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Abstract: Understanding the complexities of the human brain and its associated disorders poses a
significant challenge in neuroscience. Traditional research methods have limitations in replicating
its intricacies, necessitating the development of in vitro models that can simulate its structure and
function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted
brain models, and functionalized brain organoids, offer promising platforms for studying human
brain development, physiology, and disease. These models accurately replicate key aspects of human
brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies
while providing insights into human-specific phenomena not easily studied in animal models. The
use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures,
with various techniques developed to generate specific brain regions. These advancements facilitate
the study of brain structure development and function, overcoming previous limitations due to the
scarcity of human brain samples. This technical review provides an overview of current 3D in vitro
models of the human cortex, their development, characterization, and limitations, and explores the
state of the art and future directions in the field, with a specific focus on their applications in studying
neurodevelopmental and neurodegenerative disorders.

Keywords: neuronal development; cortical organoids; iPSC; neurons; astrocytes; microglia;
Alzheimer’s disease; 22q11 syndrome; bioprinting

1. Introduction

The human brain is one of the most complex organs in the body and is the center of
the central nervous system. Understanding its function and disease processes, especially
neurodevelopmental and neurodegenerative disorders, is a major challenge in modern
neuroscience. While traditional methods such as animal models and post-mortem studies
have contributed greatly to our knowledge, they have limitations and may not fully reflect
the human condition. As a result, there is a growing need for in vitro models that can
simulate the complex structure and function of the human brain.

Three-dimensional (3D) in vitro models of the human brain, such as organoids, cere-
bral organoids, three-dimensional bioprinted brain models, and functionalized brain
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organoids, have the potential to provide a platform for the study of human brain de-
velopment, physiology, and disease. These models can recapitulate various aspects of
human brain anatomy, gene expression, and cellular behavior, making them useful tools
for drug discovery and toxicology studies [1]. Moreover, 3D in vitro models allow for the
exploration of human-specific phenomena that cannot be studied in animal models. The
use of 3D in vitro models for the study of neurodevelopmental and neurodegenerative dis-
orders has gained significant attention in recent years thanks to the availability of different
types of stem cells.

Human pluripotent stem cells (hPSCs), which include embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs), are known for their remarkable self-organization
and ability to form neural cells as a default pathway when spontaneously aggregated
into 3D spheres [2]. Yoshiki Sasai’s lab made a breakthrough by demonstrating how
ESCs cultured in 3D aggregates could spontaneously generate highly organized brain
structures [3,4]. Furthermore, by utilizing the extracellular matrix support of Matrigel,
Lancaster and colleagues created a more complex 3D tissue from hPSCs, called a cerebral
organoid, that closely resembles a growing human brain [5]. These developments in stem
cell research and our understanding of developmental biology have led to the creation of
various techniques for generating brain regions over the past decade. These techniques
have been extensively reviewed [6–11] and are generally categorized into two groups
based on patterning approaches. Unguided protocols rely on the intrinsic differentiation of
PSCs without growth factor patterning, resulting in brain organoids that contain a diverse
mixture of neurons, glia, photoreceptor cells, and even cells of non-ectodermal origin [5].
However, this method is hampered by variability in the emergence and size of different
brain regions, making it difficult to study the development and function of specific brain
structures. On the other hand, guided protocols use small molecules and patterning growth
factors to direct cells towards a specific fate, resulting in the enrichment of a region of
interest [4,12]. A wide range of region-specific brain organoids have been generated using
guided protocols, including the cortex [12,13], cerebellum [14], hippocampus [15], pituitary
gland [16], hypothalamus [17,18], spinal cord [19], thalamus [20,21], choroid plexus [22],
striatum [23], and optic cup [24]. The choice of protocol for generating cerebral or region-
specific brain organoids depends on the scientific questions being addressed. Nonetheless,
the ability to generate different brain regions with distinct cellular identities from PSCs
in vitro provides access to human-specific brain development and pathophysiology, which
was previously limited by the scarcity of embryonic human brain samples.

In this technical review, we aim to provide an overview of current 3D in vitro models
of the human cortex, including organoids, cerebral organoids, 3D bioprinted brain models,
and functionalized brain organoids, and their applications in the study of neurodevelop-
mental and neurodegenerative disorders. The review will cover various aspects of these
models, including their development, characterization, and limitations, and will discuss
the current state of the art and future directions in this rapidly evolving field.

