PA of Bacillus anthracis [65]

UreA of Helicobacter acinonychis [66]
TcdA-TcdB of Clostridium difficile [67]

Cpa of Clostridium perfringens [68]

VP28 of White Spot Syndrome Virus [69,70]
M2 protein of influenza virus [71]

SlpA of Lactobacillus brevis [72]
InvA of Yersinia pseudotuberculosis [72]

MPT64 of Mycobacterium tuberculosis [73]
BclA3 of Clostridium difficile [74]

VP1 capsid protein of Enterovirus 71 [75]
HR2P of SARS-CoV-2 spike [76]

PCV2 Cap protein of Porcine circovirus [77]
Vp7 of grass carp reovirus [78]
RBD of SARS-CoV-2 spike [79]
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Table 2. Cont.

Carriers Antigens References

CotC

TTFC of Clostridium tetani [40]
LTB of Escherichia coli [62]

FliD of Clostridium difficile [63,64]
PA of Bacillus anthracis [65]

UreA of Helicobacter acinonychis [66]
TcdA-TcdB of Clostridium difficile [67]

UreB of Helicobacter pylori [80]
TP22.3 of Clonorchis sinensis [81]

CsSerpin3 of Clonorchis sinensis [82]
Pep23 of HIV [83]

GST of Schistosoma japonicum [84]
GP64 of Bombyx mori [85]

Enolase of Clonorchis sinensis [86]
Paramyosin of Clonorchis sinensis [87]

OmpC of Salmonella serovar Pullorum [88]
VP4 of Grass carp reovirus [89]

VP56 of Grass carp reovirus [90]
Vp26 of White spot syndrome virus [69,91]

Vp7 of grass carp reovirus [78]
MCP of Nervous necrosis virus (RGNNV) [92]

HR1HR2 of SARS-CoV-2 spike [79]
Sip of Streptococcus agalactiae [93]

CotG
UreA of Helicobacter acinonychis [66]

FliD of Clostridium difficile [63,64]

CotY
OmpK of Vibrio vulnificus [94]
RBD of SARS-CoV-2 spike [95]

CotZ
FliD of Clostridium difficile [63,64]

UreA of Helicobacter acinonychis [66]
RBD of SARS-CoV-2 spike [95]

CgeA CagA of Helicobacter pylori [96]

Sets of either replicative [91] or integrative [92] plasmids have been developed to
facilitate the construction of gene fusions. The integrative vectors, allowing the integration
of the gene fusions on the B. subtilis chromosome, grant a better genetic stability over
replicative plasmids. Spores of species other than B. subtilis have also been considered for
displaying heterologous proteins [97,98], but so far, not yet tested for expressing antigens.

Recombinant spores have also been proposed as vaccine vehicles for veterinary
uses [68,99], and for aquaculture [89,90,93].

Various alternative recombinant approaches to display proteins on spores have also
been proposed. Examples include enzymes [100] and the protective antigen of B. an-
thracis [101] that were over-expressed in the mother cell of sporulating cells of B. subtilis,
and part of the highly concentrated heterologous proteins spontaneously adsorbed around
the forming spores, decorating the released spore. This approach is not based on using
a spore surface protein as an anchor, but rather on the spontaneous attachment of highly
concentrated proteins on the spore surface. This concept was previously exploited as a
non-recombinant spore display [102,103], and is discussed below.

A different example of recombinant spore-display is the reconstitution of the basement
layer of the B. subtilis coat around spherical membranes supported by silica beads. Such
artificial spore-like particles (synthetic spore husk-encased lipid bilayers, SSHELs) were
covalently bound to small molecules and suggested as a versatile display platform for
drugs, antigens, and enzymes [104].

More recently, antigenic peptides of the zoonotic intestinal tapeworm of dogs Echinococ-
cus granulosus have been fused to the TasA protein of B. subtilis [105]. TasA is a major
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component of the extracellular matrix that, by forming amyloid-like fibers, supports the
assembly of the biofilm. TasA-fused antigens were orally administered to dogs and shown
able to induce an immune response with production of antigen-specific IgG, but not
sIgA [106]. Interestingly, an immunohistochemistry analysis strongly suggested that the
sera of immunized dogs recognize the infective form of the parasite [106].

