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Abstract: The hepatic matrisome is involved in the remodeling phase of liver regeneration. As the
gut microbiota has been implicated in liver regeneration, we investigated its role in liver regeneration
focusing on gene expression of the hepatic matrisome after partial hepatectomy (PHx) in germ-free
(GF) mice, and in GF mice reconstituted with normal gut microbiota (XGF). Liver mass restoration,
hepatocyte proliferation, and immune response were assessed following 70% PHx. Hepatic matrisome
and collagen gene expression were also analyzed. Reduced liver weight/body weight ratio, mitotic
count, and hepatocyte proliferative index at 72 h post PHx in GF mice were preceded by reduced
expression of cytokine receptor genes Tnfrsf1a and Il6ra, and Hgf gene at 3 h post PHx. In XGF mice,
these indices were significantly higher than in GF mice, and similar to that of control mice, indicating
normal liver regeneration. Differentially expressed genes (DEGs) of the matrisome were lower in GF
compared to XGF mice at both 3 h and 72 h post PHx. GF mice also demonstrated lower collagen
expression, with significantly lower expression of Col1a1, Col1a2, Col5a1, and Col6a2 compared to WT
mice at 72 h post PHx. In conclusion, enhanced liver regeneration and matrisome expression in XGF
mice suggests that interaction of the gut microbiota and matrisome may play a significant role in the
regulation of hepatic remodeling during the regenerative process.

Keywords: liver regeneration; matrisome; gut microbiota; germ-free mice; collagen

1. Introduction

Liver regeneration is a complex process involving multiple cellular factors, cytokines,
growth factors, and signaling pathways. The multiple ligands and signaling pathways regulate
the events of the regenerative hyperplasia from proliferation of hepatic cells to structural
remodeling in order to ensure optimal architecture of the restored liver mass [1,2]. During
the regenerative process, the liver goes through three distinctive phases: (a) initiation or
priming phase, (b) proliferation phase, and (c) termination phase. These phases occur in
chronological order, regulated by manifold ligands and signaling pathways [3].

Many factors have been demonstrated to affect liver regeneration, including gut
microbiota. Disturbance of intestinal microbial composition has been shown to affect the
regenerative ability of the liver [4]. Mice bred in sterile conditions demonstrate reduced
liver regeneration following partial hepatectomy (PHx) [5]. Additionally, gut sterilization
with antibiotics produces similar results [6]. Thus, elimination of gut microbiota leads to
delayed liver regeneration following PHx.

The role of the gut microbiota in liver regeneration has been attributed to lipopolysac-
charide (LPS), the endotoxin derived from Gram-negative bacteria [7,8]. Following PHx,
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increased permeability of the intestinal barrier allows translocation of LPS in the portal
circulation, where it reaches the remnant liver [8]. Active via its TLR4 receptor, LPS directly
stimulates Kupffer cells to secrete TNF-α and IL-6, which are the main cytokines involved
in priming of hepatocytes. After priming, hepatocytes undergo cell proliferation to restore
liver mass. Progression through the cell cycle is mediated by hepatocyte growth factor
(HGF), which can also directly stimulate hepatocytes to undergo DNA synthesis and pro-
liferation [9]. Release of ECM-bound HGF and its subsequent activation is mediated by
urokinase plasminogen activator (uPA), which is directly increased following PHx [10,11].

Stimulation of the remnant liver following PHx via administration of exogenous
endotoxin promotes hepatocyte proliferation, while restriction of endotoxin via admin-
istration of antibiotic impairs liver regeneration [6,12]. Furthermore, acute blockade of
LPS/TLR4 signaling using anti-TLR4 antibody (MTS510) impairs liver regenerative re-
sponse in C3H/HeN mice [13]. Mice hyposensitive to LPS due to a tlr4 gene mutation
demonstrate reduced liver regeneration following PHx [13,14].

Apart from cytokines and HGF, the extracellular matrix (ECM) also contributes to liver
regeneration. The ECM structural proteins (collagens, proteoglycans, and glycoproteins)
and the ECM-associated proteins (ECM-affiliated proteins, ECM regulators, and secreted
proteins)—together termed the matrisome—has been suggested to play key roles in all
three phases of liver regeneration [15]. During the priming phase of liver regeneration,
remodeling of the ECM facilitates release of ECM-bound growth factors such as HGF [10].
During the proliferation and remodeling phases of liver regeneration, remodeling of the
ECM facilitates revascularization of hepatocyte clusters and restoration of normal liver
architecture [16]. Mabuchi et al. (2004) demonstrated that hepatic stellate cells (HSCs) gath-
ered around hepatocyte clusters, establishing the interaction between HSC–HSC and/or
HSC–hepatocyte in the regenerating liver, thus implying the possible role of activated HSC
in ECM synthesis during liver regeneration [17].