2. From 2D to 3D: The Rise of Cerebral Organoids for Studying Human Brain
Development

The development and maturation of the human brain are complex processes that
rely on the intricate interactions between neuronal and glial cells and the establishment of
connections with other brain regions. Two-dimensional (2D) stem-cell-based models have
contributed to our understanding of different molecular processes involved in human brain
development, function, and neurodegeneration [25–29], but these models lack the complex
cytoarchitecture of the cerebral cortex, limiting their ability to study the 3D interaction of
brain cells during development. To address this limitation, human-derived brain organoids,
which are self-assembled, organized structures composed of neuronal and glial cells, have
emerged as valuable tools to study the developing brain under both physiological and
pathological conditions, enabling the study of previously inaccessible aspects in a controlled
laboratory setting (for a systematic review, see [30]).
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Since the early 1990s, researchers have been actively pursuing methodologies to in-
duce neural differentiation from pluripotent stem cells (PSCs) in three-dimensional (3D)
environments [31]. However, it is important to note that not all 3D neural culture systems
can be classified as brain organoids. Neurospheres, for instance, are 3D aggregations of
various cell types derived from neural progenitor cells within the central nervous system
(CNS) [31]. The neurosphere culture system has been extensively utilized for compre-
hensive investigations into the proliferation, self-renewal capabilities, and differentiation
potential of neural stem cells [32,33]. Neurospheres represent an in vitro model system
consisting of clusters of neural progenitor cells (NPCs), including neural stem cells [34].
These neurospheres are derived from isolated primary tissue or low-passaged NPCs ob-
tained from induced pluripotent stem cells (iPSCs) and are cultured for limited periods
before being utilized in various research applications. Neurospheres have been widely
employed as the conventional method for NPC culture, with over 2000 publications since
the original report by Reynolds [31]. They are particularly favored for obtaining NPCs
from neurogenic areas in animal and human tissues [35]. Typically cultured in serum-free
medium supplemented with fibroblast growth factor 2 (FGF-2) and epidermal growth factor
(EGF), neurospheres do not require an adherent substrate that supports NPC expansion.
This unique culture system provides an unparalleled platform to assess the stem-cell-like
behavior of neurogenic tissue and enables investigations into the molecular and cellular
characteristics of NPCs for in vivo transplantation in mice and humans [36–38]. However,
despite their widespread use, maintaining neurosphere cultures can be challenging due to
their rapid growth and substantial apoptosis. NPC cultures necessitate frequent dissocia-
tion and passaging every 7–10 days to control the neurosphere size and prevent excessive
cell death. It is important to note that neurosphere cultures are most useful within the
first 5–10 passages, as prolonged passaging can lead to aneuploidy and the selection of
clones that may alter the intrinsic properties of NPCs [35]. Furthermore, neurospheres are
limited in their ability to determine the self-renewal capacity of NPCs due to the fusion of
neurospheres in vitro, making them non-clonal [34]. Criticism has been directed towards
the use of neurospheres in vitro, suggesting that neurosphere formation may be an artifact
of any cultured cell in the absence of a substrate and under the influence of selected growth
factors, thus lacking intrinsic biological significance.

However, the emergence of cerebral organoid technology as a model system for human
brain development provides new evidence to support the contention that neurosphere
3D aggregates may indeed convey biological relevance (see Table 1). Overall, while neu-
rospheres have been widely utilized and serve as a valuable tool for NPC culture and
exploration, their maintenance can be challenging, and there are limitations regarding their
clonality and biological significance. The advent of cerebral organoids offers an exciting
avenue for further understanding the biological implications of neurosphere 3D aggregates.

