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Abstract: Anticancer peptides (ACPs) represent a promising new therapeutic approach in cancer
treatment. They can target cancer cells without affecting healthy tissues or altering normal phys-
iological functions. Machine learning algorithms have increasingly been utilized for predicting
peptide sequences with potential ACP effects. This study analyzed four benchmark datasets based
on a well-established random forest (RF) algorithm. The peptide sequences were converted into
566 physicochemical features extracted from the amino acid index (AAindex) library, which were then
subjected to feature selection using four methods: light gradient-boosting machine (LGBM), analysis
of variance (ANOVA), chi-squared test (Chi2), and mutual information (MI). Presenting and merging
the identified features using Venn diagrams, 19 key amino acid physicochemical properties were
identified that can be used to predict the likelihood of a peptide sequence functioning as an ACP. The
results were quantified by performance evaluation metrics to determine the accuracy of predictions.
This study aims to enhance the efficiency of designing peptide sequences for cancer treatment.

Keywords: random forest; anticancer peptide; amino acids index; physicochemical properties;
feature selection

1. Introduction

Identifying novel anticancer compounds has long been a major focus of medical
research. Conventional cancer treatments, such as surgery, radiotherapy, and chemotherapy,
often adversely affect healthy cells and tissues and can lead to the development of treatment
resistance. Therefore, it is essential to identify additional effective therapeutic options.
Anticancer peptides (ACPs) are short peptide sequences that typically contain fewer than
50 amino acids. They exert their anticancer effects via a variety of mechanisms, for example,
by inhibiting the proliferation and migration of cancer cells, inducing apoptosis, changing
the pH in the internal and external cellular environment, or by damaging the cell membrane
of cancer cells without affecting healthy tissues [1]. Compared to conventional therapeutic
compounds, ACPs offer several advantages, such as high specificity, low intrinsic toxicity,
high tissue permeability, and the convenience of sequence modification [2–5]. These
features make ACPs a promising new therapeutic option in the management of cancer.

Historically, the identification of ACPs involved conventional laboratory experiments
that were time-consuming and costly. However, with the accumulation of considerable
ACP sequence data and the establishment of experimentally validated ACP databases, such
as CancerPPD [2], DADP [6], CAMP [7], and APD [8], the rapid identification of novel
ACP sequences using machine learning algorithms is becoming increasingly feasible. For
example, in 2018, Wei et al. [9] used amino acid binary profile, amino acid type group,
composition–transition–distribution, and twenty-one-bit features to represent peptides
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and then adopted a support vector machine learning method named ACPred_FL. In 2020,
Rao et al. [10] developed another model named ACPred_Fuse, which applied 114 type
features to represent peptides. In the same year, Agrawal et al. [11] used amino acid
composition, dipeptide composition, terminus composition, and binary profile to develop
an extra-tree-based model named AntiCP-2.0. With the rise in deep learning and protein
representation learning, many new anticancer peptide recognition methods [11–16] (e.g.,
iACP-DRLF and TriNet) continue to emerge, and the performances of the methods are
becoming increasingly better.

Nonetheless, current machine-learning-based ACP prediction models are limited.
Analyzing standard datasets with alternative sequence feature extraction methods often
results in greatly variable outcomes, and the causes of this divergence are currently unclear.
In addition, studies to date have paid little attention to the key physicochemical features
that differentiate ACPs from peptides with no ACP activity, resulting in an insufficient
understanding of what features determine whether an amino acid sequence can act as an
ACP. To overcome these shortcomings, we used the AAindex database [17–20] as the feature
database of peptide sequences. This database consists of two subdatabases, AAindex1
and AAindex2. AAindex1 is a database representing the different physical, chemical,
and biological properties of amino acids, currently containing 566 amino acid features.
AAindex2 is an amino acid mutation matrix database that represents the similarity between
amino acids, currently containing 94 matrices. The AAindex database is primarily used in
protein-related research fields and as a machine learning database in protein prediction
applications. However, the information contained within this database has not been
previously utilized for extracting the key features of ACP sequences. Thus, no information
is available on the physicochemical properties of key amino acids that affect the function of
ACPs from a holistic perspective.