The ECM also facilitates termination of the regenerative process via ECM–cellular
interaction, whereby integrin proteins present on newly synthesized ECM interact with
integrin-linked kinase (ILK) complexes present on hepatocytes, leading to suppression
of hepatocyte proliferation. Sequestration of cytokines and growth factors such as HGF
by newly formed ECM also contributes to termination of the regenerative process [18].
However, the involvement of gut microbiota in liver regeneration with regards to ECM
expression has never been elucidated.

The aim of the study was to investigate the role of gut microbiota in liver regeneration,
particularly in relation to hepatic matrisome gene expression after PHx. Therefore, liver
regeneration and hepatic matrisome gene expression were assessed in GF mice, in GF
mice recolonized with normal gut microbiota (XGF mice), and in normal, WT mice. We
hypothesized that modified restoration of the hepatic matrisome may play a role in the
impaired hepatic regeneration in GF mice. If correct, the reintroduction of gut microbiota
would improve hepatic matrisome gene expression following PHx.

2. Results
2.1. LW/BW Ratio and Liver Growth Percentage

The initial liver mass of GF mice was observed to be smaller compared to normal,
WT mice, evident by lower LW/BW at 0 h (Figure 1a). Germ-free mice also demonstrated
reduced liver growth and liver mass restoration, evident by lower liver growth percentage
and LW/BW at 72 h post PHx (Figure 1). Ex-germ-free mice, on the other hand, demon-
strated initial liver size, liver mass restoration, and liver growth that was comparable to
controls. These findings, together with an observed higher LW/BW ratio and liver growth
percentage in XGF mice compared to GF mice indicated improved liver regeneration in
XGF mice.



Int. J. Mol. Sci. 2023, 24, 10774 3 of 19

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 20 
 

 

percentage in XGF mice compared to GF mice indicated improved liver regeneration in 
XGF mice. 

 

 

(a) (b) 

Figure 1. (a) Liver weight/body weight ratio and (b) normalized liver growth by percentage follow-
ing PHx in wild-type (WT), germ-free (GF), and ex-germ-free (XGF) mice. Data are presented as 
means ± SD for n = 3–4 mice per group and time point. * = p < 0.05 compared between two mouse 
groups at a similar time point. 

2.2. Proliferative Index 
All mice groups demonstrated a significant increase in proliferating hepatocytes at 

72 h post PHx (Figures 2 and 3). Hepatocyte proliferation of GF mice was significantly 
lower compared to WT controls and XGF mice. This was evident in both H&E-stained 
(Figures 2a and 3a) and Ki67-stained specimens (Figures 2b and 3b). Although demon-
strating higher hepatocyte proliferation compared to GF mice, hepatocyte proliferation in 
XGF mice was still lower compared to WT mice (Figure 2b). Given differences between 
the GF and control, the WT mice were more evident when observing the proliferative in-
dex compared to observation of the LW/BW ratio and liver growth percentage. 
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Figure 1. (a) Liver weight/body weight ratio and (b) normalized liver growth by percentage follow-
ing PHx in wild-type (WT), germ-free (GF), and ex-germ-free (XGF) mice. Data are presented as
means ± SD for n = 3–4 mice per group and time point. * = p < 0.05 compared between two mouse
groups at a similar time point.

2.2. Proliferative Index

All mice groups demonstrated a significant increase in proliferating hepatocytes at
72 h post PHx (Figures 2 and 3). Hepatocyte proliferation of GF mice was significantly
lower compared to WT controls and XGF mice. This was evident in both H&E-stained
(Figures 2a and 3a) and Ki67-stained specimens (Figures 2b and 3b). Although demon-
strating higher hepatocyte proliferation compared to GF mice, hepatocyte proliferation in
XGF mice was still lower compared to WT mice (Figure 2b). Given differences between the
GF and control, the WT mice were more evident when observing the proliferative index
compared to observation of the LW/BW ratio and liver growth percentage.
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Figure 2. Hepatocyte proliferation following PHx in (a) hematoxylin and eosin-stained tissues and
(b) Ki67-stained liver tissues in wild-type (WT), germ-free (GF), and ex-germ-free (XGF) mice. Data
are presented as means ± SD for n = 3–4 mice per group and time point. ## = p < 0.01, ### = p < 0.001
compared to 0 h after PHx of the same mouse group. * = p < 0.05, ** = p < 0.01, *** = p < 0.001
compared between two mouse groups at a similar time point.
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Figure 3. Hepatocyte proliferation following PHx in (a) hematoxylin and eosin-stained tissues and 
(b) Ki67-stained liver tissues in wild-type (WT), germ-free (GF), and ex-germ-free (XGF) mice at 0 h 
and 72 h post PHx. Blue arrows = mitotic figures. 