4.3. The Spore Delivery Systems: Non-Recombinant Approach

The non-recombinant spore display system (spore-adsorption) has been recently re-
viewed [103]. It is based on the spontaneous and stable binding of a purified heterologous
protein to the spore surface (Figure 4). This approach has been used to adsorb on the B.
subtilis spore various enzymes [103] and model antigens, such as TTFC of C. tetani, PA of B.
anthracis, Cpa of C. perfringens [102], B subunit of the heat-labile toxin (LTB) of E. coli [14],
and BclA2 of C. difficile [107].
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Figure 4. Strategy of non-recombinant spore-surface display. Purified antigens and spores are reacted
in an acidic reaction buffer. During the adsorption reaction (1 h), antigens are adsorbed on the spore
surface or can infiltrate through the pores formed by spore surface coat proteins.

It is known that at acidic conditions (pH 3.0–4.0), proteins highly concentrated outside
the spore spontaneously and tightly bind to the spore surface, but the molecular mechanism
of spore adsorption is still not fully understood. Experiments using the Red Fluorescent
Protein (RFP) of the coral Discosoma sp. as a model protein revealed that adsorbed molecules
cross the outermost surface layer of the B. subtilis [108] or B. megaterium [109] spores. The
outermost spore layer of most/all spore former species is characterized by the presence of
cysteine-rich proteins that self-assemble into hexameric complexes, producing a protein
lattice permeated by pores (Figure 4) [49–51,100]. Such pores mediate the spore permeability
to germinants [110] and, in B. subtilis, are controlled by the spore surface protein CotG [111].

A model proposed to explain spore adsorption suggests that adsorbed protein infil-
trates through the pores present in the outermost layer and localizes between the outermost
layer (exosporium or outer coat), and the immediately underneath layer (Figure 4) [100].

It has been reported that small proteins often adsorb more efficiently than big proteins,
but this trend is not always followed, suggesting that the permeability of the pores depends
on the size of the adsorbed protein, but also on the physico-chemical properties of both the
heterologous protein and the spore [100]. The isoelectric point, the electric charge, and the
relative hydrophobicity of the molecule to be adsorbed have been suggested as relevant
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for efficient adsorption [102,112]. The same heterologous proteins are adsorbed with
different efficiencies by spores of different species [109] or by different strains of the same
species [113], or even by spores of the same strain but grown at different conditions [114],
suggesting that the different physicochemical properties of the spore surface influence the
efficiency of adsorption.

According to the proposed model, the adsorbed proteins would be mainly localized
inside the spore and only in a minimal part exposed on the spore surface [100]. The internal
localization of the adsorbed proteins would then explain the tight adhesion and the higher
stability and resistance to unfavorable conditions of adsorbed over free proteins [100].

In some cases, the standard spore-adsorption procedure (Figure 4) has been used
in a modified version. Heat-inactivated spores of B. subtilis have been successfully used
to bind influenza H5N1 virions (NIBRG-14; clade 1) [115] or a Mycobacterium tuberculosis
antigen [116], introducing the concept of using spores as inert displaying bioparticles.

4.4. Recombinant vs. Non-Recombinant Spore Display

Both spore display approaches have advantages and disadvantages, and the preference
for one or the other system has to be analyzed case-by-case. The recombinant approach
has the clear advantage that the antigen does not have to be produced and purified. The
recombinant bacterium contains the gene coding for the antigen fused to a spore surface
protein; therefore, the sporulating cell produces the antigen to be displayed, reducing the
costs and simplifying the production process. On the other end, the non-recombinant
system has the obvious advantage of being non-recombinant, thus, it does not raise safety
concerns related to the use and environmental release of recombinant spores.

In addition to these, the non-recombinant approach is significantly more efficient than
the recombinant system. Isticato et al. [14] compared the efficiency of the two display
approaches by using the same antigen, LTB of E. coli. An average of 9.6 × 10−5 pg per
spore of the CotC-LTB fusion protein was displayed by a strain carrying a cotC::eltB gene
fusion [62], while up to 2.5 × 10−3 pg of LTB per spore were adsorbed to wild type B.
subtilis spores [14]. This roughly 25-fold increase of displayed LTB becomes even larger (up
to 100-fold increase) by using mutant spores altered in the spore surface [14]. A significantly
increased efficiency of display is particularly relevant for a vaccine delivery system, since it
allows reducing either the number of spores/dose or the number of doses needed to deliver
a sufficient amount of antigen for the induction of an antigen-specific immune response.