To address the problems of current ACP prediction models, we explored the physic-
ochemical characteristics of amino acids predicting ACP activity. We combined multiple
feature selection techniques and a random forest (RF) model to construct a single-feature
model based on the physicochemical characteristics of ACP sequences [21–23]. The re-
sulting model performed well in predicting ACPs in the calculation-based analysis of the
physicochemical properties of key amino acids within the peptide sequences. This ap-
proach allowed us to identify 19 key amino acid properties that were useful in detect-
ing ACP sequences in various benchmark datasets. A user-friendly webserver (https:
//www.aibiochem.net/servers/RFaaindexACP, accessed on 18 June 2023) is provided.

2. Results and Discussion
2.1. Analysis of Feature Selection Methods

Various feature selection methods can result in marked differences in the ranking
of key features. Therefore, we compared the performance of the models using selected
features with the baseline of non-selected 566-dimensional feature vector results.

2.1.1. Model Performance Analysis before and after Feature Selection

After establishing an RF model based on 566-dimensional features, the four studied
datasets, ACPred-Fuse, ACPred-FL, ACP20Alt, and ACP20main, were each processed
using four different feature selection methods: ANOVA, Chi2, LGBM, and MI. Table 1
displays the optimized feature space dimensions for different datasets. For instance, for
the ACPred_Fuse dataset, the best feature numbers were 73, 77, 28, and 40 after ANOVA,
Chi2, LGBM, and MI were applied. A histogram was created for each index, as well as
the baseline metrics without feature selection, and the corresponding ACC, MCC, Sn, Sp,
and AUC values were compared, as shown in Figure 1. Irrespective of the dataset being
analyzed, the best performing feature selection was invariably achieved using LGBM.
Therefore, feature selection and optimization were carried out using this approach.

https://www.aibiochem.net/servers/RFaaindexACP
https://www.aibiochem.net/servers/RFaaindexACP
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Table 1. The number of features selected from the four datasets using the indicated feature selec-
tion methods.

Datasets ANOVA Chi2 LGBM MI

ACPred-Fuse 73 77 28 40
ACPred-FL 45 46 75 92
ACP20Alt 94 98 50 100

ACP20main 76 61 64 25
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Figure 1. Comparison of performance metrics selected after the first feature selection.

2.1.2. Feature Selection Results for Different Datasets Using the Same Feature
Selection Method

After completing the feature selection steps using the four datasets, the key features
obtained were compared longitudinally to identify overlaps. As shown in Table 1, the four
distinct feature selection strategies resulted in a marked variation in the number of features
being selected.

Through data records, common features present in three or more datasets after each
feature selection strategy were selected and analyzed using Venn diagrams, by intersecting
the obtained features. These Venn diagrams, drawn using the Venny 2.1 online tool [24],
are shown in Figure 2 (the tool is available at https://bioinfogp.cnb.csic.es/tools/venny/
index.html, accessed on 1 January 2021).

In order to obtain universally applicable features and eliminate the influence of differ-
ent feature selection methods, features obtained from the four datasets were intersected
and merged. Since the number of features was relatively small, we only retained merged
features common to at least three datasets. The number of common features obtained from
the four feature selection methods were 27 features from ANOVA, 57 features from Chi2,
12 features from LGBM, and 25 features from MI. These were combined, obtaining a total
of 105 features for the next round of feature selection.

https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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The RF analysis results, using the 105 selected features, showed that the ACC, MCC,
and AUC metrics for each dataset were almost optimal, with these metrics with three
datasets being better than what could be achieved using the original, unselected data.
However, when analyzing the ACP20Alt dataset, the performance of the selected features
was slightly reduced, although the difference compared to the full 566-dimensional data
was very small. Therefore, the selected 105 features appeared to be sufficient to identify
ACPs in the analyzed datasets.

2.2. Model Analysis Based on 105 Selected Features
2.2.1. Model Performance

In order to reduce the number of features further and make the selection results
more representative, a second round of feature selection was conducted, starting with the
105 features described above. This round of feature selection was performed using LGBM
on each of the four datasets, respectively. The results of this analysis are shown in Table 2.
As shown in Table 2, the model based on the ACPred-Fuse dataset has the best independent
test accuracy, while the model based on ACP20main has the smallest. Moreover, it can be
concluded from Table 2 that the feature space dimensions of the models constructed on the
basis of different datasets are different to obtain the best independent test accuracy. This
means that these features are not sufficiently representative of all datasets.
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Table 2. The metrics of selected features used to create the 105-feature matrix.