2.3. Cytokine and Growth Factor Responses 
The priming phase of liver regeneration occurs during the first 5 h following PHx 

and is important in initiating liver regeneration of the remnant liver [11]. It is characterized 
by a cytokine response, mainly TNF-α and IL6. Here, we assessed the local response of 
the remnant hepatic tissue at 3 h post PHx via expression of Tnfrsf1a and Il6ra genes, which 
are genes encoding TNFR1 and IL6R proteins, respectively. 

Expression of Tnfrsf1a and Il6ra at 3 h post PHx in GF mice was significantly reduced 
compared to controls (Tnfrsf1a, p = 0.0006; Il6ra, p = 0.0006) (Figure 4). The reduced Il6ra 
expression was reflected in significantly reduced IL6RA protein concentration at 3 h post 
PHx in GF mice compared to controls (p = 0.0338) (Figure 5b). Expression of Tnfrsf1a and 
Il6ra in XGF mice at 3 h post PHx was similar to controls (Figure 4). There were no signif-
icant differences in tissue concentration of TNFR1 between the three mouse groups at any 
of the time points assessed (Figure 5a). 

Figure 3. Hepatocyte proliferation following PHx in (a) hematoxylin and eosin-stained tissues and
(b) Ki67-stained liver tissues in wild-type (WT), germ-free (GF), and ex-germ-free (XGF) mice at 0 h
and 72 h post PHx. Blue arrows = mitotic figures.

2.3. Cytokine and Growth Factor Responses

The priming phase of liver regeneration occurs during the first 5 h following PHx and
is important in initiating liver regeneration of the remnant liver [11]. It is characterized by
a cytokine response, mainly TNF-α and IL6. Here, we assessed the local response of the
remnant hepatic tissue at 3 h post PHx via expression of Tnfrsf1a and Il6ra genes, which are
genes encoding TNFR1 and IL6R proteins, respectively.

Expression of Tnfrsf1a and Il6ra at 3 h post PHx in GF mice was significantly reduced
compared to controls (Tnfrsf1a, p = 0.0006; Il6ra, p = 0.0006) (Figure 4). The reduced Il6ra
expression was reflected in significantly reduced IL6RA protein concentration at 3 h post
PHx in GF mice compared to controls (p = 0.0338) (Figure 5b). Expression of Tnfrsf1a
and Il6ra in XGF mice at 3 h post PHx was similar to controls (Figure 4). There were no
significant differences in tissue concentration of TNFR1 between the three mouse groups at
any of the time points assessed (Figure 5a).
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Expression of Hgf, the gene encoding hepatocyte growth factor (HGF), was also as-
sessed. HGF is responsible for initiation of DNA synthesis and progression of the hepato-
cyte through the cell cycle during cell proliferation. At 3 hr post PHx, expression of Hgf in 
GF mice was significantly lower compared to controls (p = 0.0047) and XGF mice (p = 0.011) 
(Figure 6a). Expression of Hgf in XGF mice at 3 h post PHx was similar to controls. Ac-
cordingly, there was a trend of lower tissue concentration of HGF at 3 and 72 h post PHx 
in GF mice compared to WT and XGF mice (Figure 6b). 
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Figure 4. RNA expression of (a) Tnfrsf1a and (b) Il6ra following PHx in WT, GF, and XGF mice. Data
are presented as means ± SD, for n = 3–4 mice per group and time point. # = p < 0.05, ## = p < 0.01,
### = p < 0.001 compared to 0 h after PHx of the same mouse group. ∆∆∆ = p < 0.001 compared to
the same mouse group at different time points (3 vs. 72 h after PHx). * = p < 0.05, *** = p < 0.001
compared to different mouse groups at a similar time point.
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Figure 5. Liver tissue concentration of (a) TNFR1 and (b) IL-6RA following PHx in WT, GF, and XGF
mice. Data are presented as means ± SD, for n = 3–4 mice per group and time point. # = p < 0.05
compared to 0 h after PHx of the same mouse group. ∆ = p < 0.05 compared to the same mouse group
at different time points (3 vs. 72 h after PHx). * = p < 0.05 compared to different mouse groups at a
similar time point.