Recent advances have led to the development of 3D in vitro models that recapitulate
the hallmarks of the developing cerebral cortex [39] (Figure 1). Human pluripotent stem
cells (hPSCs) have an inherent tendency to differentiate into the neuroectodermal lineage
and generate neural tissue even in the absence of external patterning factors, thanks to their
“neural default pathway” [9,40]. Lancaster and Knoblich [40] described the development
of cerebral organoids from hPSCs by utilizing the self-organization and self-patterning
ability of hPSCs, along with minimalistic media and matrix-embedding techniques. Their
protocol led to the generation of neuroectodermal tissue, primarily in the form of neural
rosettes, which recapitulated the tissue architecture of the germinal zones of neural stem
and progenitor cells, with differentiated neurons migrating outward. This technique, which
produced organoids with broad regional identities, was thus named cerebral organoids.
These 3D structures, thanks to Matrigel droplet embedding, are able to perform apicobasal
expansion of neuroepithelial buds through the basement scaffold of the extracellular mem-
brane provided by Matrigel. After the subsequent transfer to a rotating bioreactor for
greater nutritional absorption, the neuroepithelial regions began to generate fluid-filled
cavities similar to ventricles. Over time, these structures became increasingly complex
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generating populations of cortical progenitors. For terminal differentiation, retinoic acid
was added, and several populations of neural progenitors appeared, including radial glia
cells, the progenitor cells responsible for the formation and the correct alignment of cortical
neurons in space. At this point, in some regions of the organoid, the ventricular (VZ) and
subventricular zones (SVZ) were formed and, similar to neurogenesis in vivo, the neural
progenitors began to migrate and differentiate by forming the layers of the cortical plate [8].
As well as the neuronal layers of the cerebral cortex and because of the lack of external
inductive signals, a variety of regional identities are also present in whole-brain organoids.
These structures spatially and functionally resemble different regions of the developing
brain including the hindbrain, midbrain, forebrain, and retinal tissues.

Table 1. Comparison of neurospheres and brain organoids in 3D neural cell culture.

Pros of Neurospheres Pros of Brain Organoids

- Three-dimensional aggregates of differentiated
neural cells or neural progenitor cells derived
from isolated primary tissue or iPSCs

- Organized 3D structures derived from
embryonic stem cells or induced pluripotent
stem cells (iPSC)

- Homogeneous population of neural cells
- Heterogeneous population of neural cells that

closely resemble the composition of the
developing brain

- Simple and rudimentary structures - Complex structures

- Rapid growth for a limited period of time - Maturation over an extended period of time

- Convenient system for studying early neural
development and basic cellular and molecular
processes (e.g., effects on gene expression,
signaling pathways, drug treatment,
proliferation, and differentiation potential)

- Platform for more sophisticated analysis (e.g.,
electrophysiological activity, synaptic
connections, disease modeling, drug screening,
and testing)

Interestingly, the different brain identities present inside the cerebral organoids are
not randomly dispersed; in fact, some of the neighboring regions have boundaries that
resemble borders found in vivo. During brain development, the presence of multiple
organizing centers near the neuroepithelial sheet has a crucial role in releasing different
morphogen gradients responsible for brain patterning. The different combinations of
several signaling factors will affect the cellular-specific regional identities. Among the
organizing centers, hem and antihem are responsible for telencephalic signaling. The
former is located at the midline adjacent to the choroid plexus and dorsal telencephalon
and releases bone morphogenetic proteins (BMP) and Wnts involved in dorsal identities.
The latter instead sits opposite the hem and separates dorsal and ventral telencephalic
regions through the expression of various morphogens including Wnt antagonists. In
cerebral organoids, the VZ-like structure has abrupt borders between the dorsal (TBR2+)
and ventral (GSX2+) forebrain identities as would be found at the antihem, as well as being
tissue-positive for Wnt2b and BMP6, molecules produced by the hem in vivo, observed
adjacent to choroid plexus, which was immediately followed by the presence of dorsal
telencephalic tissue (TBR2+) [41]. These suggest that self-patterned organoids are able to
develop into complex brain architectures without any cues or a body axis for reference.
Neuroepithelial tissue is also capable of spontaneously setting up signaling centers and
developing local tissue patterning.

A major limitation of cerebral organoids is their high batch-to-batch variability due
to the stochastic nature of the spontaneous differentiation of human pluripotent stem
cells (hPSCs) [42]. This unpredictability and inconsistency in development can be seen
even when comparing brain organoids from the same differentiation batch, affecting the
model’s repeatability and applicability [5,43,44]. To mitigate this issue, researchers have
developed various methods to decrease or eliminate batch-to-batch variability in cerebral
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organoids. For example, Lancaster and colleagues successfully improved and standardized
the workflow of cerebral organoid generation using poly(lactide-co-glycolide) copolymer
fiber microfilaments to generate elongated embryoid bodies (EBs) [45]. They discovered that
organoids at the embryoid body stage were relatively homogeneous, whereas variability,
especially between batches, increased during neural induction. This increase in variability
may be due to the low surface-area-to-volume ratio, which can influence neuroectoderm
development on the exterior of the embryoid body.
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Figure 1. Guided and unguided approaches for differentiating human iPSCs into diverse neural
organoids. Human hiPSCs can be cultivated in self-organizing 3D cultures to yield either un-
guided neural organoids, also known as whole-brain organoids, or regionalized neural organoids
through guided approaches. The unguided methods (top) rely on the intrinsic signaling and self-
organization capacities of hiPSCs, leading to their spontaneous differentiation into organoids that
closely resemble developing brain tissues. These organoids exhibit heterogeneity, representing vari-
ous brain regions. To mitigate this variability and enhance cell survival, microfilament-engineered
cerebral organoids (enCORs) and air–liquid interface cerebral organoids (ALI-COs) have been de-
veloped. The guided approaches (bottom) utilize specific small molecules and growth factors to
generate spheroids that predominantly represent a particular tissue type, reducing heterogeneity and
promoting standardization.