An additional relevant advantage of the non-recombinant system is that multimeric
antigens are presented in their mature conformation. LTB of E. coli is a pentamer that
only in its native form is functional and binds its receptor, the GM1 ganglioside, on the
enterocyte surface [117]. When expressed as a fusion protein on B. subtilis spores [62] or on
the surface of S. gordonii [118], LTB is displayed as a monomer, while LTB pentamers are
displayed by the non-recombinant system on B. subtilis spores [14].

However, the non-recombinant spore display system also has disadvantages:
(i) displayed antigens are not on the spore surface and can be presented to the immune
cells only after the spore germinates or is destroyed in the animal body; (ii) the molecular
mechanisms of spore adsorption are still not fully understood. According to the model of
Figure 4, antigens would accumulate within the spore surface layers in a disordered way,
thus impairing the construction of precise structures, with epitopes exposed in the most
convenient way for interaction with the immune cells.

5. Mucosal Immunizations with Recombinant and Non-Recombinant Spores

Spores that do not display any heterologous antigen induce low levels of spore-specific
IgG response when they are mucosally (orally or nasally) administered to mice [57]. While
they are not recognized by TLR2 and TLR4, the two principal Toll-like receptors sensing
live bacteria, and seem unable to interact with B cells, spores stimulate the induction of
IFN-γ and other mediators of a cellular response [119]. In addition, orally administered
spores have been shown to reduce the susceptibility to enteric pathogens in animal models.
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D’Arienzo et al. [59] used Citrobacter rodentium, a mouse pathogen causing epithelial lesions
similar to those caused by human enteropathogenic and enterohemorrhagic strains of E.
coli [120], to show the protective effects of B. subtilis spores. In this infection model, a
treatment with 1 × 109 spores one day before the infection with C. rodentium drastically
decreased colon colonization, prevented the enteropathy by reducing crypt length and
epithelial damages, and significantly reduced the mortality rate [59]. In other studies, a
single oral inoculum of spores suppressed all signs of Escherichia coli O78:K80, Salmonella
enterica or Clostridium perfringens infections in chickens [121,122].

Spores displaying heterologous antigens by the recombinant approach have been
shown to induce antigen-specific immune responses in mice orally or nasally immunized.
In this context, the best-characterized example is that of spores displaying the C-terminus
of the tetanus toxin (TTFC) fused to the spore surface protein CotB of B. subtilis. Mice orally
immunized with those recombinant spores produced TTFC-specific antibodies (fecal sIgA
and serum IgG) with an IgG isotype profile, indicating a prevalence of IgG1 and IgG2b and,
therefore, a Th2-type immune response [41]. When challenged with the purified tetanus
toxin, the immunized animals were fully protected, demonstrating the potential of spores
as a valuable delivery system for mucosal vaccines [41]. The same spores also induced
a significant TTFC-specific IgA and IgG response with a prevalence of IgG1 and IgG2b,
indicative of a Th2-biased immune response when used to orally prime mice that were
then subcutaneously boosted with soluble TTFC (without adjuvant) [123]. When orally
administered, the same spores were also shown to induce a cellular immune response in
Balb/C mice with spleen and mesenteric lymph nodes (MLN) cell proliferation, as well
as the production of IFN-γ, but not of IL-4 and IL-10 in both districts [118]. When the
CotB-TTFC chimera was displayed on the surface of spores of a mutant strain of B. subtilis
unable to germinate, similar levels of cell proliferation and a similar pattern of cytokine
induction were observed with respect to those observed with wild-type spores, indicating
that the observed antigen-specific cellular immune response was independent from spore
germination in the GIT, and was only due to the antigen exposed on the orally ingested
spores [124]. The same conclusion was also reached using a different antigen, the MPT64 of
Mycobacterium tuberculosis [73]. In this case, spores displaying the antigen fused to CotB
were heat-inactivated and were still able to induce an immune response reducing the
pathogen load in the animal lungs and inducing the secretion of Th1 cytokines [73].

Other examples of antigens displayed on spores as fusion proteins and able to induce
a strong immune response when mucosally administered are the LTB of E. coli [60], the
C-terminus of the alpha toxoid of Clostridium perfringens (Cpa) [116], and the BclA3 of C.
difficile [74]. In the LTB and Cpa cases, high levels of antigen-specific IgG and sIgA were
induced [62,68], and recombinant spores displaying Cpa fused to CotB protected the orally
or nasally immunized mice against a 12 LD50 challenge dose of alpha toxin [68]. Also,
spore-displayed BclA3 induced antibody production in mice and attenuated some C. difficile
infection symptoms after a challenge with the pathogen, but was less efficient than the free
antigen [74].