Expression of Hgf, the gene encoding hepatocyte growth factor (HGF), was also
assessed. HGF is responsible for initiation of DNA synthesis and progression of the
hepatocyte through the cell cycle during cell proliferation. At 3 h post PHx, expression of
Hgf in GF mice was significantly lower compared to controls (p = 0.0047) and XGF mice
(p = 0.011) (Figure 6a). Expression of Hgf in XGF mice at 3 h post PHx was similar to
controls. Accordingly, there was a trend of lower tissue concentration of HGF at 3 and 72 h
post PHx in GF mice compared to WT and XGF mice (Figure 6b).
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Figure 6. (a) RNA expression of Hgf gene and (b) liver tissue concentration of HGF protein following
PHx in WT, GF, and XGF mice. Data are presented as means ± SD, for n = 3–4 mice per group and
time point. # = p < 0.05 compared to 0 h after PHx of the same mouse group. ∆ = p < 0.05 compared
to the same mouse group at different time points (3 vs. 72 h after PHx). * = p < 0.05 compared to
different mouse groups at a similar time point.
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2.4. Expression of Matrisome Genes

Expression of matrisome genes was observed in the different mouse groups. The 0 h
time point was used as a control to identify differentially expressed genes (DEGs) of the
matrisome at 3 h and 72 h post PHx in the respective groups. At 3 h post PHx in WT mice,
a total of 33 DEGs were upregulated and 25 DEGS were downregulated (total 58 DEGs). At
72 h post PHx, 49 DEGs were identified (41 upregulated and 8 downregulated) (Figure 7).
Notable upregulated DEGs include ECM regulators Serpine1 (log2FC = 3.42, p = 0.0012)
and Mmp8 (log2FC = 2.34, p = 0.0072) at 3 h post PHx and Lox (log2FC = 3.92, p = 0.0023),
Serpinb8 (log2FC = 2.56, p = 0.0023), and Loxl4 (log2FC = 2.52, p = 0.0023) at 72 h post PHx.
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Figure 7. Number of DEGs at (a) 3 h (0 h vs. 3 h) and (b) 72 h (0 h vs. 72 h) post PHx in wild-type
mice. Listed in tables are the DEGs, values in green represent positive log2FC indicating upregulation
and values in red represent negative log2FC indicating downregulation.
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In GF mice, a total of 69 (47 upregulated and 22 downregulated) and 71 (46 upregu-
lated and 25 downregulated) DEGs were identified at 3 h and 72 h post PHx, respectively
(Figure 8). Ex-germ-free mice demonstrated a total of 140 (106 upregulated and 34 downreg-
ulated) and 139 (111 upregulated and 28 downregulated) DEGs at 3 h and 72 h, respectively
(Figure 9). All mouse groups demonstrated a higher number of upregulated core matrisome
genes at 72 h post PHx, indicating increased distribution of ECM structural proteins for
hepatic remodeling.
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Figure 9. Number of DEGs at (a) 3 h (0 h vs. 3 h) and (b) 72 h (0 h vs. 72 h) post PHx in ex-germ-free
mice. Listed in tables are the DEGs, values in green represent positive log2FC indicating upregulation
and values in red represent negative log2FC indicating downregulation.

Comparison of the matrisome DEGs between the different mouse groups showed that
a total of 22 and 21 DEGs were similarly expressed by all three mouse groups at 3 h and
72 h post PHx, respectively (Figure 10). Notable commonly upregulated matrisome DEGs
were ECM regulators Adamts1, Agt, Serpina3f, Serpina3g, and Timp3 at 3 h, and Adam11,
Htra3, Loxl2, Serpinb8, and Serpinhl at 72 h post PHx. Clustering of samples using ANOVA
showed that XGF and WT mice had similar matrisome gene expression patterns at both 3 h
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and 72 h post PHx (Figure 11). The matrisome gene expression pattern of GF mice samples
was distinct from the other groups at 3 h and 72 h post PHx.
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Figure 11. Heatmap representation of matrisome gene expression in wild-type (WT), germ-free
(GF), and ex-germ-free (XGF) mice at (a) 3 h and (b) 72 h post PHx with hierarchal clustering
of genes (columns) and samples (rows). Green in the heatmap indicates upregulation, while red
indicates downregulation.

2.5. Expression of Collagen Genes

Upregulation of collagen genes was observed at 72 h post PHx, which coincides with
the early remodeling phase of liver regeneration. The remodeling phase is characterized
by increased production of ECM structural proteins, mainly collagen, for restoration of
normal hepatic architecture. All mouse groups demonstrated significant upregulation
of collagen genes at 72 h post PHx, which include Col1a1, Col1a2, Col3a1, Col4a5, Col5a2,
Col6a1, and Col6a2 in WT mice, Col1a1, Col5a2, Col6a1, and Col6a2 in GF mice, and Col1a1,
Col1a2, Col3a1, Col4a1, Col4a2, Col4a5, Col5a1, Col5a2, Col6a1, Col6a2, and Col6a3 in XGF mice
(Figure 12). Expression of Col1a1 (p = 0.0028), Col1a2 (p = 0.0028), Col5a1 (p = 0.0028), and
Col6a2 (p = 0.0028) (Figure 12a,b,g,j) was significantly lower in GF mice compared to WT
mice at 72 h post PHx. The heatmap representation of collagen gene expression between
the different groups demonstrates the highest expression of collagen genes in WT mice at
72 h post PHx (Figure 13).
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3. Discussion
3.1. Reduced Liver Mass Restoration, Hepatocyte Proliferation, and Immune Response in GF Mice