Taking advantage of recent findings on micropatterned substrates, Lancaster and
colleagues engineered microfilament-based cerebral organoids (enCORs) with increased
surface area, dense cell composition, and polarized neural ectoderm formation. Notably,
the efficiency of neuroectoderm formation was improved, and the amounts of endoderm
and mesoderm identities decreased, in contrast to whole-brain organoids, which typically
develop non-ectodermal identities. The quantification of these identities revealed the
reproducible production of neuroectoderm in enCORs with minimal non-neural tissues,
whereas spheroids had highly variable levels of all germ layer identities [45].

Another important limitation of cerebral organoids is the lack of a homogeneous
and deep oxygen and nutrient supply, leading to the necrosis of cells deep within the
organoid. To overcome this limitation, Lancaster and colleagues developed a novel method
based on the organotypic slice culture technique, generating air–liquid interface cerebral
organoids (ALI-COs). They demonstrate that ALI-COs improve neuronal survival and
morphology compared to whole brain organoids when kept in culture for several years.
In fact, they notice that whole-brain organoids after months of growth show a significant
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loss of neurons and start to accumulate reactive astrocytes on the edge of the organoid.
In contrast, ALI-COs show an extensive axon outgrowth reminiscent of in vivo nerve
tracts. Additionally, astrocytes grown inside ALI-COs displayed healthier morphology,
with numerous fine processes. These findings suggest that ALI-COs could be a useful
in vitro model for investigating the later stages of neuronal maturation and neurological
diseases [44,46].

3. Beyond Batch Syndrome: Guiding Cellular Fate in Brain Organoid Development

Self-assembled organoids were found to be limited in their usefulness for modeling
specific brain regions and therefore for studying the regional mechanisms of brain develop-
ment, due to their lack of spatial organization. To overcome these limitations, researchers
have developed novel 3D brain models modulating specific morphogen-related signaling
to commit iPSCs towards a specific neuronal fate. These organoids can be directed to-
wards the development and maturation of specific brain regions and are named patterned
organoids [12,17] (Figure 1).