More recently, SARS-CoV-2 antigens have been fused to CotB or CotC and recom-
binant spores used to immunize hamsters [79]. Golden Syrian hamsters were primed
intramuscularly with the recombinant Spike protein followed by two intranasal boosts
with a mixture (1:1) of recombinant spores expressing either the receptor binding domain
(RBD) (CotB-RBD) or the HR1-HR2 fragment (CotC-HR1HR2) of the SARS-CoV-2 Spike
protein [REF]. The viral load decreased progressively in the oropharingeal tract and in the
lungs of vaccinated animals [79].

The effects of some antigens delivered by spore adsorption have also been character-
ized. Huang et al. [102] reported that purified Cpa of C. perfringens mixed to B. subtilis
spores induced an immune response indistinguishable from that induced by recombinant
spores displaying Cpa fused to CotB [102]. Mice were immunized with either three oral
doses of spores mixed with 3.6 µg of Cpa or a single nasal dose of spores mixed with
0.15 µg of Cpa. Protection was obtained in nasally dosed mice to a 6 LD50 dose of toxin,
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while for oral dosing, only one mouse survived, suggesting that with the non-recombinant
approach, the nasal route is preferable to the oral one [102]. In the same study, spores
were also mixed with TTFC of C. tetani and PA of B. anthracis and in all cases, a Th1-biased
immune response was observed and the immunized animals were protected against the
challenge with the purified toxins [102]. In all cases, heat-inactivated spores appeared
equally effective as live spores [102]. This remarkable result was further exploited, showing
that killed spores adsorbed to inactivated influenza virions (H5N1; NIBRG-14; clade 1)
induce both humoral and cell-mediated immune responses when intra-nasally adminis-
tered to mice [115]. In a challenge experiment, mice nasally dosed two times with spores
adsorbed with 20 ng hemagglutinin of inactivated NIBRG-14 were fully protected against
challenge with 20 LD50 of H5N2 virus [115]. Humoral and cellular immune responses were
also observed in mice nasally immunized with spores adsorbed with LTB of E. coli [14].
Production of fecal and serum sIgA, serum IgG, and IFN-γ by both spleen and MLN cells
of mice immunized with spore-adsorbed LTB was observed at levels statistically higher
than those observed by immunizing mice with purified LTB, an effect that could be related
to an increased antigen uptake by competent immune cells or, alternatively, to a reduced
antigen degradation [14]. An increased antigen stability was observed when the spore
surface protein BclA2 of C. difficile was adsorbed to B. subtilis spores [107]. In addition,
spores adsorbed with BclA2 showed an increased adherence to human intestinal (Caco-2)
cells in vitro, and induced antigen-specific antibody production in nasally immunized
mice [107].

Spore-adsorbed TTFC, when nasally administered to mice, was more efficient than
the free antigen in inducing fecal sIgA, serum IgG, and the cytokines IL-6 and IL-12 [24].
The efficiency of the nasal vaccination was further improved by oral probiotic treatment
with B. toyonensis [24]. In this case, both the humoral and the cellular immune responses
were enhanced by the probiotic treatment without significantly altering the gut’s microbial
composition, pointing to the probiotic treatment as an alternative to the use of adjuvants
for mucosal vaccinations [24].

6. Future Perspectives

Both recombinant and non-recombinant systems of spore display are potentially
efficient strategies to deliver heterologous antigens to mucosal surfaces. Each system has
advantages and disadvantages, leaving the preference to one or the other to a case-by-case
analysis. An exciting future perspective is the combined use of both systems. Examples are
the use of recombinant spores displaying a protein able either to act as an adjuvant [125] or
specifically target the spore to a tissue or cell type [126] that can be adsorbed with a different
molecule. In this context, B. subtilis spores displaying the adjuvant IL-2 or streptavidin
as a chimeric fusion were adsorbed with the purified antigen FliD of C. difficile [125] or
the diterpen paclitaxel, a mitotic inhibitor used in cancer therapy [126]. By this approach,
spores displaying IL-2 showed an increased immune response [125], and those displaying
streptavidin can bind any biotinylated antibody, potentially targeting spores and adsorbed
molecules to any potential target cell therapy [126].

