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Abstract: Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a
significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells
(MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs),
have shown promise in tissue regeneration and immunomodulation. However, it remains unclear
which components of the secretome contribute to their therapeutic effects. This study aimed to
compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes.
CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation
significantly altered gene expression in tenocytes, with CM showing the most distinct separation
from the inflamed control group. Treatment with CM resulted in the most significant differential
gene expression, with both upregulated and downregulated genes related to inflammation and tissue
regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These
findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone,
emphasizing the importance of the complete secretome in tendon injury treatment.

Keywords: equine mesenchymal stem cells (MSC); MSC secretome; MSC extracellular vesicles (EVs);
MSC protein fraction; cell-free therapy; tenocytes regeneration

1. Introduction

Tendinopathy, a disabling overuse injury, is prevalent among athletes and sedentary
subjects, afflicting 25% of the adult population and accounting for 30–50% of all sports
injuries [1,2]. No current treatment restores the functional properties of injured tendons,
resulting in a significant impact on quality of life and high socioeconomic pressure, with
the annual health expenditure on human tendon injuries exceeding €145 billion.

The repair response of tendons following injury is inefficient, resulting in a fibrovascu-
lar scar that never attains the gross, histological, or mechanical characteristics of normal
tendon and thus predisposes to recurring injury and tendinopathy [1–8]. Tendon injury
induces a local inflammatory response, characterized by an influx of inflammatory cells
that release chemotactic and proinflammatory cytokines and growth factors, promote the
recruitment and proliferation of macrophages and resident tendon fibroblasts, and initiate
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the healing process [3–12]. The inflammatory milieu can modify tenocyte physiology by
increasing metabolic activity and inducing an activated, proinflammatory phenotype with
inflammation memory and the capacity for endogenous production of inflammatory cy-
tokines such as TNF-α and IL-1β [12]. There is growing evidence that inflammation (the
first phase of the injury response), specifically its lack of resolution, has a crucial role in
disease progression, especially when shifting to a chronic state [3–12].

Tendon treatment with mesenchymal stem/stromal cells (MSCs) has been employed
in equine orthopaedics since 2003 and has yielded promising results, reducing reinjury
rates in the equine superficial digital flexor tendon, the functional equivalent to the human
Achilles tendon, from 56% to 18% [13–20]. Yet, translational progress into human clinical
practice so far has been disappointing, partially due to the regulatory and manufacturing
challenges inherent to all cell therapies and safety concerns such as potential tumori-
genicity [21]. In addition, inflammatory conditions can compromise MSC’s differentiation
capacity and therapeutic potential, as MSCs react context-sensitively to their respective
pathophysiological microenvironments [22]. However, MSCs show poor engraftment and
cell survival following transplantation and exert their therapeutic effect predominantly by
secreting bioactive factors (collectively termed “secretome”), including soluble factors and
extracellular vesicles (EVs) with their cargo of proteins, lipids, metabolites, and nucleic
acids [23–25]. The secretome mirrors the ability of the parental cells to condition and pro-
gram the surrounding microenvironment, influencing a variety of endogenous responses,
in particular in injured tissues. Indeed, both the whole secretome (or conditioned medium,
CM) and its EV fraction have shown equivalent therapeutic effects on their producer cells
in a wide variety of diseases, including spinal cord injury, cardiomyopathy, osteoarthritis,
and tendinitis, thus paving the way for the development of cell-free therapies [23,24,26–33].

MSC-CM and EVs have shown immunomodulatory effects by modulating macrophage
polarization toward a pro-resolving M2 phenotype, reducing the expression of pro-inflammatory
cytokines such as TNFα, interleukin (IL)-1β and IL-6 and increasing the secretion of anti-
inflammatory factors including IL-10 and IL-4 [34–36]. In addition, MSC-CM and EVs
contribute directly to tissue regeneration by enhancing tissue-specific extracellular matrix
(ECM) component production and downregulating catabolic matrix metalloproteinases
(MMPs) [35,36].

The regenerative potential of MSC-CM and EVs in tendon and ligament repair was
shown in vitro and in vivo in various species. including mice, rats, rabbits, sheep, horses,
and humans [34,37–48]. MSC-derived CM (MSC-CM) promoted rat tenocyte proliferation
via activation of extracellular signal-regulated kinase1/2 (ERK1/2) signal molecules com-
pared with the untreated control group [49]. Similarly, MSC-CM promoted tendon-bone
healing of the rat rotator cuff by inhibiting M1 and supporting M2 macrophage polariza-
tion [34]. Furthermore, in horses, MSC-CM demonstrated an immunomodulatory effect
by inhibiting the proliferation of peripheral blood mononuclear cells (PBMCs) in vivo and
induced neovascularization, which was not observed before treatment and declined during
the progression of the healing process, characterized by a decrease in vessel size and quan-
tity [50]. MSC-EVs demonstrated their immunomodulatory capacity in a variety of tendon
injury models in vivo by reducing macrophage NF-κB activity and the IL-1β and IFN-γ
response, decreasing M1 and supporting M2 macrophage polarization, and increasing
the production of anti-inflammatory cytokines such as IL-4 and IL-10 [37,43,45,47]. In
addition, MSC-EVs administered into tendon and enthesis defects resulted in enhanced
proliferation of tendon stem/progenitor cells (TSPCs), better restoration of the tendon and
enthesis architecture, an improved histological score, greater expression of genes related to
collagen and tendon matrix formation, including collagen (Col) type I, mohawk (MKX),
scleraxis (SCX)tenomodulin (TNMD) and tissue inhibitor of metalloproteinase-3 (TIMP-3),
and decreased matrix metalloproteinases (MMP)-3 expression [37,38,40,44,46].

While the therapeutic potential of MSC-CM and its EV fraction for regenerative
medicine in general and the treatment of tendon injuries in particular is well established,
it is still unclear whether components of the CM act synergistically or redundantly and



Int. J. Mol. Sci. 2023, 24, 10857 3 of 23

whether the entire CM, isolated EVs, or only selected soluble factors are required to achieve
a therapeutic effect [51,52]. Attempts to use single paracrine factors, such as beta fibroblast
growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth
factor (VEGF), to treat cardiovascular diseases so far have shown unsatisfactory outcomes,
demonstrating that these factors alone are not sufficient to induce regeneration [52]. A study
comparing the therapeutic efficacy of complete MSC-CM and MSC-EVs alone on skeletal
muscle regeneration in vitro and in vivo demonstrated that the two fractions promote
different aspects of regeneration after muscle injury and act synergistically to promote
muscle regeneration [53]. In detail, CM but not the EV fraction inhibited cellular senescence,
but only EVs impacted nuclear translocation of NF-κB and decreased lysosomal activity in
glioma cells. Similar results were obtained in a wound closure model, suggesting that the
complete CM has superior regenerative capacity than its purified subfractions [54].