To produce patterned organoids, single pluripotent stem cells, neuronal progenitors,
or neuroepithelial stem cells are seeded in microwells, such as Aggrewell, U-bottom
wells, or 3D-printed supports, to form embryoid bodies (EBs). The concurrent use of
inhibitors of the BMP, TGF-ß, and WNT signaling pathways, respectively, accelerates the
induction of the differentiation into forebrain lineage cells [21,47]. Indeed, SB-431542, LDN-
193189, and XAV939 prompt cells to activate a differentiation program that directs their
development and maturation into neurons or glial cells of the cerebral cortex; additionally,
the addition of SHH and CHIR-99021 commits cells to differentiate in midbrain cells,
thereby avoiding the “batch syndrome” that characterizes the generation of unguided brain
organoids. Specifically, by inhibiting TGF-β signaling using SB-431542, BMP signaling with
LDN-193189, and Wnt signaling with XAV939, it is possible to promote the generation of
specific cortical neuronal populations, regulating the balance between stem cell self-renewal
and differentiation and thus the formation of cortical layers within the organoids. Pasca
and colleagues in 2015 generated dorsal forebrain-like structures from pluripotent stem
cells, called human-cortical spheroids (hCSs) via the addition of small molecules such
as dorsomorphin and SB431542, which inhibit bone morphogenic proteins (BMPs) and
TGF-β signaling, enhancing the neuroectoderm fate. It has been demonstrated through
the analysis of hCSs’ transcriptional profiles that they exhibit developmental maturity
and regional identity during their maturation into two distinct time points such as day
52 and day 76 of hCS development. In particular, they found a strong overlap between
hCSs and cortical developmental stages up to late–mid-fetal periods (19–24 PCW). Qian
and colleagues performed a large-scale comparison of transcriptome datasets between
organoids and 16 different human brain areas at different developmental stages, revealing a
temporal correlation between hCSs and fetal human brain development, particularly in the
prefrontal cortex. In this regard, organoids at day 50 showed a transcriptional profile closely
related to the prefrontal cortex at post-conception week (PCW) 8–9, while organoids at
day 100 were more similar to brain regions during the 35th PCW. During hCSs maturation,
there is an up-regulation of synaptic transmission genes and a down-regulation of genes
involved in the cell cycle and cell division [12,17]. Similarly to in vivo corticogenesis, day 14
forebrain organoids show both proliferative zones containing neural progenitors organized
inside VZ-like structures as well as GFAP (glial fibrillary acidic protein)-positive extensions
resembling radial glia [48]. Moreover, it has been shown that in this time window, hCSs also
express forebrain-specific progenitor markers, including PAX6, OTX2, and FOXG1, with
minimal expression of markers for other brain regions, while at day 28, there is a consistent
increase in TUJ1/CTIP2-positive cells [17]. With further development of the hCSs, the
separation of early-born CTIP2 (which labels neurons of layer V)-positive neurons and late-
born SATB2+ (which labels neurons of layers II–IV) neurons becomes evident, indicating
the specification of deep and upper cortical layers. Immunostaining analysis performed at
days 56 and 70 demonstrated that SVZ-containing neurons express low amounts of CTIP2,
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a transcription factor which is related to migrating neurons, while at day 84, late-born
SATB2+ neurons formed a layer partially separated from the early-born CTIP2+ layer,
suggesting the specification of upper and deep cortical layers [17].

It has also been demonstrated that glial cells, including astrocytes and oligodendro-
cytes, are present within cortical organoids. Astrocytes have been recently demonstrated
to be crucial in the regulation and modulation of synaptogenesis [49,50]. Astrogenesis, as
well as the maturation of astrocytes, is indeed another key point for proper corticogene-
sis [51,52]. Several studies revealed the presence of astroglial cells, positive for GFAP and
S100 calcium-binding protein-β (S100b) [12,53], thus suggesting that cerebral organoids are
valuable tools for studying astrogenesis and the role of astrocytes in corticogenesis. Finally,
electrophysiological recordings on both whole and sliced organoids at day 130 have shown
that cells exhibit spontaneous synaptic activity and are capable of generating repetitive
action potentials when depolarized, confirming the presence of a proper neuronal network
and synaptic functionality [54].

4. Improving Brain Organoids by Introducing Microglia and Vascularization

Brain organoids face a significant drawback due to their absence of vascularization
and microglia, which are crucial components in the development and functioning of the
brain. Microglia are essential for maintaining homeostasis and the immune response in the
brain [55–60], and the absence of microglia in brain organoids limits not only their ability to
accurately model all brain diseases characterized by the presence of a neuroinflammatory
state but also the correct brain development and function in physiological conditions.

Microglia, the primary neuroimmune cells in the brain, originate from erythro-myeloid
progenitors in the embryonic yolk sac and differentiate into microglia after migrating into
the developing brain. Microglia are sustained through self-renewal processes dependent on
cytokines like IL-34 and CSF-1, as well as transcription factors such as PU.1 and interferon-
regulatory factor 8. Their primary role is immune surveillance, where resting microglia
constantly monitor the brain environment, while activated microglia respond to patholog-
ical insults and eliminate harmful species through various mechanisms of phagocytosis.
Furthermore, microglia contribute to neural development, synaptic formation and plas-
ticity, and neural network maturation. They regulate neural development by colonizing
cortical proliferative zones and phagocytosing neural precursor cells. During postnatal
brain development, microglia actively prune weak synapses, thereby shaping neuronal
circuits [58,60,61].