Most of the experiments so far performed to display antigens have been carried out
with laboratory collection strains. An additional, intriguing future perspective is to display
antigens on spores of probiotic strains of B. subtilis or other Bacillus strains. Several strains of
spore former species are widely used as probiotics for human or animal use [60,61], and the
possibility of using spores of probiotic strains to display antigens would allow combining
the beneficial probiotic effects to the induction of an antigen-specific immune response.
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96. Iwanicki, A.; Piątek, I.; Stasiłojć, M.; Grela, A.; Lęga, T.; Obuchowski, M.; Hinc, K. A system of vectors for Bacillus subtilis spore
surface display. Microb. Cell Factories 2014, 13, 30. [CrossRef] [PubMed]

97. Du, C.; Chan, W.C.; McKeithan, W.; Nickerson, K.W. Surface display of recombinant proteins on Bacillus thuringiensis spores.
Appl. Environ. Microbiol. 2005, 71, 3337–3341. [CrossRef] [PubMed]

98. Park, T.J.; Choi, S.-K.; Jung, H.-C.; Lee, S.Y.; Pan, J.-G. Spore display using Bacillus thuringiensis exosporium protein InhA.
J. Microbiol. Biotechnol. 2009, 19, 495–501. [CrossRef]

99. Lee, J.E.; Kye, Y.C.; Park, S.M.; Shim, B.S.; Yoo, S.; Hwang, E.; Kim, H.; Kim, S.J.; Han, S.H.; Park, T.S.; et al. Bacillus subtilis spores
as adjuvants against avian influenza H9n2 induce antigen-specific antibody and T cell responses in white leghorn chickens. Vet.
Res. 2020, 51, 68. [CrossRef]

https://doi.org/10.3390/genes11111351
https://www.ncbi.nlm.nih.gov/pubmed/33202570
https://doi.org/10.3389/fimmu.2022.1007202
https://doi.org/10.3390/vaccines10111900
https://doi.org/10.1099/jmm.0.000404
https://doi.org/10.1016/j.vaccine.2008.02.015
https://doi.org/10.1017/S0031182020000797
https://doi.org/10.1016/j.vaccine.2006.11.047
https://doi.org/10.1007/s00436-009-1606-7
https://www.ncbi.nlm.nih.gov/pubmed/19756753
https://doi.org/10.1007/s00284-011-9867-7
https://doi.org/10.1016/j.vaccine.2014.01.039
https://www.ncbi.nlm.nih.gov/pubmed/24486347
https://doi.org/10.1186/s13071-018-2757-0
https://doi.org/10.1371/journal.pone.0191627
https://www.ncbi.nlm.nih.gov/pubmed/29370221
https://doi.org/10.1016/j.fsi.2018.10.008
https://doi.org/10.3390/v14010030
https://www.ncbi.nlm.nih.gov/pubmed/35062234
https://doi.org/10.1111/jam.12550
https://doi.org/10.1016/j.aquaculture.2022.738008
https://doi.org/10.3389/fimmu.2022.1012301
https://www.ncbi.nlm.nih.gov/pubmed/36311700
https://doi.org/10.1016/j.csbj.2023.02.007
https://doi.org/10.1186/1475-2859-13-30
https://www.ncbi.nlm.nih.gov/pubmed/24568122
https://doi.org/10.1128/AEM.71.6.3337-3341.2005
https://www.ncbi.nlm.nih.gov/pubmed/15933037
https://doi.org/10.4014/jmb.0802.163
https://doi.org/10.1186/s13567-020-00788-8


Int. J. Mol. Sci. 2023, 24, 10880 18 of 19

100. Pan, J.G.; Choim, S.K.; Jung, H.C.; Kim, E.J. Display of native proteins on Bacillus. subtilis spores. FEMS Microbiol. Lett. 2014, 358,
209–217. [CrossRef]

101. Oh, Y.; Kim, J.A.; Kim, C.-H.; Choi, S.-K.; Pan, J.-G. Bacillus subtilis spore vaccines displaying protective antigen induce functional
antibodies and protective potency. BMC Veter. Res. 2020, 16, 259. [CrossRef]

102. Huang, J.M.; Hong, H.A.; Tong, H.V.; Hoang, T.H.; Brisson, A.; Cutting, S.M. Mucosal delivery of antigens using adsorption to
bacterial spores. Vaccine 2010, 28, 1021–1030. [CrossRef]