Datasets Number of
Features

5-Fold Cross-Validation Independent Test

ACC (/%) MCC Sn (/%) Sp (/%) AUC ACC (/%) MCC Sn (/%) Sp (/%) AUC

ACPred-Fuse 58 80.2 0.612 88.4 72.0 0.858 92.9 0.457 93.9 70.7 0.897
ACPred-FL 33 80.0 0.601 83.2 76.8 0.863 76.2 0.528 81.7 70.7 0.856
ACP20Alt 61 89.7 0.794 89.2 90.2 0.960 90.9 0.819 89.1 92.7 0.960

ACP20main 80 74.2 0.489 67.2 81.2 0.800 69.3 0.386 67.3 71.3 0.792

2.2.2. First Optimization Based on LGBM Feature Selection

To obtain a common feature set represented by the four datasets, feature importance
analysis was performed on the features obtained from the four datasets. Among the
identified features, those with importance values greater than 0.01 were selected from the
intersecting areas of the data. The intersection of the four dataset feature spaces is shown
in a Venn diagram in Figure 3. Only 19 features satisfied these requirements.
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2.2.3. Second Optimization of the 19 Features by LGBM

To explore how well the 19 selected features represented the full data, we created RF
models using all four datasets. The cross-validation and independent testing results are
shown in Table 3. We presented the results as histograms for the three feature selections
and compared the three most important metrics: ACC, MCC, and AUC. The result of these
comparisons is summarized in Figure 4.

Table 3. Performance metrics using the final 19 selected features.

Datasets Number of
Features

5-Fold Cross-Validation Independent Test

ACC (/%) MCC Sn (/%) Sp (/%) AUC ACC (/%) MCC Sn (/%) Sp (/%) AUC

ACPPred-Fuse 19 78.6 0.576 84.8 72.4 0.854 93.0 0.447 94.1 68.3 0.900
ACPred-FL 19 80.6 0.616 86.0 75.2 0.860 79.9 0.601 85.4 74.4 0.846
ACP20Alt 19 89.3 0.786 89.3 89.3 0.958 89.4 0.791 85.0 93.8 0.952

ACP20main 19 71.9 0.440 66.7 77.0 0.797 70.5 0.410 68.4 72.5 0.789
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When the performance of the final 19 features was compared to the original 566-dimensional
information or the previously selected 105 features, the results were very similar, indicating
that the reduced feature set contained possibly all the necessary information to determine
the characteristic properties of ACPs. During cross-validation, the performance metrics
analyzing the ACPred-Fuse dataset showed some reduction, but the difference compared
to the performance of the previously selected 105 features was small, indicating that the
19 features still captured sufficient information. In contrast, the metrics when testing the
ACPred-FL dataset generally improved and were more representative. Comparing the
performance of the full 566-dimensional data, the 105 and 19 selected features using peptide
data from the ACP20Alt and ACP20main datasets only showed negligible differences, sup-
porting the notion that the selected features were representative. The 19 physicochemical
properties of amino acids from the AAindex database that were sufficient to predict ACP
characteristics in peptides are shown in Table 4.
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Table 4. List of the selected 19 key features and the corresponding physicochemical properties.

Feature Physicochemical Properties

QIAN880113 Weights for alpha-helix at the window position of 6
QIAN880126 Weights for beta-sheet at the window position of 6
BROC820102 Retention coefficient in HFBA
RACS820101 Average relative fractional occurrence in A0(i)
SNEP660103 Principal component III

OOBM850104 Optimized average non-bonded energy per atom
SNEP660104 Principal component IV
FINA910103 Helix termination parameter at position j-2, j-1,j

OOBM850101 Optimized beta-structure-coil equilibrium constant
RICJ880110 Relative preference value at C5
RICJ880112 Relative preference value at C3

CHAM830102 A parameter defined from the residuals obtained from the best
correlation of the Chou–Fasman parameter of beta-sheet