Neuronal lineage cells originate from the ectoderm, while differentiation into endo-
derm and mesoderm lineages is typically suppressed in the formation of human brain
organoids. Consequently, microglia, which arise from non-neuroectodermal origins, are
usually absent in brain organoids. However, recent advancements have led to the devel-
opment of strategies to generate microglia-containing brain organoids, offering valuable
insights into microglial functions and their relevance to brain disorders. Several strate-
gies have been developed to address this limitation, such as incorporating microglia into
organoids through co-culture, genetic modification, or separate culture insertion. One study
conducted by Ormel et al. in 2018 reports the possibility to generate human iPSC-derived
brain organoids containing innately developed microglia (oMG), using a protocol that,
instead of adding extra BDNF to the differentiation cocktail, like Quadrato et al., reduced
the levels of the neuroectoderm stimulant heparin and delayed Matrigel embedment of the
organoids [10,62]. This approach resulted in the development of organoids with microglia
cells characterized by ramified morphology, microglia-specific marker expression, and a
more realistic immune response to inflammation. Another study conducted by Abud et al.
in 2017 introduced microglia into cerebral organoids derived from iPSCs through a co-
culture system. The resulting organoids exhibited a more mature and functional microglial
phenotype validated using a range of methods. Firstly, flow cytometry analysis was em-
ployed to assess their phenotype. In addition, the secretion of cytokines/chemokines,
specifically IL-1b and IFNγ, was examined subsequent to stimulation with lipopolysac-
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charide (LPS). Furthermore, to investigate the synaptic pruning capabilities, synaptosome
phagocytosis assays were established. These findings provide compelling evidence that
co-culture strategies hold significant potential for recapitulating the essential factors in-
volved in the development of tissue-resident microglia in the brain [63]. In 2019, Song et al.
used a guided protocol of 30 days (utilizing a differentiation medium containing BMP-4,
Activin-A, SCF, and VEGF) to obtain microglial cells derived from iPSCs, which were then
introduced into cerebral organoids. To assess the functional activity of these microglia-like
cells, the researchers examined their phagocytosis capability, increased expression of TNF-
α, and secretion of cytokines in response to pro-inflammatory Aβ42 oligomers, which are
known to modulate microglia responses through TREM2 binding. The dorsal or ventral
organoids displayed synaptic activities and action potentials, whereas the microglia-like
cells exhibited differential migration ability and immune response, with higher TNF-α
expression observed in ventral-MG co-cultures. This co-cultured strategy elucidated the
impact of microglia on brain organoids, revealing their ability to stimulate cell proliferation
and effectively reduce ROS expression, thus closely resembling the microenvironment
found in specific brain tissues [64].

An innovative approach was developed by Ao et al. in 2021, where a tubular organoid
device was integrated with isogenic microglia to enable hypoxia-free brain organoid culture
with continuous medium and oxygen perfusion. The protocol commences by carefully
loading human embryonic stem cells (hESCs) into the designated basket within a tubular
device. Neural fate induction is accomplished by administering dual-SMAD inhibitors
dorsomorphin and A83. In order to direct cellular differentiation towards a forebrain
identity, the neural induction medium is subsequently replaced with a composition con-
taining CHIR-99021 and SB-431542. To establish inner lumen fluid flow, the loaded device
is placed onto a rocking platform, supplemented with N2 and B27 components. Neuronal
characterization involved the assessment of marker expression, specifically, the dorsal
forebrain neural progenitor cell markers PAX6 and SOX2, as well as the deep cortical
neuron marker TBR1. In contrast, for the characterization of induced microglia, a double
staining approach employing Iba1 and CD68 was conducted. Upon LPS/ATP treatment,
activated induced microglia also exhibited elevated secretion levels of IL-1β and IL-18,
indicating functional inflammasome activation. Additionally, a noteworthy increase in
TNF-α secretion was also observed. The present device effectively emulated microglial
responses in an environment that closely replicates the inherent microenvironment of the
brain. In fact, it was observed that tubular organoids demonstrate a substantial decrease
in hypoxia compared to conventional organoids. This finding is particularly intriguing
considering that hypoxia is a recognized challenge commonly associated with organoid
culture [65].

Until now, a significant limitation in the integration of microglia cells into organoids
has been their notable heterogeneity, which impairs reproducibility due to the acquisition
of highly divergent cell populations. However, in 2022, Cakir et al. achieved a substantial
advancement by inducing the expression of PU.1 in cells, thereby generating microglia-like
cells that could be successfully introduced into human cortical organoids. This pioneering
approach represents noteworthy progress in addressing the challenge of heterogeneity,
ultimately enhancing the reproducibility and consistency of microglia integration within
organoid models [66] (Figure 2).