Therefore, this study compares the therapeutic effect of CM, its EV fraction, and its
soluble protein fraction (PF, CM without EVs) on inflamed tenocytes to test the hypothesis
that the conditioned medium has greater therapeutic efficacy than its EV fraction alone. The
study is carried out in equine cells, as horses suffer from naturally occurring tendinopathy
analogous to humans and are well-established animal models, also recommended by the U.S.
Food and Drug Administration (FDA) and the European Medicines Agency (EMA) [55–57].

2. Results
2.1. Equine Bone Marrow-Derived MSCs and EVs Show Characteristic Markers

The cells isolated from the bone marrow of the three donor horses were plastic adherent
and expressed typical MSC markers such as CD90 (73.1% ± 5.3 positive cells), CD44
(77.2% ± 3.1 positive cells), and CD29 (72% ± 3.7 positive cells) (Figure 1a) [58]. They
exhibited the ability to differentiate into adipocytes (Figure 1b), chondrocytes (Figure 1c),
and osteoblasts (Figure 1d), demonstrating their trilineage differentiation potential [58]. We
characterized the EVs according to the MISEV2018 guidelines using nanotracking analysis,
fluorescence-triggered flow cytometry (lipid membrane dye cell mask green (CMG) and
CD81), Western Blot (positive for the two tetraspanins, CD9 and CD63), and transelectron
microscopy as we previously described [58].
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Figure 1. Shows representative images of the characterization of equine bone-marrow-derived cells
with trilineage differentiation capacity and canonical surface marker expression of MSCs. (a) Cells were
stained with specific cell surface antigens (dark grey plots) or Ig isotype controls (light grey plots) and
analyzed by flow cytometry. Cells stained positive for CD90, CD44, and CD29 and negative for CD31
and Pan B, as well as IgG isotype controls. Displayed on the x-axis is either PE or FITC conjugated to one
of the previously mentioned antibodies. (b–d) Images show bone-marrow-derived cells differentiating
into the adipogenic (b), chondrogenic (c), and osteogenic (d) lineages, stained with Oil red O, Alcian
blue, and von Kossa stain, respectively. The corresponding controls (cells grown in an expansion
medium) are shown in the insert in the top left corner of each micrograph. Scale bars: 400 µm.
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2.2. CM Fraction Has the Highest Protein- and Particle Concentration

After CM production for 48 h, the measured protein concentration was highest in the
CM fraction, with a mean of 130 ± 6.2 µg/mL (Table 1). The protein concentration in the
CM fraction was 4.3 times higher than in the EV fraction (30.4 ± 0.5 µg/mL) (p = 0.0019)
and 1.8 times higher than in the PF fraction (73.2 ± 0.9 µg/mL) (p = 0.0066). The PF fraction
contained 2.4 times more protein than the EV fraction (p = 0.0005) (Figure 2a and Table 1).

Table 1. Measured protein- and particle-concentration per fraction: The CM fraction contained the
highest protein content (µg/mL) followed by the PF. The lowest protein concentration was found
in the EV fraction. The highest overall particle concentration (particles/mL) was found in the CM
which is also true for the particle numbers >195 nm. However, more particles were enriched in the
EV fraction ≤195 nm. No measurable particles were present in the PF.

CM EV PF

Protein (µg/mL) 130 ± 6.18 30.4 ± 0.5 73.2 ± 0.9

Particle number (total NTA) (particles/mL) 1.53 × 1011 ± 2.01 × 1010 1.03 × 1011 ± 2.04 × 1010 Not detected

Particle number ≤ 195 nm (NTA)
(particles/mL) 5.36 × 1010 ± 7.67 × 109 5.61 × 1010 ± 1.06 × 1010 Not detected

Particle number > 195 nm (NTA)
(particles/mL) 1.09 × 1011 ± 2.51 × 1010 4.67 × 1010 ± 9.81 × 109 Not detected
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Figure 2. MSCs from 3 equine donors were cultured and the cell-free supernatant was collected and
centrifuged to obtain CM, EVs and PF. (a) shows that the protein concentration was significantly
higher in the CM fraction than in the EV and PF fractions (** = p = 0.0019 and *** = p = 0.0066,
respectively). Moreover, the protein concentration was higher in the PF fraction than in the EV
fraction (*** = p = 0.0005). (b) shows that the particle concentration was significantly higher in the CM
fraction than in the EV fraction (* = p = 0.0179). (c,d) illustrate the size distribution of the EVs and CM,
respectively. The EV fraction contained more particles ≤195 nm, resulting in a more homogeneous
size distribution compared with the CM fraction.
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Particle concentration was also higher in the CM fraction compared with the EV
fraction, with 1.53 × 1011 ± 2.01 × 1010 particles/mL in the CM fraction and 1.03 × 1011

± 2.04 × 1010 particles/mL in the EV fraction (Figure 2b). No particles were detected
in the PF fraction. The size distribution of the particles was more homogeneous in
the EV fraction, with 5.61 × 1010 ± 1.06 × 1010 particles/mL particles ≤ 195 nm and
4.67 × 1010 ± 9.81 × 109 particles/mL particles > 195 nm. In the CM fraction, 5.36 × 1010

± 7.67 × 109 particles/mL were ≤195 nm while 1.09 × 1011 ± 2.51 × 1010 particles/mL
were >195 nm (Figure 2c,d and Table 1).

There was no significant variation in protein content, particle concentration, or size
distribution among the donors.

2.3. Inflammation Induces a Significant Change in Tenocytes’ Gene Expression

The induction of inflammation was induced by serum starvation plus chemical stimu-
lation with 10 ng/mL TNFα and 10 ng/mL ILb1 for 24 h. This resulted in the differential
expression of 1496 genes, representing 12.5% of all identified genes (11,925 genes) as com-
pared with the healthy control (Tables 2 and 3, Figure 3). 346 (23%) were upregulated in the
inflamed control compared with the healthy control, and 1150 (78%) were downregulated.
The upregulated genes were found to be strongly associated with inflammation, including
Colony Stimulating Factor 3 (CSF3), C-C Motif Chemokine Ligand 11 (CCL11), CCL2,
CCL20, CCL5, C-X-C Motif Chemokine Ligand 1 (CXCL1), CXCL6, CXCL8, Interleukin
36 Gamma (IL36G), IL6, NF-kappa-B inhibitor alpha (NFKBIA), and Prostaglandin D2
Synthase (PTGDS). Pathway analysis yielded 112 pathways that were downregulated upon
inflammation and 98 that were upregulated (Table 3).

All inflamed groups, treated and untreated alike, clustered distantly from the healthy
control group in principal component analysis (Figure 3).

Table 2. Top 10 down-regulated genes of the three treatment groups (conditioned medium (CM),
extracellular vesivles (EV) and soluble protein fraction (PF)) and the healthy control (CRTL) com-
pared with the inflamed CTRL: Only genes with an adjusted p-value of p < 0.1 and FC > 1.5 are
considered significant.