ZASB820101 Dependence of partition coefficient on ionic strength
KLEP840101 Net charge
FINA910101 Helix initiation parameter at position i-1
MEEJ800101 Retention coefficient in HPLC, pH7.4
WOLS870103 Principal property value z3
AURR980112 Normalized positional residue frequency at helix termini C4
KARP850103 Flexibility parameter for two rigid neighbors

Further, it shows pairwise correlations for all 19 physicochemical properties (see
Supplementary Figures S7–S10). The diagonal lines of Figures S7–S10 show that there
was a large overlap in the numerical distribution of all 19 features across the positive and
negative samples. For a certain feature correlated to 18 other features, a two pairs graph
showed that it was not enough to distinguish the anticancer and non-anti-cancer peptides
well. These results meant that relying on the feature alone or a combination of two features
is not enough to identify a peptide with anticancer activity from the peptide sequence, i.e.,
the primary structure. A fine numerical analysis of all 19 features must be relied upon
to obtain better results. Figure S5 and the support material file show the random forest
binary classification trees and forests. From Figure S5, it can be seen that through the fine
division of each feature value, many binary classification judgments are formed, and finally,
the peptides with anticancer activity can be concluded. Here, these 19 features shown in
Table 4 detected most of the critical features in all four datasets; it is likely that they can be
used to distinguish ACPs from peptides with no ACP activity in general.

2.3. Statistical Comparison with Previously Reported Prediction Methods

We then compared the predictive performance of the RF-based prediction algorithm
analyzing the initial model with 566-dimensional data versus those with 105- and 19-
dimensional data and the previously reported ACP prediction methodologies. Obviously,
the lack of statistically significant differences between the performance of the models would
indicate that the 19 features captured sufficient information to distinguish ACPs from non-
ACPs. The performance of the predictive algorithms previously reported in the literature is
summarized in Table 5, while the comparison between the averaged performance of these
previously reported approaches and our three models with 566-, 105-, and 19-dimensional
features is shown in Table 6.
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Table 5. Comparison of previously reported machine learning algorithms from the literature.

5-Fold Cross-Validation Independent Test

ACC (/%) MCC Sn (/%) Sp (/%) AUC ACC (/%) MCC Sn (/%) Sp (/%) AUC

ACPPred-Fuse 82.4 0.652 77.2 87.6 0.882 89.0 0.320 72.0 89.5 0.868
ACPred-FL 89.0 0.783 84.8 93.2 0.940 87.8 0.758 84.1 91.5 0.960
ACP20Alt 93.0 0.861 89.7 96.3 0.978 92.5 0.852 88.6 96.4 -

ACP20main 76.7 0.536 72.2 81.1 0.841 73.4 0.468 76.0 70.8 -

Table 6. Comparison of the averaged literature results with the performance of RF based on three
feature selections.

5-Fold Cross-Validation Independent Test

ACC (/%) MCC Sn (/%) Sp (/%) AUC ACC (/%) MCC Sn (/%) Sp (/%) AUC

566D 82.6 0.654 85.8 79.3 0.891 85.8 0.578 86.5 78.9 0.904
105D 80.7 0.616 81.6 79.7 0.876 82.1 0.541 81.7 78.0 0.874
19D 80.1 0.604 81.7 78.5 0.867 83.2 0.562 83.2 77.2 0.872

Literature average 85.3 0.708 81.0 89.6 0.910 85.7 0.5995 80.2 87.1 -

As shown in Table 6, the performance metrics of our predictive algorithm are generally
lower than those for previously reported approaches. This is because of several reasons.
The first is that the previously reported algorithms used two or more amino acid sequences
in their feature representation; a multi-feature representation model will usually be better
than a single-feature one. Here, in this study, we used a single feature (i.e., amino acid
index), so the performance of the model will be slightly worse. Second, the focus of the
previous algorithms was not the same as ours. The previous algorithms performed feature
engineering optimization for a specific dataset. As a result, the optimized feature space
of them usually only showed a better performance for that dataset, and the performance
was worse for different datasets. That is, the generalization performance of the model
was not good. Instead, we studied four standard datasets at the same time, looking for
common feature representations that can be applied to different datasets, so as to build a
more generalized model. Third, we also noticed a difference in performance compared
to previous algorithms. For this reason, we performed a statistical significance test (see
Tables 7 and 8). The study showed that there was no statistically significant difference
between the metrics of our results and the mean of the results optimized for specific datasets
reported in the literature. This means that the 19 amino acid physicochemical properties
we used can be applied to different datasets and obtain a performance without statistically
significant difference from the literature algorithms.