Another weakness of conventional brain organoids is the lack of vascularization,
which limits growth, functionality, and immune response. Indeed, without the presence
of blood vessels, organoids have a limited capacity for growth and functionality. Indeed,
the lack of oxygen and nutrients due to the absence of blood vessels can limit the lifespan
of organoids, leading to cell death over time and making it difficult to use organoids for
long-term studies [40].
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Figure 2. Advancement in brain organoids functionalization. IPS-derived brain organoids represent
valuable in vitro models to study relevant physiological mechanisms underlying brain development
and functions as well as to investigate pathologies which affect the nervous system. Advances
in culturing and differentiating induced pluripotent stem cells (iPSCs) led to the possibility of
integrating brain organoids with different cell types, including those that do not originate from the
neuroectodermal line, such as microglia, providing a valuable platform to investigate the neuro-
immune crosstalk. Moreover, the integration of a vascular system within the organoid structures
improves nutrient delivery, waste removal, and oxygenation, closely mimicking the physiological
conditions found in real tissues. In addition, patient-derived stem cells have been used to generate
brain organoids with a specific pathology, thus paving the way for personalized therapies. These
advancements in organoid technology open new horizons to better decipher processes involved in
brain development and maturation, as well as pathologies affecting neurons and glial cells.

Innovative approaches have successfully developed vascularized organoids capable
of performing more complex functions, revolutionizing the field of organoid research. By
integrating functional blood vessels within the organoid structures, these advancements
have facilitated improved nutrient delivery, waste removal, and oxygenation, closely mim-
icking the physiological conditions found in real tissues. This vascularization has enabled
enhanced cellular interactions, organoid maturation, and the emergence of more intricate
multicellular systems, thereby expanding the potential applications and utility of organoids
in various biomedical research areas, such as drug discovery, disease modeling, and regen-
erative medicine. To overcome this limitation, a number of different solutions have been
implemented, such as co-culture strategies, 3D-printed microfluidic chips, genome editing,
and the fusion of blood vessel organoids with brain organoids. In this section, we will exam-
ine the current understanding of the lack of vascularization in organoids, its consequences,
and the current progress towards creating more vascularized organoid models.

Pioneering work in the field involved the generation of vascularized organoids by
introducing iPSC-derived endothelial cells. This was accomplished through a three-stage
process utilizing FGF2, CHIR99012, BMP4, and VEGF to promote proper endothelial
differentiation [67]. More recent studies have proposed alternative methods to generate
vascularized organoids. One approach involves co-culturing hESCs or iPSCs with umbilical
vein endothelial cells, resulting in a high success rate of vascularization exceeding 95%. The
vascularized organoids (vOrganoids) exhibit mesh-like and tube-like structures formed
by HUVECs, which are identified using markers such as laminin and isolectin I-B4 (IB4)
that specifically label blood vessels and endothelial cells [68]. Another effective method
involves the integration of differentiated vessels into brain organoids. Ahn et al. developed
separate brain organoids and blood vessel organoids and subsequently co-cultured the
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obtained blood vessel cells with cortical organoids. These vascularized human cortical
organoids demonstrate the presence of a functional vascular network, which is absent
in regular hCOs [69]. In an alternative approach for generating brain-specific vascular
organoids, a guided protocol was utilized to differentiate H9 hESCs into human blood
vessel organoids. These blood vessel organoids were then fused with cerebral organoids
to create brain-specific vascular organoids. Notably, this technique successfully formed
a tightly sealed blood–brain barrier (BBB), consisting of brain microvascular endothelial
cells. This closely mimics the BBB function in the selective regulation of the transport
of substances to and from the brain and in the protection against harmful agents. The
expression of key tight junction proteins, including Claudin5 (CLDN5) and ZO-1, as well
as the efflux transporter p-glycoprotein, was examined to evaluate the BBB-like charac-
teristics. These proteins facilitate the recycling of small lipophilic molecules that diffuse
into endothelial cells back into the bloodstream [70]. Several additional approaches have
been proposed to enhance vascularization in organoids. One strategy involves utilizing
3D-printed microfluidic chips where pericytes and endothelial cells derived from hPSCs
spontaneously form well-structured vascular networks. These vascular cells establish
physical interactions with cerebral organoids, resulting in the formation of integrated
neurovascular organoids on the chip [71]. Another approach involves reprogramming
human dermal fibroblasts into endothelial cells using the transcription factor human ETS
variant 2 (hETV2). Bilal Cakir et al. (2022) introduced engineered hESCs expressing hETV2
into hCOs, leading to the development of vascularized hCOs with a functional, perfusable
vascular-like network. These vascularized organoids exhibit BBB characteristics, such as
increased expression of tight junctions, nutrient transporters, and transendothelial electrical
resistance [66,72].