Top 10 Downregulated Genes in the Treatment/Healthy CTRL vs. Inflamed CTRL (Sorted by Ascending Adjusted p-Value)

CM EV PF Healthy CTRL

Gene FC Adj.
p-Value Gene FC Adj.

p-Value Gene FC Adj.
p-Value Gene FC Adj.

p-Value

ADGRD1 −23.750 9.5536 ×
10−7 FUZ −36.203 3.0566 ×

10−16 NOXA1 −40.887 6.1398 ×
10−20 PSME2 2.11877 2.5995 ×

10−40

SAA −31.261 5.7985 ×
10−6 NTN1 −30.152 0.00027148 TRIM6 −34.742 3.7594 ×

10−17 KYAT3 1.86235 2.2722 ×
10−35

HIVEP3 −15.446 1.0763 ×
10−5 GPM6B −29.649 0.00027148 H1-9 −30.859 4.3641 ×

10−8 RAB20 3.90099 2.2722 ×
10−35

COL14A1 −28.138 9.163 ×
10−5

podocalyxin
like −28.229 0.01057581 TCP11 −33.531 1.2429 ×

10−5 DBNL 2.24989 9.5604 ×
10−34

ZIC2 −12.980 0.00011 LRRC23 −27.298 0.01865918 MRPL54 −31.808 2.4525 ×
10−5 SNAP29 1.72103 5.1924 ×

10−32

VSIR −17.357 0.00038 C6orf47 −21.264 0.03612666 ZNF382 −17.616 5.3998 ×
10−5 CCL2 4.07345 3.5555 ×

10−30

FBXO32 −16.372 0.00056 CMYA5 −18.940 1.5926 ×
10−7 FAM216B −16.926 0.00018 CCL11 3.49896 6.2286 ×

10−30

PLA2G2A −26.155 0.00062 ZKSCAN8 −17.918 0.00027148 NTN1 −29.748 0.00031 PI3 3.77388 2.2449 ×
10−29

SCARA5 −43.596 0.00067 CSPG4 −17.519 1.3391 ×
10−5 CCDC40 −26.832 0.00257 CCL5 5.21572 4.8974 ×

10−29

SPNS3 −31.756 0.00205 GSK-3 −17.2511 0.00031 IL17RA −17.499 0.00443 SIDT2 3.70467 3.1246 ×
10−27
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Table 3. Top 10 up-regulated genes of the three treatment groups (conditioned medium (CM),
extracellular vesivles (EV) and soluble protein fraction (PF)) and the healthy control (CRTL) com-
pared with the Inflamed CTRL: Only genes with an adjusted p-value of p < 0.1 and FC > 1.5 are
considered significant.

Top 10 Upregulated Genes in the Treatment/Healthy CTRL vs. Inflamed CTRL (Sorted by Ascending Adjusted p-Value)

CM EV PF Healthy CTRL

Gene FC Adj.
p-Value Gene FC Adj.

p-Value Gene FC Adj.
p-Value Gene FC Adj.

p-Value

PIRT 186.866 9.78 ×
10−10 ZNF582 443.953 7.7528

× 10−46 ZNF582 432.963 9.88 ×
10−43 ZNF582 −45.537 8.3178 ×

10−50

ELMO1 181.622 3.61 ×
10−10 PIRT 197.946 6.2092

× 10−12 PIRT 186.640 3.19 ×
10−10

ENSECAG0
0000016730 −28.492 5.4407 ×

10−42

ZNF501 239.838 3.61 ×
10−7 ELMO1 173.926 1.6926

× 10−6 CCND1 198.841 3.53 ×
10−7 CCDC88A −27.159 1.195 ×

10−32

ENSECAG00
000023978 184.840 1.75 ×

10−6 ZNF501 226.906 1.9717
× 10−6

metallothionein-
1A 451.660 3.53 ×

10−7 CELF2 −28.702 6.2556 ×
10−29

TPGS2 173.051 4.13 ×
10−6

ENSECAG0
0000023978 174.590 1.4739

× 10−5 TPGS2 178.046 8.18 ×
10−7 FSTL1 −32.601 1.8517 ×

10−25

ENSECAG00
000013505 182.588 7.55 ×

10−6 ZNF182 286.245 1.6141
× 10−5 ELMO1 167.381 4.86 ×

10−6 PTMA −26.727 1.2088 ×
10−21

STAC 215.231 3.03 ×
10−5

ENSECAG0
0000013505 160.195 0.00035 ZNF182 292.836 7.23 ×

10−6 CALCA −47.284 2.7129 ×
10−21

CCND1 163.745 0.00012 DCX 205.337 0.00060 ZNF501 214.091 1.24 ×
10−5 C7H11orf58 −29.221 4.2637 ×

10−20

RAD51D 210.350 0.00038 ASB5 161.541 0.00447 MT1B 163.702 0.00018 ANXA5 −41.201 2.5081 ×
10−19

ASB5 176.871 0.00038 GRID1 273.429 0.01865 ACBD7 319.023 0.00020 APC −17.720 1.6149 ×
10−17
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Figure 3. Principal Component Analysis (PCA) plot displaying the differential gene expression data
from patient cells. Three patients (P1, P2, and P3) are represented by different symbols, while the
treatments and controls are distinguished by different colors. The healthy control (light blue) is
separated from the other samples. Cells treated with CM (red dots), inflamed control (purple dots),
EV-treated cells (green dots), and PF-treated cells (light green dots) cluster close to each other.
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2.4. Conditioned Medium Achieves a Higher Effect on Differential Gene Expression of Inflamed
Tenocytes Than EVs or PF Alone

The tenocytes exhibited a significant differential gene expression as a result of in-
flammation (Figure 4a). CM had the strongest treatment effect on inflamed tenocytes,
resulting in statistically significant differential expression of 120 genes, of which 42 genes
(35%) were down-regulated (Table 2) and 78 genes (65%) were up-regulated compared
with the inflamed control with no treatment (Figure 4b and Table 3). Treatment with PF
had the second strongest effect on gene expression, resulting in the statistically significant
differential expression of 57 genes, of which 17 genes (30%) were down-regulated (Table 2)
and 40 genes (70%) were up-regulated compared with the inflamed control (Figure 4d and
Table 3). Treatment with EV resulted in the statistically significant differential expression of
33 genes, of which 16 genes (48.5%) were down-regulated (Table 2) and 17 genes (51.5%)
were up-regulated compared with the inflamed control (Figure 4c and Table 3).
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Figure 4. Volcano plot of differentially expressed (DE) genes in the patient cells: The plot highlights
the top 20 DE genes, which have been appropriately labeled for identification. (a) Control Inflamed
vs. Control Healthy (b) CM vs. Control Inflamed, (c) EV vs. Control Inflamed and (d) PF vs. Control
Inflamed are displayed in absolute numbers. The volcano plots show the log2 fold change on the
x-axis and the log10 adjusted p-value on the y-axis. Significantly upregulated genes are shown in red,
significantly downregulated genes in blue, and non-significant genes in grey. Only genes with an
adjusted p-value of p < 0.1 and FC > 1.5 are considered significant.