Table 7. Results of statistical tests based on 5-fold cross-validation with a significance level α = 0.05.

Comparison of Results ACC MCC Sn Sp AUC

105D vs. 566D 0.538 0.538 0.466 0.612 0.606
19D vs. 566D 0.435 0.437 0.473 0.339 0.375
19D vs. 105D 0.182 0.169 0.795 0.129 0.229

566D vs. Literature results <0.001 0.449 <0.001 <0.001 0.548
105D vs. Literature results <0.001 0.043 <0.001 0.115
19D vs. Literature results <0.001 0.018 <0.001 <0.001 0.047
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Table 8. Results of statistical tests based on an independent test with a significance level α = 0.05.

Comparison of Results ACC MCC Sn Sp AUC

105D vs. 566D 0.417 0.464 0.4 0.602 -
19D vs. 566D 0.589 0.786 0.572 0.433 -
19D vs. 105D 0.433 0.35 0.416 0.528 -

566D vs. Literature results 0.983 0.792 0.317 0.298 -
105D vs. Literature results 0.279 0.424 0.818 0.186 -
19D vs. Literature results 0.383 0.575 0.677 0.175 -

3. Materials and Methods

We constructed an amino acid sequence feature extraction tool based on the AAindex
database, converting peptide amino acid sequences into 566-dimensional feature vectors,
where each dimension represents a physicochemical property of an amino acid [25–27].
First, the ACP datasets were divided into training and test datasets, and we analyzed
them by a random forest (RF) model based on the full 566-dimensional features of the
AAindex database to select the most informative features. Next, we used light gradient-
boosting machine (LGBM), analysis of variance (ANOVA), chi-squared test (Chi2), and
mutual information (MI) analysis for feature selection. By examining the performance
of the RF model based on the best top n features under the four methods, we initially
selected 105 features. RF modeling was performed again based on these 105 features on the
same benchmark datasets, and the best features were selected based on hyperparameter
optimization and feature importance analysis. As a result, we identified the best performing
top 19 features. Finally, the RF model was trained based on the 19 features using all four
datasets. The best performing models were compared with previously reported ACP
prediction algorithms described in the literature, and the statistical significance of the
differences in prediction performance indices was calculated. The overall flowchart of the
conducted work is summarized in Figure 5.

3.1. Benchmark Datasets

Throughout the work presented here, we used the ACP20Alt [28], ACP20main [28],
ACPred-FL [9], and ACPred-Fuse [10] datasets. Of these, the positive samples of ACPred-
FL and ACPred-Fuse were primarily published by Chen et al. [29], and Tyagi et al. [2] in
their CancerPPD datasets. Peptides with no ACP activity were represented by antimicro-
bial peptides (AMPs) and by a collection of peptides that had no anticancer effect during
experimental testing. We randomly selected 250 ACP and 250 non-ACP sequences from the
ACPred-FL dataset to act as the training dataset, and 82 ACPs and 92 non-ACPs as the test
dataset. The 250 positive samples in the ACPred-Fuse training dataset were selected from
the work of Wei et al. [9] Half of the 250 negative samples were also derived from Wei et al.,
while the other half was collected from the AMP dataset. The test dataset contained all the
remaining ACPred-Fuse data (82 ACPs and 2628 non-ACPs) as positive and negative sam-
ples. The ACP20main and ACP20Alt databases were compiled by Lv et al. [28]. ACP20main
contains 861 experimentally verified ACPs and 861 peptides with no documented ACP
activity. Peptides from this dataset were divided into two subsets for 5-fold cross-validation
and independent testing. Finally, the ACP20Alt database contains 970 ACPs and 970 non-
ACPs. These were also subdivided into a training set and an independent test subset. The
main difference between the ACP20main and ACP20Alt databases is that the negative
samples in the former are represented by AMPs, while the negative samples in ACP20Alt
are randomly selected peptides, assumed to have no antitumor activity. The main details of
the used benchmark datasets are summarized in Table 9. The shared sequences numbers
are shown in Figure S6 in the supporting information.
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Table 9. The number of ACPs and non-ACPs in the four datasets derived from the literature.