In this study, we confirmed reduced liver mass restoration following PHx in GF mice,
evident by the lower LW/BW ratio and liver growth percentage at 72 h post PHx. As liver
mass restoration is contributed to by hypertrophy and proliferation of hepatocytes, reduced
liver mass restoration in GF mice is suggested due to its reduced hepatocyte proliferation,
as observed in this study. Further investigation of hepatocyte proliferation mechanisms
reveals reduced immune response in GF mice, evident by reduced cytokine TNF-α and
IL6 receptor responses. Immune response following PHx is known to regulate hepatocyte
proliferation, whereby TNF-α and Il6 secreted by Kupffer cells prime hepatocytes in
preparation to exit their dormant phase and enter the cell cycle to proliferate.

Gnotobiotic mice have been shown to have an underdeveloped immune system due
to the lack of interplay between the commensal microorganism and the host immune
system [19]. Gut microbiota also plays a role in immune response following antigen
exposure [20]. Our findings indicating reduced liver regeneration in GF mice were in accor-
dance with previous studies, where reduced liver regeneration was observed following
PHx in mice with diminished LPS/TLR4 signaling. The reduced liver regeneration was
demonstrated in GF, and antibiotic-treated mice [5,21], and in LPS-hyposensitive, C3H/HeJ
mice [13,14]. Therefore, our findings reveal a further implication of an underdeveloped
immune system of the sterile mouse, and the importance of gut microbiota.

Taken together, these findings suggest that the reduced liver regeneration following
PHx in GF mice may be due to an impaired immune response. While highlighting the
role of the immune response in liver regeneration, we cannot exclude the fact that liver
regeneration occurred in GF mice, albeit at a reduced capacity, as shown from our findings.
Therefore, the role of the immune response pathway in the overall complex process of
liver regeneration—whether as a crucial pathway, or merely an auxiliary one—must be
further studied.

3.2. Improved Liver Regeneration in XGF Mice

To assess the role of gut microbiota in liver regeneration, we observed liver regen-
eration in GF mice that have been reconstituted with normal gut microbiota. Compared
to GF mice, XGF mice demonstrated increased liver mass restoration, hepatocyte prolif-
eration, and cytokine response, indicating an overall improved liver regeneration post
PHx. Improved liver regeneration in XGF mice may be attributed to the re-establishment
of gut microbiota allowing secreted LPS to reach the remnant liver following PHx. LPS
acting on its TLR4 receptor induces Kupffer cells to secrete TNF-α and IL-6 and initiate the
regenerative response [7,8]. Subsequent hepatocyte proliferation and liver mass restoration
therefore proceeds normally following a normal cytokine response, as demonstrated in our
current study. This is consistent with previous studies, where inhibition of LPS/TLR4 sig-
naling leads to impaired liver regeneration [13]. It has been demonstrated that colonization
of sterile gut with normal gut microbiota promotes physiological and structural functions
of the intestinal barrier, which further contributes to the intestinal homeostasis [22]. As
LPS originates from intestinal bacteria, normal intestinal homeostasis and normal intestinal
wall function are important in allowing a proper LPS response following PHx.

Improved liver regeneration in XGF mice may also be due to an improved immune re-
sponse in these mice, evident by the increased cytokine TNF-α and IL-6 receptor responses.
The introduction of gut microbiota may promote immune system development in these
previously sterile mice, which are known to have an underdeveloped immune system.
While assessment of the immune system of these mice prior to PHx was not assessed,
phenotypical changes were observed in XGF mice in the form of increased liver mass. The
LW/BW ratio of XGF mice prior to PHx was similar to the control mice and significantly
higher than that of their sterile counterpart, therefore further demonstrating physiological
and structural improvements in XGF mice.
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Taken together, these findings suggest that the improved liver regeneration in XGF mice
may be due to re-establishment of normal gut microbiota and subsequent re-establishment
of the immune response following PHx, in addition to the improved immune system of
XGF mice.

3.3. Role of Cytokine Receptors in Liver Regeneration

The role of cytokines in liver regeneration have been extensively studied, especially
the cytokines IL-6 and TNF-α [1,23]. Our study has further established the role of IL-6
and TNF-α by demonstrating upregulation of genes responsible for the receptors of these
cytokines. These are the Il6ra gene, which encodes for the IL-6 receptor Il-6RA, and Tnfrsf1a,
which encodes for the TNF-α receptor TNFR1.