CM treatment downregulated 42 genes compared with the untreated inflamed group
(Figures 4b and 5a and Table 2). Of these 24 genes (57%) that were unique to CM treatment,
13 genes (31%) were shared with healthy control, three (7%) with PF, one (2%) with EV, and
one (2%) with PF and healthy control. The genes that were downregulated following treat-
ment with CM included genes linked to inflammation (CCL20, Serum amyloid A (SAA),
SSA1, and Tumor necrosis factor-inducible gene 6 protein (TNFAIP6)) and extracellular
matrix organization (Collagen type XIV alpha 1 chain (COL14A1) and Matrix metallopro-
teinase 13 (MMP13)). In addition, CM treatment upregulated 78 genes compared with the
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untreated inflamed control, of which 18 (23%) were unique to CM treatment, nine (12%)
were shared with PF treatment and healthy control, six (8%) with EV and PF treatment, five
(6%) with PF treatment, two (3%) with EV treatment, and two (3%) with EV, PF, and healthy
control. The genes that were upregulated upon CM treatment included genes associated
with cell cycle and mitosis (various cyclins, kinesin family members, and ATPase family
members), DNA damage response and repair (DNA damage-induced apoptosis suppressor
(DDIA), Fanconi Anemia Complementation Group D2 (FANCD2), High Mobility Group
AT-hook 2 (HMGA2), Platelet-activating factor acetylhydrolase 2 (PAFAH2), V-rel avian
reticuloendotheliosis viral oncogene homolog A (RELA)), and metabolism and transport
(Glutamine-fructose-6-phosphate transaminase 2 (GFPT2), Methionine Aminopeptidase 1
(METAP1), and Synaptic Vesicle Glycoprotein 2C (SV2C)) (Figure 4b and Table 3).
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Figure 5. Venn diagram of DE genes in the patient cells: (a) Venn diagram of genes which are
downregulated upon treatment and in the healthy control compared with inflamed control. (b) Venn
diagram of genes which are upregulated upon treatment and in the healthy control compared with
inflamed control. Only genes with an adjusted p-value of p < 0.1 and FC > 1.5 are considered significant.
In panel (a), the Venn diagram shows the number of downregulated genes in the treated cells and
healthy control compared with the inflamed control. The number of genes unique to each treatment
is displayed in the respective circle, while the overlapping regions represent the number of shared
genes between the treatments. Panel (b) shows the Venn diagram of upregulated genes in the same
comparison. Only genes with an adjusted p-value of p < 0.1 and FC > 1.5 are considered significant.
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EV treatment downregulated 16 genes compared with the untreated inflamed group
(Figures 4c and 5a and Table 2). Of these 11 genes (69%) that were unique to EV treatment,
two (12.5%) genes were shared with PF, one (6.25%) with CM, one (6.25%) with healthy
control, and one (6.25%) with PF and healthy control. Among the genes downregulated
upon EV treatment were the cytokine CSF3 and glycogen synthase kinase 3 alpha. Further-
more, we observed that EV treatment upregulated 17 genes, of which one (6%) gene was
unique to EV treatment, six (35%) were shared with CM and PF, three (18%) genes were
shared with PF, two (12%) with CM, two (12%) with PF treatment and healthy control, two
(12%) with CM, EV fraction, and healthy control, and one (6%) only with healthy control.
The genes that were upregulated upon EV treatment were associated with cytoskeleton
organization (ADP Ribosylation Factor Like GTPase 8B (ARL8B) and Doublecortin (DCX)),
extracellular matrix organization (Inter-alpha-trypsin inhibitor heavy chain 1 (ITIH1)), and
epigenetic modification (Ankyrin Repeat and SOCS Box Containing 5 (ASB5) and Acyl-CoA
binding domain containing 7 (ACBD7)) (Figures 4c and 5b and Table 3).

Treatment with PF led to the downregulation of 17 genes compared with the inflamed
control (Figures 4d and 5a and Table 2). Of these nine (53%) were unique to PF treatment,
three (18%) were shared with CM, two (12%) were shared with EV, one (6%) with EV
fraction and healthy control, one (6%) with CM fraction and healthy control, and one (6%)
was shared with healthy control. Among the genes downregulated upon PF treatment
were genes associated with inflammation (CSF3, IL17RA, and SAA), protein degradation
(Tripartite Motif-Containing 6 (TRIM6)), and oxidative stress (NADPH oxidase activator 1
(NOXA1)). Treatment with PF upregulated 40 genes compared with the inflamed control,
of which eight (20%) were unique to PF treatment, five (4%) were shared with healthy
control, three (7.5%) were shared with EV, two (5%), two (5%) were shared with CM frac-
tion and healthy control, six (15%) were shared with CM, five (12.5%) were shared with
CM, and nine (22.5%) were shared with CM fraction and healthy control. The genes that
were upregulated upon PF treatment were associated with DNA damage response and
repair (BRCA1-Interacting Protein 1 (BRIP1), Fanconi Anemia Complementation Group D2
(FANCD2) and RAD51 Paralog D (RAD51D)), cell cycle regulation (BUB1 Mitotic Check-
point Serine/Threonine Kinase B (BUB1B), Cyclin D1 (CCND1), Non-SMC Condensin II
Complex Subunit G2 (NCAPG2) and Protein Phosphatase 4 Regulatory Subunit 4 (PPP4R4)),
cytoskeleton organization (DCX, Dpy-19 Like 2 (DPY19L2), Engulfment and Cell Motility 1
(ELMO1) and Unc-119 Lipid Binding Chaperone (UNC119)), membrane trafficking and
fusion (Syntrophin Beta 1 (SNTB1) and Synaptic Vesicle Glycoprotein 2C (SV2C)), and
transcriptional regulation (Glutamate Receptor Ionotropic Delta 1 (GRID1), High Mobility
Group AT-hook 1 (HMGA1) and Zinc Finger Protein 582 (ZNF582)) compared with the
inflamed control (Figures 4d and 5b and Table 3).

2.5. Pathways

CM treatment resulted in the downregulation of 21 pathways (Figure 6a and Table 4).
Of these, 8 pathways (38%) were unique to the CM treatment, while 12 (57%) were shared
with the healthy control group and 1 (5%) with both the EV treatment and the healthy con-
trol group. Furthermore, 28 pathways were found to be upregulated only by CM treatment,
with 17 (61%) of these pathways being unique to CM treatment and the remaining 11 (39%)
being shared with the healthy control group (Figure 6b and Table 5).