Datasets
Training Dataset Testing Dataset Sequence

Similarity
Sequence
Length (L)

Average

ACP Non-ACP ACP Non-ACP Length

ACPred-Fuse 125 125 82 1871 <80% 7 ≤ L ≤ 207 25
ACPred-FL 250 250 82 82 <90% 11 ≤ L ≤ 207 27
ACP20Alt 775 775 193 193 <80% 2 ≤ L ≤ 50 24

ACP20main 688 688 171 171 <80% 3 ≤ L ≤ 50 24

3.2. Feature Extraction

To investigate the physicochemical properties of key amino acids, we first had to
extract the information contained in the ACP sequences and convert raw sequences into
interpretable features [30,31]. The data for this feature extraction were obtained from
the AAindex databases. The AAindex1 database, available at https://www.genome.jp/

https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/
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aaindex/ [32] (accessed on 1 January 2020), describes the physicochemical properties of
amino acids using 566 indices.

The physicochemical properties of a peptide sequence with a length of L were extracted
from the amino acid index database as numerical values for each amino acid [33,34]. It
means that each amino acid in the peptide sequence is represented by a 566-dimensional vec-
tor, and then a peptide sequence of L amino acids will be transformed into an L × 566 matrix.
Next, an average pooling of the matrix is conducted, resulting in a 566-dimensional vector
representing the peptide sequence. This approach transformed each peptide sequence into
a 566-dimensional feature vector, where each dimension represents a particular physico-
chemical property of amino acids [21]. The source code for peptides from the AAindex
feature extraction can be downloaded from https://github.com/zhibinlv/RFaaindexACP
(accessed on 19 June 2023).

3.3. Feature Selection Methods

Feature selection is the process of filtering the most relevant features by machine
learning [35]. The main purpose of feature selection is to identify irrelevant or redundant
features, reducing the runtime of machine learning algorithms and obtaining more accurate
results. Four feature selection methods were used in our research: light gradient-boosting
machine (LGBM), analysis of variance (ANOVA), chi-squared test (Chi2), and mutual
information (MI). The LGBM feature selection code can be found at https://github.com/
zhibinlv/iACP-DRLF/tree/main/feature_selection (accessed on 1 January 2020). For Chi2,
ANOVA, and MI, it can be found using the scikit-learn toolkits at https://scikit-learn.org/
stable/index.html (accessed on 1 January 2020).

3.3.1. LGBM

LGBM adopts the histogram algorithm [36], in which continuous features are turned
into k discrete values in order to construct a histogram with a width of k. The algorithm is
trained to count the value of each discrete value in the histogram. Based on these discrete
values, the optimal feature segmentation points can be determined, and the exact number
of key features can be obtained.

3.3.2. ANOVA

ANOVA analyzes the relationship between independent variables and dependent
variables by studying whether the variance of multiple samples is equal to the overall mean
value [37,38]. It can perform feature extraction before the data enter classifier training, thus
reducing data dimensionality. Taking binary classification as an example, using ANOVA
for feature selection divides the value of a certain feature into two groups, a positive and a
negative group. The greater the difference between these groups in ANOVA, the greater
their impact on the sample.

3.3.3. Chi-Squared Test

A chi-squared test can be used to determine whether two variables are correlated and
to calculate the extent of this correlation [39], by performing a test between the feature and
the real label. Assuming that the number of independent variables is A, and the number of
dependent variables is B, the following equation χ can be constructed:

χ2 = ∑
(A− B)2

B
(1)

The result indicates the degree of dependence between the independent variables and
dependent variables.

https://www.genome.jp/aaindex/
https://www.genome.jp/aaindex/
https://github.com/zhibinlv/RFaaindexACP
https://github.com/zhibinlv/iACP-DRLF/tree/main/feature_selection
https://github.com/zhibinlv/iACP-DRLF/tree/main/feature_selection
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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3.3.4. MI

Mutual information [40,41] can also be used to test the correlation between two
variables, which can be defined as follows:

I(X, Y) = ∑
y∈Y

∑
x∈X

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(2)

If x and y are random variables that are independent of each other, then

p(x, y) = p(x)p(y) (3)

Thus, the result of I(X, Y) is 0. Therefore, a larger I(X, Y) indicates a greater correlation
between the two variables, allowing feature filtering.