In both WT and XGF mice, upregulation of Tnfrsf1a and Il6ra occurred at 3 h post PHx,
coinciding with the priming phase of liver regeneration. During the proliferative phase,
at 72 h post PHx, both Tnfrsf1a and Il6ra genes returned to baseline levels in both mouse
groups. Interestingly, genes encoding the cytokines themselves were not upregulated, sug-
gesting that increased TNF-α and IL-6 levels occur systematically, and that the liver tissue
response is to upregulate the receptors to capture the incoming cytokines. Accordingly, in-
creased TNF-α and IL-6 plasma levels following PHx is an established phenomenon [24,25].
The local tissue response, however, is not well studied. Therefore, our findings of upregu-
lation of receptors in the hepatic tissue further enhance our understanding of the role of
cytokines and their receptors during liver regeneration.

Germ-free mice, however, showed no significant upregulation of both Tnfrsf1a and
Il6ra at 3 h post PHx, while at 72 h post PHx, Il6ra was significantly upregulated compared
to the 3 h time point. The absence of Tnfrsf1a and Il6ra upregulation during the priming
phase may indicate a delayed cytokine response in this mouse group. An increase in TNF-α
and IL-6 plasma levels post PHx in GF mice may only occur at a later stage, suggested by
the upregulation of Il6ra at 72 h post PHx. The delayed cytokine response, together with
subsequent reduced liver growth in absence of gut microbiota, further establishes the role
of cytokines in liver regeneration.

3.4. Role of Matrisome in Liver Regeneration

Our study demonstrated changes in matrisome expression during liver regeneration.
Changes in ECM components have been shown to occur throughout liver regeneration,
starting from the priming phase [26,27]. However, changes in the ECM-associated proteins
have been less studied. In our study, observed changes in the expression of ECM structural
components and ECM-associated proteins occur at both the priming phase (3 h post PHx)
and proliferation/remodeling phase (72 h post PHx) of liver regeneration, which is in
accordance with the proposed role of the matrisome in re-establishment of normal hepatic
structure after PHx.

Expressed genes during the priming phase were that of ECM regulators involved
in ECM degradation. This includes the family of proteolytic enzymes such as ADAMTS
and MMPs, and their regulatory inhibitors such as TIMPs and Serpins, which regulate
proteolytic activity. Degradation of hepatic ECM leads to release of ECM-bound hepatocyte
growth factor (HGF), a known mitogen for hepatocytes, and therefore, ECM plays an
important role for hepatocyte proliferation [9,24]. This was in accordance with previous
studies demonstrating increased expression of proteases and their regulatory inhibitors
during the priming phase of liver regeneration [10,28–30].

It was also observed that expression of ECM structural proteins (core matrisome
component) was minimal during the priming phase. However, during the remodeling
phase, there was a significant increase in expression of ECM structural proteins, especially
collagen. The ECM structural proteins play an important role in hepatic remodeling and
restoration of normal hepatic architecture during the remodeling phase, most likely via
activated HSC [16,17]. Our findings of increased collagen expression in the mouse groups
at 72 h post PHx is therefore in accordance with the literature. There was also increased
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expression of ECM regulators responsible for ECM stabilization, such as the LOX family of
proteins. The LOX family of enzymes contributes to covalent crosslinking between collagen
and elastin, which is important for stabilizing matrix components and contributing to the
tensile strength and structural integrity of tissues [31,32].

Taken together, our findings indicate the dynamic role played by the matrisome
during liver regeneration. Both ECM-associated proteins and structural ECM proteins are
expressed appropriately according to the requirement of the regenerating liver.

3.5. Matrisome Expression in GF and XGF Mice

Germ-free mice demonstrated a distinct matrisome expression pattern compared with
WT mice. It was observed that in GF mice there was a lower percentage of upregulated
DEGs and a higher percentage of downregulated DEGs at 72 h post PHx compared with
the WT mice. Collagen expression at 72 h post PHx was also significantly lower in the
GF mice compared with the WT mice. This suggests that reduced liver regeneration in
GF mice is also associated with reduced matrisome and collagen expression during the
remodeling phase.

Matrisome expression in XGF mice was similar to mice at both 3 h and 72 h post PHx.
There were also no significant differences in collagen expression of XGF and WT mice
at 72 h post PHx. The similar pattern of matrisome gene expression of XGF to WT mice
indicate the role of gut microbiota in liver regeneration. As XGF mice were previously
sterile, reintroduction of gut microbiota resulted in an improved matrisome gene expression
of XGF mice to become similar to that of WT mice.