103. Ricca, E.; Baccigalupi, L.; Isticato, R. Spore-adsorption: Mechanism and applications of a non-recombinant display system.
Biotechnol. Adv. 2021, 47, 107693. [CrossRef] [PubMed]

104. Wu, I.L.; Narayan, K.; Castaing, J.-P.; Tian, F.; Subramaniam, S.; Ramamurthi, K.S. A versatile nano display platform from bacterial
spore coat proteins. Nat. Commun. 2015, 6, 6777. [CrossRef] [PubMed]

105. Vogt, C.M.; Schraner, E.M.; Aguilar, C.; Eichwald, C. Heterologous expression of antigenic peptides in Bacillus subtilis biofilm.
Microb. Cell Factories 2016, 15, 13. [CrossRef] [PubMed]

106. Vogt, C.M.; Armua-Fernandez, M.T.; Tobler, K.; Hilbe, M.; Ackermann, M.; Deplazes, P.; Aguilar, C.; Eichwald, C. Oral application
of recombinant Bacillus subtilis spores to dogs results in a humoral response against specific Echinococcus granulosus paramyosin
and tropomyosin antigens. Infect. Immun. 2018, 86, e00495-17. [CrossRef] [PubMed]

107. Maia, A.R.; Reyes-Ramírez, R.; Pizarro-Guajardo, M.; Saggese, A.; Castro-Córdova, P.; Isticato, R.; Ricca, E.; Paredes-Sabja, D.;
Baccigalupi, L. Induction of a Specific Humoral Immune Response by Nasal Delivery of Bcla2ctd of Clostridioides difficile. Int. J.
Mol. Sci. 2020, 21, 1277. [CrossRef]

108. Donadio, G.; Lanzilli, M.; Sirec, T.; Ricca, E.; Isticato, R. Localization of a red fluorescence protein adsorbed on wild type and
mutant spores of Bacillus subtilis. Microb. Cell Factories 2016, 15, 153. [CrossRef]

109. Lanzilli, M.; Donadio, G.; Addevico, R.; Saggese, A.; Cangiano, G.; Baccigalupi, L.; Christie, G.; Ricca, E.; Isticato, R. The
Exosporium of Bacillus megaterium QM B1551 Is Permeable to the Red Fluorescence Protein of the Coral Discosoma sp. Front.
Microbiol. 2016, 7, 1752. [CrossRef]

110. Setlow, P. Germination of spores of Bacillus species: What we know and do not know. J. Bacteriol. 2014, 196, 1297–1305. [CrossRef]
111. Saggese, A.; Di Gregorio Barletta, G.; Vittoria, M.; Donadio, G.; Isticato, R.; Baccigalupi, L.; Ricca, E. CotG Mediates Spore Surface

Permeability in Bacillus subtilis. mbio 2022, 13, e0276022. [CrossRef]
112. Sirec, T.; Strazzulli, A.; Isticato, R.; De Felice, M.; Moracci, M.; Ricca, E. Adsorption of β-galactosidase of Alicyclobacillus

acidocaldarius on wild type and mutants spores of Bacillus subtilis. Microb. Cell Factories 2012, 11, 100. [CrossRef]
113. Sirec, T.; Cangiano, G.; Baccigalupi, L.; Ricca, E.; Isticato, R. The spore surface of intestinal isolates of Bacillus subtilis. FEMS

Microbiol. Lett. 2014, 358, 194–201. [CrossRef] [PubMed]
114. Petrillo, C.; Castaldi, S.; Lanzilli, M.; Saggese, A.; Donadio, G.; Baccigalupi, L.; Ricca, E.; Isticato, R. The temperature of growth

and sporulation modulates the efficiency of spore-display in Bacillus subtilis. Microb. Cell Factories 2020, 19, 185. [CrossRef]
115. Song, M.; Hong, H.A.; Huang, J.M.; Colenutt, C.; Khang, D.D.; Nguyen, T.V.; Park, S.M.; Shim, B.S.; Song, H.H.; Cheon, I.S.; et al.

Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 2012, 30, 3266–3277. [CrossRef]
116. Reljic, R.; Sibley, L.; Huang, J.M.; Pepponi, I.; Hoppe, A.; Hong, H.A.; Cutting, S.M. Mucosal vaccination against tuberculosis

using inert bioparticles. Infect. Immun. 2013, 81, 4071–4080. [CrossRef] [PubMed]
117. Kim, J.-M.; Park, S.-M.; Kim, J.-A.; Park, J.-A.; Yi, M.-H.; Kim, N.-S.; Bae, J.-L.; Park, G.S.; Jang, J.-S.; Yang, M.-S.; et al. Functional

pentameric formation via coexpression of the Escherichia coli heat-labile enterotoxin B subunit and its fusion protein subunit
with a Neutralizing Epitope of ApxIIA Exotoxin improves the mucosal immunogenicity and protection against challenge by
Actinobacillus pleuropneumoniae. Clin. Vaccine Immunol. 2011, 18, 2168–2177. [CrossRef]

118. Ricci, S.; Medaglini, D.; Rush, C.M.; Marcello, A.; Peppoloni, S.; Manganelli, R.; Palú, G.; Pozzi, G. Immunogenicity of the B
monomer of Escherichia coli heatlabile toxin expressed on the surface of Streptococcus gordonii. Infect. Immun. 2000, 68, 760–766.
[CrossRef] [PubMed]

119. Huang, J.-M.; La Ragione, R.; Nunez, A.; Cutting, S.M. Immunostimulatory activity of Bacillus spores. FEMS Immunol. Med.
Microbiol. 2008, 53, 195–203. [CrossRef]

120. Schauer, D.B.; Falkow, S. The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine
colonic hyperplasia. Infect. Immun. 1993, 61, 4654–4661. [CrossRef]

121. La Ragione, R.M.; Woodward, M.J. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and
Clostridium perfringens in young chickens. Vet. Microbiol. 2003, 94, 245–256. [CrossRef]

122. La Ragione, R.M.; Casula, G.; Cutting, S.M.; Woodward, M.J. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80
in poultry. Vet. Microbiol. 2001, 79, 113–142. [CrossRef]

123. Ciabattini, A.; Parigi, R.; Isticato, R.; Oggioni, M.; Pozzi, G. Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine
2004, 22, 4139–4143. [CrossRef] [PubMed]

124. Mauriello, E.M.; Cangiano, G.; Maurano, F.; Saggese, V.; De Felice, M.; Rossi, M.; Ricca, E. Germination-independent induction of
cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine 2007, 25, 788–793.
[CrossRef] [PubMed]

https://doi.org/10.1111/1574-6968.12558
https://doi.org/10.1186/s12917-020-02468-3
https://doi.org/10.1016/j.vaccine.2009.10.127
https://doi.org/10.1016/j.biotechadv.2020.107693
https://www.ncbi.nlm.nih.gov/pubmed/33387640
https://doi.org/10.1038/ncomms7777
https://www.ncbi.nlm.nih.gov/pubmed/25854653
https://doi.org/10.1186/s12934-016-0532-5
https://www.ncbi.nlm.nih.gov/pubmed/27514610
https://doi.org/10.1128/IAI.00495-17
https://www.ncbi.nlm.nih.gov/pubmed/29229735
https://doi.org/10.3390/ijms21041277
https://doi.org/10.1186/s12934-016-0551-2
https://doi.org/10.3389/fmicb.2016.01752
https://doi.org/10.1128/JB.01455-13
https://doi.org/10.1128/mbio.02760-22
https://doi.org/10.1186/1475-2859-11-100
https://doi.org/10.1111/1574-6968.12538
https://www.ncbi.nlm.nih.gov/pubmed/25048166
https://doi.org/10.1186/s12934-020-01446-6
https://doi.org/10.1016/j.vaccine.2012.03.016
https://doi.org/10.1128/IAI.00786-13
https://www.ncbi.nlm.nih.gov/pubmed/23959722
https://doi.org/10.1128/CVI.05230-11
https://doi.org/10.1128/IAI.68.2.760-766.2000
https://www.ncbi.nlm.nih.gov/pubmed/10639444
https://doi.org/10.1111/j.1574-695X.2008.00415.x
https://doi.org/10.1128/iai.61.11.4654-4661.1993
https://doi.org/10.1016/S0378-1135(03)00077-4
https://doi.org/10.1016/S0378-1135(00)00350-3
https://doi.org/10.1016/j.vaccine.2004.05.001
https://www.ncbi.nlm.nih.gov/pubmed/15474704
https://doi.org/10.1016/j.vaccine.2006.09.013
https://www.ncbi.nlm.nih.gov/pubmed/17028079


Int. J. Mol. Sci. 2023, 24, 10880 19 of 19
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