In contrast, EV treatment upregulated no pathway and downregulated 3, of which
2 pathways (67%) were shared between EV treatment and the healthy control group and 1
(33%) with both the CM treatment and the healthy control group (Figure 6a and Table 4).

PF treatment did not significantly regulate any known pathway.
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Table 4. Down-regulated KEGG pathways in the treatment groups conditioned medium (CM) and
extracellular vesicles (EV) compared with the inflamed CTRL. Protein fraction (PF) treatment did
not significantly regulate any known pathway. Only pathways with adjusted p-value < 0.1 are
considered significant.

Downregulated Pathways

CM EV

Pathway FC Adj. p-Value Pathway FC Adj. p-Value

Secretion of hydrochloric acid in
parietal cells −1.1589254 0.09355804 Glycerolipids_and_

glycerophospholipids −0.6118861 0.06337278

Nephrogenesis −1.0681281 0.01124854 Myd88 distinct
input/output pathway −0.5034747 0.06337278

Fatty acid omegaoxidation −1.0049143 0.07476631
Autosomal recessive

osteopetrosis
pathways

−0.5445 0.06826365

Complement activation −0.7625858 0.07859295

Interleukin1 induced activation of
nfkb −0.674886 0.03094377

Tryptophan metabolism −0.6162714 0.04539786

Mammalian disorder of sexual
development −0.6081617 0.03202702

Biomarkers for urea cycle
disorders −0.5883797 0.05081052

Cysteine and methionine
catabolism −0.5820551 0.04634927

Oxidative stress response −0.5797825 0.09005984

Eicosanoid synthesis −0.5773651 0.03997058

Overview of nanoparticle effects −0.5647847 0.03762172

Beta alanine metabolism −0.5222863 0.09005984

Matrix metalloproteinases −0.4351830 0.07476631

S1P receptor signal transduction −0.4120393 0.05402778

Autosomal recessive
osteopetrosis pathways −0.4056264 0.07915106

Valine leucine and isoleucine
degradation −0.3839604 0.08790938

Sarscov2 innate immunity
evasion and cellspecific immune

response
−0.3664584 0.04539786

Selenium micronutrient network −0.3640307 0.05698454

Onecarbon metabolism and
related pathways 0.31911033 0.08974443

Leukocyte transendothelial
migration −0.2761994 0.07915106
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Table 5. Up-regulated KEGG pathways in the treatment group conditioned medium (CM) compared
with the inflamed CTRL. Treatment with extracellular vesicles (EV) and protein fraction (PF) did
not significantly regulate any known pathway. Only pathways with adjusted p-value < 0.1 are
considered significant.

Upregulated Pathways

CM

Pathway FC Adj. p-Value

Nucleotide excision repair in xeroderma pigmentosum 0.3494815 0.07130188

Pyrimidine metabolism 0.37184491 0.08655644

Dna repair pathways full network 0.40690974 0.04539786

Oocyte meiosis 0.40797081 0.03997058

Nucleotide excision repair (WP) 0.42922411 0.03776133

Nucleotide excision repair (KEGG) 0.42922411 0.03776133

Progeriaassociated lipodystrophy 0.4650666 0.04539786
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Table 5. Cont.

Upregulated Pathways

CM

Pathway FC Adj. p-Value

Pyrimidine metabolism 0.47735464 0.03202702

Cell cycle (WP) 0.49283852 0.05915343

Cell cycle (KEGG) 0.4933381 0.05577275

Gastric cancer network 1 0.49568256 0.09520106

DNA irdamage and cellular response via ATR 0.50092208 0.04101562

Base excision repair 0.55896011 0.09005984

Cohesin complex cornelia de lange syndrome 0.58300193 0.01124854

Mammary gland development pathway puberty stage
2 of 4 0.58799809 0.04539786

Base excision repair 0.59293411 0.09955858

Gastric cancer network 2 0.67347864 0.04101562

ATR signaling 0.68398751 0.07272085

Homologous recombination 0.70623154 0.04539786

Retinoblastoma gene in cancer 0.71687919 0.03776133

Nucleotide metabolism 0.76157908 0.04101562

Serine metabolism 0.76326554 0.01124854

Mismatch repair 0.81963998 0.03202702

Regulation of sister chromatid separation at the
metaphaseanaphase transition 0.86498193 0.03856315

DNA replication 0.904723 0.03094377

DNA mismatch repair 0.92494463 0.03202702

Acquired partial lipodystrophy barraquersimons
syndrome 0.93639734 0.03202702

DNA replication 0.96512563 0.03202702

3. Discussion

Complete CM had the strongest treatment effect on inflamed tenocytes in our study.
While all three treatments yielded significant differences compared with the untreated
inflamed control, the EV fraction and the PF were not able to influence the gene expression
level to the same extent as the CM fraction.

In line with our findings, the synergistic effects of the secretome’s EV and soluble
protein components and the corresponding therapeutic superiority of complete CM com-
pared with its subfractions, were shown in a variety of other cells and assays [53,54,59–61].
A comparison of the effects of CM and EV on adipose-derived MSCs (aMSCs) on mus-
cle regeneration revealed that both CM and EV protect against cellular senescence but
demonstrate higher proliferation and differentiation with CM, while only EVs reduced
inflammation [53]. In an in vitro OA model comparing the therapeutic efficacy of human
ASCs derived CM and EVs, both CM and EV reduced hypertrophic collagen 10, but only
CM significantly decreased MMP activity and prostaglandin 2 (PGE2) expression [61].
Similarly, a study evaluating the effects of whole CM and its EV and PF fractions on
inflamed nucleus pulposus and annulus fibrosus cells in vitro demonstrated a superior
immunomodulatory and MMP inhibitory effect of whole CM compared with its subfrac-
tions [60]. A comparison of the effects of the peripheral blood mononuclear cell-derived
secretome and its subfractions also found that the complete secretome induced better neo-
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angiogenesis than its apportioned constituents, namely the EV, lipid, and protein fractions
individually [54].

In contrast, divergent findings were made by investigating the CM of human adipose-
derived MSCs, where EVs alone, similar to the whole CM, were capable of promoting cell
proliferation and migration in skeletal muscle cells. Furthermore, small extracellular EVs
outperformed conditioned media of adipose tissue in migration and regeneration potential,
although this study standardized EVs and CM on equivalent protein concentrations and
did not consider unpacked proteins [61]. Another explanation for EVs outperforming CM
on migration in this particular study is that the ability to recruit host cells for migration
occurs more efficiently through EVs than through other paracrine factors that are present
in the CM [62,63].

On the other hand, in a comparison of the therapeutic efficacy of amniotic MSCs de-
rived whole CM, its PF, and EV fractions on immune cell proliferation and differentiation,
whole CM and its PF fraction decreased peripheral blood mononuclear cell proliferation, re-
duced inflammatory polarization of T-cells, enhanced regulatory T-cell and M2 macrophage
polarization, and reduced activation of B-cells, while EVs showed no immunomodulatory
effect [59].