Although XGF mice demonstrated improved matrisome expression, differences be-
tween XGF and WT mice were still present. These included the higher number of DEGs in
XGF mice at 3 h and 72 h post PHx compared with the WT mice. Comparison between the
two groups also demonstrated matrisome genes that were exclusively expressed in either
XGF or WT mice at 3 h and 72 h post PHx. Furthermore, the heatmap representation of
collagen genes showed a degree of higher collagen gene expression in WT mice compared
to XGF mice. This could be due to dissimilarity in the gut microbial composition between
the two groups, as the gut microbiota in XGF may not have fully equilibrated with that of
the WT mice. Normalization of gut microbiota following reconstitution has been reported
to take from one week to more than 20 days [33]. Changes in hepatic expression following
introduction of microbiota in GF mice are observed to vary according to the composition
of the administered microbiota [34–36]. In addition, GF mice are known to have impaired
intestinal barrier structure and function [22]. These differences may account for the dif-
ferent matrisome gene expression and regenerative response in the WT and XGF mice in
our study.

4. Material and Methods
4.1. Animals

Male mice, 8–10 weeks old, were used in the study. Wild-type mice of the C57BL/6 strain
were acquired from Charles River, UK, and were housed in a temperature and humidity-
controlled room under a 12 h light–dark cycle and maintained on a standard mouse diet
with free access to water. Germ-free mice (C57BL/6 background) were bred in the BSU
(Biological Service Unit), University College Cork (UCC), Ireland. All GF mice were kept in
a gnotobiotic facility and were housed in flexible plastic isolators. Germ-free mice were
given autoclaved food and sterile tap water. Regular fecal monitoring was performed to
ensure that they remained free from all bacteria, exogenous viruses, fungi, and parasites.
Recolonization of GF mice with normal gut microbiota was performed by exposing GF
mice with fecal material from normal WT mice for one week, as mice are coprophagic (fecal
eating) animals.
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4.2. Animal Ethics

All experiments were undertaken in accordance with Irish Medicine Board Acts 1995
and 2006, Project Authorization numbers AE19125/P050 and AE19130/P038, and the
Animal Care Research Ethics Committee (ACREC), University of Galway, and the Animal
Experimental Ethics Committee (AEEC), University College Cork, application number
15/DEC/02. Universiti Sains Islam Malaysia (USIM) ethical approval was obtained from
Jawatankuasa Etika Haiwan (JKEH) USIM (Reference number USIM/AEC/AUP/2018(1)).

4.3. Anesthetic Protocols

Wild-type mice and XGF mice underwent a 70% PHx or sham laparotomy under in-
halational isoflurane anesthesia. Isoflurane was administered to the mice at a concentration
of 4% in an induction chamber and was maintained at 1.5–2.0% during the surgery. Isoflu-
rane was vaporized in a continuous 500–1000 mL oxygen flow. The core temperature was
continuously monitored throughout the procedure. The level of anesthesia was assessed
by monitoring the respiratory rate, righting reflex, and pedal withdrawal in response to
pain stimulus. Partial hepatectomy or sham laparotomy in GF mice was performed under
Ketamine (100 mg/kg)/Xylazine (10 mg/kg) anesthesia (i.p.) under sterile conditions.

4.4. Partial Hepatectomy and Sampling of Tissues

Partial hepatectomy in WT mice was performed in the Microcirculation Research
Laboratory (MRL), University of Galway. Partial hepatectomy in GF mice was performed
in the flexible plastic isolators at the BSU, UCC. Partial hepatectomy in XGF mice was also
performed in the BSU, UCC.

Mice underwent a two-thirds PHx with removal of the right medial, left medial, and
left lobes, which constitute 70% of the total liver volume. Control (0 h) mice underwent
gentle manipulation of liver lobes without excision (sham operation) and were killed
immediately after the sham operation. Sampling of the remnant liver tissue was done at 3,
and 72 h following initial surgery.

Samples for molecular studies were collected and kept in RNAlater (Sigma, St. Louis,
MO, USA). Liver tissues were fixed in 10% formalin solution and embedded in paraffin for
histology studies. All samples were shipped to the Faculty of Medicine and Health Sciences,
Universiti Sains Islam Malaysia, at either 4 ◦C or −20 ◦C (World Courier, Dublin, Ireland).

4.5. Liver Weight/Body Weight Ratio (LW/BW)

Liver mass restoration was estimated from the animal’s LW/BW ratio at 0 h and
72 h time points. The regenerating liver was removed en bloc, and the liver weight was
measured. The LW/BW ratio was calculated as: LW/BW ratio (%) = 100 × (regenerating
liver weight/body weight). The percentage of liver growth was then calculated from the
LW/BW ratio.