3.4. Random Forest Algorithm

In this study, we used a random forest (RF) [42–45] machine learning algorithm to
analyze the importance of features. By determining the contribution of each feature to each
tree in the models, the importance of key features can be ranked, identifying key amino
acid physicochemical properties that determine the likelihood of a given peptide having
ACP activity.

During this process, the RF model selects several samples from the sample set to
construct a training dataset with replacement. It then uses the obtained training dataset
to generate a decision tree and randomly selects multiple non-repetitive features at each
node, using these features to divide the sample set [46]. After the optimal division features
are found, the process is repeated until all the decision trees in a random forest are gener-
ated [47]. Finally, the model trained by the above steps is used to predict the sample set,
and the prediction result is determined by the number of classifications.

3.5. Feature Importance Analysis

Common evaluation metrics for calculating feature importance include the Gini in-
dex [48] and the out-of-bag (OOB) error. The Gini index is calculated according to the
following equation:

Gini(p) =
k

∑
k=1

pk(1− pk) = 1−
k

∑
k=1

p2
k (4)

where k indicates the number of features divided into k categories, and pk represents the
importance of category k.

The OOB dataset refers to the data that are not chosen in the sampling process. For a
tree in the RF model, the error e1 is obtained by the out-of-bag data sample, and then, error
e2 is derived by randomly permuting the i-th column of the out-of-bag data matrix. This
way, the importance of feature i can be represented by e1 − e2:

Impi =
∑(e1 − e2)

n
(5)

where n represents the number of decision trees in the model.

3.6. Evaluation of Model Performance

To evaluate the performance of each model, the sensitivity (Sn), specificity (Sp), ac-
curacy (ACC), Matthews correlation coefficient (MCC), and area under receiver-operating
characteristic curve (AUC) [49,50] were calculated as follows:

Sn =
TP

TP + FN
× 100% (6)
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Sp =
TN

TN + FP
× 100% (7)

ACC =
TP + TN

TP + FP + FN + TN
× 100% (8)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(9)

TP, TN, FP, and FN represent the number of true positive, true negative, false positive, and
false negative samples, respectively. In addition, we also analyzed the ROC curve and AUC
area, where a larger AUC value indicates a stronger predictive performance.

3.7. Websever

After the model was developed and optimized, we developed a simple and easy-
to-use website for interested readers to use. The reader only needs to enter the peptide
sequence in FASTA format and after a few minutes can find out whether those peptides
have anticancer activity. The website can be found at https://www.aibiochem.net/servers/
RFaaindexACP (accessed on 18 June 2023). A simple screenshot of the application is shown
in Figures S1–S4.

4. Conclusions

The work presented in this paper proposed to identify the key physicochemical prop-
erties of ACPs based on existing machine learning algorithms, using existing ACP datasets
available in the literature and amino acid features collated in the AAindex database. We
analyzed the influence of four feature selection methods, ANOVA, Chi2, LGBM, and MI,
on identifying key features. The comparison of these methods revealed that LGBM was the
best approach for selecting features that led to the creation of the best fitting RF model and
resulted in the best performance indices. Ultimately, this work identified 19 key amino acid
features, which compared favorably with machine learning models reported previously
in the literature. Furthermore, statistical tests revealed that the 19 key identified features
provided as much information as predictions based on a much larger feature dimensional-
ity or alternative machine learning algorithms, enhancing the credibility of our approach.
Based on these 19 key features, we can develop new machine learning models with bet-
ter effects or further refine existing models. In addition, based on these key properties,
investigators will be able to design prospective ACPs with an improved probability of
therapeutic effectiveness, thereby increasing the speed of transitioning peptides into clinical
ACP research.
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