The divergent results of the various studies comparing of the therapeutic effects of
complete CM and its EV fraction may be explained by the differences in the CM/EV donor
cells, the media and substrates used for cell culture, cell confluence, preconditioning, the
isolation and concentration procedures, the dosage and the treated cells [58,64–68].

Properties of CM/EV isolates are highly dependent on the donor cell type since
different cell sources secrete various type of signals beneficial for alternating types of
downstream applications [69,70]. In addition, isolation methods, especially for EVs, have an
impact on the type and the properties of the enriched EVs [71,72]. Cell culture parameters
such as seeding density or passaging frequency can further influence the regenerative
potential [73,74].

In addition to the stem cell source, differences in secretome composition are significant
when comparing fetal or adult donors [75,76]. Furthermore, pre-conditioning of the donor
cells either with various compounds or by modification of the culture conditions leads
to altered secretome profiles [77–80]. Another big obstacle when comparing CM and its
subfraction is the standardization strategy for studies, the optimal dosage of the treatment,
and the number of doses. CM is typically standardized based on the protein concentration,
whereas the most common way to determine the therapeutic dose of an EV treatment is
by quantifying the number of particles using NTA in an isolate. By using this method, the
study focuses on all EVs, regardless of cargo. Future experiments are needed to assess the
dose-dependent effects of all three fractions individually, with the aim of identifying the
minimum effective dosage and confirming the superior therapeutic efficacy of complete
CM compared with its fractions. An alternative approach is to focus on one type of cargo
by quantifying a specific component such as nucleic acids, proteins, or lipids in the EVs
or using Raman spectroscopy to ascertain the reproducibility of the CM/EV product
composition for quality control [81].

Factors that are potentially beneficial for regeneration are distributed both within EVs
and in the soluble fraction of the CM [82–84]. Furthermore, the presence of ribosomal
proteins and the corresponding factors for translation in EVs would have a direct impact
on the recipient cells by expressing proteins de novo [85]. Recently, proteomic analysis
demonstrated diverging protein composition between the CM and the EVs, indicating
that the vesicle-bound and soluble proteins differ, which confirms the necessity to analyze
different parts of the secretome independently to get better insights into the course of events
that take place upon administration of the CM and its subfractions before possible clinical
use and also to have a clear understanding of protein expressions in healthy organisms
and how they are altered by certain diseases with cell-free therapies in numerous clinical
applications [43–45]. A better understanding of these processes would provide more
information for potential tailored therapeutic options for the secretome.
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This study, together with others, provides promising results in vitro. However, prior
to translation into the clinic, several questions still have to be addressed, such as the
route of administration of the agent, which is characterized by the absorption profile,
the distribution throughout the body, the metabolism rate, and the elimination of the
clearance [86]. In particular, clearance of EVs is a big problem since it has been shown that
EVs, regardless of the route of administration, are quickly cleared from blood circulation
and discharged from the body [87,88]. All these properties likely affect the therapeutic
potential of the treatment. Upcoming studies are urgently needed that aim to resolve the
issues mentioned above and pave the way for reproducible and optimized studies with
cell-free treatment approaches.

This study is not without shortcomings. While we did standardize the EV or protein
concentration within each treatment, it was not possible to standardize the EV or protein
concentration between treatments as enriching one would affect the composition of the
other and would ultimately cause loss of material. This issue is demonstrated by the fact
that the protein concentration from the EV fraction and the PF combined does not equal
the protein concentration of the CM (Figure 3a). In addition to that, the EV concentration in
the EV fraction is lower than in the CM (Figure 3b). These observations can be explained
by the filtering properties of the size exclusion chromatography (SEC) columns, which may
lead to the loss of some EVs and proteins during the filtering process [89].

In conclusion, the differential gene expression data revealed that none of the three
treatments was able to restore the healthy status of the patient cells following inflammation
(Figure 3). However, treatment with the complete CM resulted in the highest number
of differentially expressed genes relative to the inflamed control, suggesting a superior
therapeutic effect compared with EV or PF treatment alone and a possible synergistic effect
of the different secretome fractions.

4. Materials and Methods
4.1. Bone Marrow Collection and MSC Isolation

Bone marrow was harvested from three horses (donor 1: 11-year-old Tinker mare;
donor 2: 6-year-old Pura Raza Espanola gelding; donor 3: 23-year-old Austrian Warmblood
mare) euthanized for reasons unrelated to this study and without chronic diseases. Based
on the “Good Scientific Practice, Ethics in Science and Research regulation” implemented
at the University of Veterinary Medicine Vienna, the Institutional Ethics Committee of the
University of Veterinary Medicine Vienna, and the Austrian Federal Ministry of Educations,
Science, and Research, in vitro cell culture studies do not require approval if the cells were
isolated from tissue that was obtained either solely for diagnostic or therapeutic purposes
or in the course of other institutionally and nationally approved experiments.

Immediately post-mortem, bone marrow was harvested from the sternum under
sterile conditions, as we previously described [58,90].

The aspirated bone marrow was mixed with 1× PBS with Mg/Ca (Life Technologies,
UK, shipped from NL, PBS+/+, Gibco, 1404009) (1:1) and filtered through a 100 µM cell
strainer (Greiner Bio-One GmbH, Germany, shipped from Germany, 542000). The mononu-
clear cell fraction was isolated by density gradient centrifugation using Ficoll Paque Pre-
mium (Cytiva, Sweden, shipped from France, 11743219) as previously published [58,90–92].
In brief, the collected bone marrow—PBS +/+ mix was layered onto the Ficoll and cen-
trifuged at room temperature for 30 min at 300× g (Hettich, Germany, shipped from
Germany, Rotanta 460R) without brake. The buffy coat was collected and washed once
with PBS +/+ by centrifuging with 300× g for 5 min. The obtained mononuclear cells
were seeded in DMEM (Gibco, 31885023) supplemented with 10% FCS (Sigma Aldrich US,
shipped from Germany, F7524), 1% Pen/Strep (Sigma, P433-100 mL), and 1% Amphotericin
B (Biochrom Germany, shipped from Germany, A 2612-50 mL) and cultured in an incubator
with 20% O2 and 5% CO2. The medium was changed every 2-3 days. Isolated MSCs were
characterized according to the criteria defined by the International Society for Cellular
Therapies: plastic adherence, expression of surface markers CD90, CD44, and CD29, lack of
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expression of CD31, Pan B and IgG, and adipogenic, chondrogenic, and osteogenic trilin-
eage differentiation potential. After reaching 80–90% confluency, MSCs were harvested
and frozen until further use.