4.6. Histology
4.6.1. Hematoxylin and Eosin Staining, and Mitotic Count

Paraffin-embedded liver tissues underwent preparation and were subsequently stained
with hematoxylin and eosin stain as per standard protocols. Hepatocyte mitotic activity
was assessed using H&E-stained liver sections under light microscopy. Mitotic figures
were counted in 25–30 high-power fields (HPF; ×400 magnification) in each tissue sec-
tion. Investigators were blinded to mouse group time after PHx. Data were expressed as
mitotic figures/HPF. Four to six tissue sections were examined for each time point and
animal group.

4.6.2. Ki67 Immunohistochemical Staining and Proliferative Index

Tissue slides were deparaffinized and rehydrated prior to an antigen retrieval process,
whereby tissue slides were heated in sodium citrate buffer. This was followed by incubation
in methanol 0.3% hydrogen peroxide and bovine serum albumin (BSA) for deactivation
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of endogenous peroxidase activity and blocking of nonspecific tissue proteins, respec-
tively. Incubation with primary Ki67 monoclonal antibodies (Clone SP6, Novus Biologicals,
Centennial, CO, USA) at 4 ◦C overnight was followed by incubation with biotinylated
polyclonal anti-rabbit antibodies (Novus Biologicals, USA) as secondary antibodies. Elite
ABC kits (Vektor Laboratories, Newark, CA, USA) were used to enhance immunoreactiv-
ity. Subsequent chromogen staining using diaminobenzidine hydrogen peroxide (Sigma,
St. Louis, MO, USA) and hematoxylin counterstain was employed. Randomized HPF was
selected from each group for proliferative index counting. The proliferative index was
counted as number of Ki67-positive cells out of 100 cells.

4.7. Protein Assay

Protein extraction was done using the Tissue Protein Extraction Reagent (T-PER)
(Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. For
protein assay, the mouse premixed multi-analyte kit (R&D Systems, Inc., Minneapolis, MN,
USA) was used according to the manufacturer’s protocol. The Luminex MAGPIX analyzer
was used to read the microparticle beads.

4.8. Statistical Analysis

All results were expressed as mean values ± standard deviation (SD). Data were ana-
lyzed using the Mann–Whitney test and the Kruskal–Wallis one-way analysis of variance
(ANOVA) with Dunn’s multiple comparisons test using GraphPad Prism for Windows
(Version 5.00, GraphPad Software, San Diego, CA, USA). Two-way ANOVA with Tukey’s
multiple comparisons test was used in the analysis of mitotic index and percentage of
Ki67-positive cells. A p-value of <0.05 was considered statistically significant.

4.9. RNA Sequencing and Analysis
4.9.1. RNA Sequencing

RNA extraction was done using the RNeasy mini kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The RNA integrity number (RIN) was evaluated
using the Agilent 2100 Bioanalyzer (Agilent, CA, USA), and samples with RIN between 8
and 10 were selected for sequencing. Library preparation was done using a TruSeq RNA
Sample Preparation Kit (Illumina, CA, USA). Sequencing was performed using the Illumina
HiSeq 2500 system (Illumina, CA, USA).

4.9.2. Transcriptome Data Analysis

Filtered reads were mapped to the reference genome related to the species using
TopHat, and gene expression level was measured with Cufflinks v2.1.1 [37,38]. Analysis of
differential expression was performed by Cuffdiff [39]. DEGs were identified on the q-value
threshold less than 0.05 for correcting errors by multiple testing [40]. Genes were classified
according to biological process, cellular component, and molecular function using the gene
ontology (GO) database. The GO-based trend test was performed using the Fisher’s exact
test to characterize the identified genes. Selected genes of p-values < 0.001 were regarded
as statistically significant.

5. Conclusions

This study has demonstrated that reintroduction of gut microbiota in GF mice im-
proves liver regeneration following PHx, indicating a role of gut microbiota in liver re-
generation. However, whether gut microbiota is truly significant for liver regeneration
remains a question. Due to the complex nature of liver regeneration involving multiple
pathways, redundancy may occur, whereby the absence of LPS may be compensated by
other pathways; hence, gut microbiota may just partially contribute to the process. Our
data also indicate that the interaction between gut microbiota and hepatic matrisome may
play a crucial role in liver regeneration, particularly in the hepatic remodeling phase.
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6. Limitations of the Study

A lack of correlation between mRNA and protein expression was observed in this study.
This could be explained by various factors. Firstly, liver regeneration is a dynamic process
and is spatiotemporally determined. Therefore, there is a possibility that protein synthesis
might have been delayed, leading to differences seen in mRNA expression and protein
concentrations. Secondly, regulation of synthesis and degradation rates may also affect
the variability in protein concentration, which can be independent to the corresponding
mRNA levels.
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