4.2. Isolation of the Conditioned Medium (Fractions), Characterization, and Quantification

MSCs were thawed and expanded in chemically defined complete medium (DMEM)
supplemented with 10% FCS (Capricon Scientific, Germany, shipped from Germany, FBS-
12A), 1% Pen/Strep, and 1% amphotericin B until 80–90% confluency, passaged with
trypsin (Gibco, 25300096), and seeded at a defined density of 4 × 106 cells per T175 flask
(Sarstedt, Nümbrecht, Germany, 833912002). All cells used were at passage 2, cell mor-
phology was assessed daily, and viability was measured using Trypan blue dye exclusion
in conjunction with an automated cell counter (ThermoFisher Countess 3). To ensure
that regenerative effects originate exclusively from the MSCs secretome and not from
culture supplements and to avoid the confounding factor of the inherent batch-to-batch
variability of serum [93–95]. MSCs were washed twice with 10 mL filtered (0.22 µm filter
(Sarstedt, Nümbrecht, Germany, shipped from Germany, 831822)) PBS +/+ after 24 h and
then cultured under serum-free conditions without antibiotics (DMEM with 1 g/L Glu-
cose, L-Glutamine, 110 mg/L Sodium Pyruvate w/o Pen/Strep, FCS, and Amphotericin
B)). After 48 h, a total volume of 60 mL of the conditioned medium (CM) was collected,
transferred into 50 mL Falcon tubes (Sarstedt, 64547254), and pre-centrifuged at 3000× g
for 20 min at 4 ◦C to remove undesired cell debris. After the centrifugation, the CM was
used without further concentration steps at its original concentration. The CM was divided
into thirds; one third was used as full CM, and the other two-thirds were immediately
loaded onto qEV10/35 nm (IZON, qEV10 35 nm) columns, which have an optimal recovery
range of 35 nm to 350 nm according to the manufacturer’s protocol. The eluted EVs from
fractions 2 and 3 were pooled and served as the extracellular vesicle (EV) fraction. Fractions
number 10 and 11 contain a high rate of proteins and were used as the protein fraction (PF).
Fractions 1, 4–9, 12, and higher were discarded. CM, EVs, and PF were stored at 4 ◦C and
used within 3 h.

Nanotracking Analysis (NTA) was performed to measure the size distribution and
quantity of the isolated particles in scatter mode with a 488 nm laser. The minimum bright-
ness was set to 30, the minimum area to 10, the maximum area to 1000, the maximum
brightness to 255, the shutter to 400 and the temperature to 25 ◦C. Isolates were measured
in technical triplicates. Fluorescence-triggered flow cytometry (FT-FC)) was used to charac-
terize the EVs and evaluate their size distribution as described previously [58,96]. Western
blot against CD9 and CD63 and transelectron microscopy were carried out as we previously
described [58].

Protein concentration was measured with the Qubit Protein Assay Kit (ThermoFisher,
Q33211) using the Qubit 4 Fluorometer (Thermo Fisher Scientific, Singapore, shipped from
Germany) according to the manufacturer’s protocol. In brief, a working solution was
prepared by diluting the Qbit reagent 1:200 in Qubit buffer (190 µL) for each sample (10 µL).
The samples and the protein standards were mixed with the working solution 1:20 and
incubated for 15 min light protected at room temperature. Finally, the samples were read in
the device.

For all three treatments, the concentration of protein and EVs was standardized to
the lowest measurements for each fraction. The EV fractions were standardized to contain
1 × 109 EVs/mL and an optimal size range between 35 nm and 350 nm based on the used
isolation columns. The PF was standardized to contain 72 µg/mL protein without any
detectable EVs. We chose to normalize the CM fraction based on the lowest measured
protein concentration (118 µg/mL containing 1.365 × 1011 particles/mL ± 1.43 × 1010)
rather than on the EV concentration because the difference between the protein content of
the CM and the PF was larger than the differences in the EV concentration between the CM
and the EV fraction (Figure 2a).
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4.3. Tenocyte Isolation

Tendon samples were obtained from the mid-metacarpal region of the superficial
digital flexor tendon of the same three horses as already described by our group [58,97]. In
brief, the paratenon was removed under sterile conditions, and the tendons were sectioned
into small pieces (<0.5 × 0.5 × 0.5 cm). Isolation of cells was performed by migration from
explants in DMEM supplemented with 10% FCS, 1% Pen/Strep, and 1% Amphotericin B
in an incubator with 20% O2 and 5% CO2 (explants were removed after 7–10 days). Cells
were expanded until 80–90% confluency before passage.

4.4. Inflammation and Treatment Strategy

All in vitro experiments were performed with three biological replicates (three donors)
and three technical replicates 400,000 tenocytes were seeded per well on 12-well plates and
cultured in DMEM supplemented with 10% FCS, 1% Pen/Strep, and 1% Amphotericin B
in an incubator with 20% O2 and 5% CO2 for 48 h. After 48 h, tenocytes were rigorously
washed twice with filtered PBS +/+ and divided into 5 groups: a healthy control group,
an inflamed untreated control group, and three inflamed treated groups with CM, EV, or
PF treatment (time 0). As serum starvation induces an inflammatory response, the healthy
control group was cultured in DMEM with 1 g/L Glucose, L-Glutamine, 110 mg/L Sodium
Pyruvate w/o Pen/Strep, FCS and Amphotericin B with 20% EV-depleted FCS (FCS was
depleted using Amicon Ultra 15, (Merck Millipore Ltd, Irland, shipped from Germany,
UFC910024) 3000 g for 55 min at 4 ◦C) to provide the minimum amount of nutrients
while simultaneously reducing the compromising effect of too high serum levels on the
phenotypic drift in tenocytes, which is hallmarked by the reduction of tendon marker
genes such as Scx, Mkx, and collagen subtypes, and thus ensuring the health of the control
group [98–102]. Tenocytes of the inflamed groups were cultured in serum-and antibiotic-
free medium (DMEM with 1 g/L Glucose, L-Glutamine, 110 mg/L Sodium Pyruvate), and
inflammation was induced by serum starvation plus chemical stimulation with 10 ng/mL
TNFα (ImmunoTools, Germany, shipped from Germany, 11343013) and 10 ng/mL ILb1
(ImmunoTools, Germany, shipped from Germany, 103010501) for 24 h. After 24 h (time
24 h), half (500 µL) of the inflamed serum– and antibiotic-free medium (1 mL) was removed,
and 1 mL of treatment (autologous CM, EVs, or PF) was added. The inflamed controls
received 1 mL of fresh inflamed serum and antibiotic-free media, and the healthy controls
received 1 mL of fresh medium with 20% EV-depleted FCS. After 24 h (time 48 h), the
tenocytes of all treatment and control groups were harvested for mRNA sequencing.

4.5. Flow Cytometry

Cells were trypsinized at passage 2. Subsequently, 1 × 105 cells per sample were
washed with PBS supplemented with 2% FCS. The flow cytometry analysis utilized the
following monoclonal antibodies and their respective isotype controls: PE-CD29 (Clone
TS2/16, Mouse IgG, 1:50, Biolegend, San Diego, CA, USA), FITC-CD31 (Clone CO.3E1D4,
IgG2a, 1:50, Biorad, Hercules, CA, USA), FITC-CD44 (Clone 25.32, IgG, 1:50, Biorad),
Purified CD90 (Clone DH24A, IgM, 1:50, Monoclonal Antibody Center), FITC-PanB cells
(Clone CVS36, IgG1, 1:50, Biorad). A total of 1 × 104 events were measured per sample.

4.6. Trilineage Differentiation

Experimental differentiation procedures were conducted in triplicates (passage 2),
and the cultures were maintained for a duration of three weeks. The cultural media were
refreshed every three days. The control samples were cultured in DMEM supplemented
with 10% FCS, 1% Pen/Strep, and 1% amphotericin B. Adipogenic and osteogenic differ-
entiations were performed by seeding 4000 MSCs per well of a 12-well plate in DMEM
supplemented with 10% FCS, 1% Pen/Strep, and 1% amphotericin B for 48 h. Subsequently,
the cells were washed with PBS and treated with either adipogenesis ((ThermoFisher,
Waltham, MA, USA, A1007001)) or osteogenesis (ThermoFisher, A1007201) differentiation
media. For chondrogenic differentiation, 350,000 MSCs were collected in 15 mL Falcon
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tubes and pelleted, followed by resuspension in chondrogenesis (ThermoFisher, A1007101)
differentiation media.

4.6.1. Oil Red Staining

A solution was prepared by diluting six parts of Oil red O (Sigma, O0625-25G) in four
parts of distilled water. The mixture was allowed to mix overnight at room temperature
and subsequently filtered. The cells were fixed using 60% isopropanol (Riedel de Haen,
Seelze, Germany, 24137) for 5 min, followed by incubation with the prepared Oil red O
solution for 10 min. Finally, the differentiated cells were washed with 60% isopropanol and
distilled water, counterstained with haematoxylin (Merck, Kenilworth, NJ, USA, 108562),
and washed again with distilled water.

4.6.2. Alcian Blue Staining

Paraffin-embedded samples of chondrocyte pellets were sectioned at a thickness of
3 µm using a microtome (CUT2511A, MicroTec, Brixen, Italy). The paraffin blocks were pre-
cooled at −15 ◦C and cut into sections, which were then transferred to cold water using wet
brushes and subsequently transferred to warm water at 40 ◦C with nonadhesive standard
microscope slides. The sections were flattened out and collected on super frost adhesive
microscope glass slides. The slides were labeled and allowed to dry overnight at room
temperature. Following this, the slides were heated at 60 ◦C for 20 min in an incubator,
submerged in xylene twice for 10 min at room temperature, and incubated in 100% iso-
propanol and decreasing concentrations of ethanol (96%, 70%, and 50%) for 5–10 min each.
Subsequently, the slides were washed with distilled water and stained with haematoxylin
for 3 min. Finally, the slides were washed with distilled water, stained with eosin for 30 s,
dehydrated in ethanol, and mounted using Aquatex mounting medium (Merck Millipore,
Burlington, MA, USA). The slides were then dried overnight and analyzed using the FL
Auto Imaging System (Invitrogen (Waltham, MA, USA), EVOS (Life Technologies, Bothell,
WA, USA, shipped from Germany)).

4.6.3. Von Kossa Stain

The cells were fixed with 5% formaldehyde (Sigma), followed by incubation with 5%
silver nitrate (Carl Roth, Austria, shipped from Austria, 9370.9) under UV light for 20 min.
Afterward, the cells were washed with distilled water, fixed with 5% sodium thiosulfate,
and washed again with distilled water. Subsequently, the cells were stained with nuclear
fast red (Waldeck GmbH, Germany, shipped from Germany, 221833) for 10 min and washed
once more.

4.7. mRNA-Sequencing of the “Patient Cells” (Tenocytes)

Due to cost considerations, we combined the technical replicates for RNASeq and
ran one sample for each biological replicate (donor) per treatment/control group. The
overall quality of the next-generation sequencing data was evaluated automatically and
manually with fastQC v0.11.8 and multiQC v1.7 [103,104]. Reads from all passing sam-
ples were adapter-trimmed and quality-filtered using bbduk from the bbmap package
v38.69 and filtered for a minimum length of 17 nt and phred quality of 30. Alignment
steps were performed with STAR v2.7 using samtools v1.9 for indexing, whereas reads
were mapped against the genomic reference GRCm38.p6 provided by Ensembl (Cam-
bridge, UK) [105–107]. Assignment of features to the mapped reads was completed with
htseq-count v0.13 [108]. Differential expression analysis with edgeR v3.30 used the quasi-
likelihood negative binomial generalized log-linear model functions provided by the
package [109]. The independent filtering method of DESeq2 was adapted for use with
edgeR to remove low-abundant genes and thus optimize the false discovery rate (FDR)
correction [110]. RT-qPCR validation was not used in this study due to the well-established
robust nature of RNAseq methods [111,112].
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4.8. Data Analysis

We selected a less stringent p-value cutoff of 0.1 in our analysis to avoid missing
potentially relevant genes with subtle but biologically significant expression changes. By
employing a more inclusive approach, we enhanced the sensitivity of our analysis, explored
novel insights, accounted for biological complexity, addressed sample size limitations, and
facilitated integration with other datasets. We ensured statistical rigor while capturing
valuable findings beyond a stricter cutoff. RNASeq data were read into the R statistical envi-
ronment and processed using the DESeq2 package [110]. Statistical analysis of preprocessed
NGS data was completed with R v3.6 and the packages pheatmap v1.0.12, pcaMethods
v1.78, and genefilter v1.68. Differential expression analysis with edgeR v3.28 used the
quasi-likelihood negative binomial generalized log-linear model functions provided by
the package [109]. The independent filtering method of DESeq2 was adapted for use with
edgeR to remove low-abundance mRNAs and thus optimize the false discovery rate (FDR)
correction [110]. To determine differentially expressed genes, a linear mixed model with
subject ID as a random effect was chosen. Significant differential expression (DE) was
assumed for adjusted p-values < 0.1 and a fold change (FC) > 1.5. Results were put into a
biological context using gene set variation analysis with the molecular signature database,
Wiki and KEGG pathways as input [113–116]. Significant differences between GSVA scores
were determined using LIMMA and the linear mixed model as described above [117].

Principle component analysis (PCA) was used to assess the clustering of samples based
on treatment groups. The statistical analysis, a repeated measures ANOVA, was performed
using Graph Pad Prism v.6.01 (GraphPad Software, San Diego, CA, USA). The number of
used donors (n), the p-values and the respective statistical significance are indicated in each
figure. The data are plotted as mean with ± standard error of mean in scatter plots and
±standard deviation in bar graphs.

Venn diagrams and volcano plots were generated using online tools (InteractiveVenn
and VolcaNoseR) [118,119].
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