Although there are still limitations in the current state of 3D organoids for brain
research, the ongoing efforts to improve vascularization hold great promise for the field.
These advancements in vascularized organoid development provide opportunities for
gaining deeper insights into brain function [68–70]. However, it is important to note that in
addition to the lack of vascularization, another limitation of organoids is the absence of
microglia, which hinders their ability to fully mimic the brain’s cellular composition and
interactions [40] (Figure 2).

5. Assembling Neural Tissue: Hydrogels and Techniques Used in 3D Bioprinting and
Organ-on-a-Chip Technologies

To date, brain organoid techniques still present many challenges: therefore, the conver-
gence between organoid technology and 3D bioprinting could pave the way for optimizing
functional 3D in vitro brain models.

Bioprinting is an automated, layer-by-layer deposition of cells embedded in biocom-
patible materials or bio-inks to fabricate 3D constructs. The development of this technology
can also allow for the repair or regeneration of tissues in patients by performing phar-
macokinetic studies in vitro [73]. Three-dimensional bioprinting techniques allow for the
generation of organized structures, which increase reproducibility. Numerous studies have
utilized 3D bioprinting technology to print stem cells, as demonstrated by Reid et al. [74],
Gu et al. [75], Nguyen et al. [76], De La Vega [77], and Koch et al. [78]. This approach
offers numerous advantages, as embedding ESC and hPSC in a 3D construct maintains
their multilineage potential, enabling differentiation and maturation directly within the
scaffold. Alternatively, another strategy involves differentiating cells from hPSCs into
specific cell types before printing, as described by Faulkner-Jones et al. [79], Ma et al. [80],
Yu et al. [81], Ong et al. [82], Moldovan et al. [83], Sorkio et al. [84], Joung et al. [85], and
De la Vega et al. [86].

The precise assembly and guidance offered by 3D bioprinting enable the generation of
organized structures, improving reproducibility. However, there are significant challenges
to overcome, including controlling the relative distribution of cells and the impact of
printing on cell viability. In particular, one of the most significant challenges in the bio-
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fabrication of 3D neural structures is developing bio-ink formulations that enable neuronal
survival, differentiation, and maturation while modeling physiological extracellular matrix
components and maintaining suitable mechanical properties for printing. In the context of
3D bioprinting, hydrogels are a popular choice for scaffolds due to their ability to retain
large amounts of water, biocompatibility, and ability to form networks via the crosslinking
of hydrophilic chains. These properties allow for the culturing of neural cells in 3D, which
requires a material that can support cell bodies while allowing for process extension and
connection. Hydrogels that have been used to print neural cells include alginate, agarose,
chitosan ([75,87]), gellan gum-RGD [88], collagen [89], modified gelatin GelMa [90], and
Matrigel [85,91] (see Table 2). Matrigel is a solubilized basement membrane matrix that
contains many extracellular matrix (ECM) components and is secreted by Engelbreth-Holm-
Swarm mouse sarcoma cells. However, this material’s batch-to-batch variability can impact
the reproducibility of printing.

Table 2. Comparison of hydrogels in bioprinting neural tissue. Table comparing different hydrogel
precursors and bioink compositions used for the printing of neural tissues. In addition to laser-
assisted, inkjet, and extrusion-based techniques, other types of printing techniques cited in this table
include: microvalve bioprinting, a drop-on-demand technique based on a robotic platform capable
of moving along three axes, accompanied by an array of multiple electromechanical microvalve
print-heads; stereolithography bioprinting, a technology that utilizes light to precisely create three-
dimensional structures by layering and polymerizing light-sensitive materials.

Cells Hydrogel Precursor Bioprinting Technology Features Ref.

Human neural stem cells
• Agarose
• Alginate
• Carboxymethyl chitosan

Extrusion • In vitro poor stability
• Spontaneously active neurons

[75]

iPSC derived NPC
• Fibrin
• Chitosan
• Alginate

Microfluidic-assisted
extrusion

• Neuronal maturation with
microsphere-released
morphogens

[77]

Primary rat cortical
neurons

• Gellan-gum RGD Extrusion

• Stability in vitro
• Dendrite extension
• Ability to layer neurons in

hierarchical constructs

[88]

Rat embryonic neurons
and astrocytes

• Type I collagen Microvalve
• Multilayered scaffold
• Neurite extension [89]

Neural stem cells • GelMA + graphene Stereolithography
• Limited promotion of neuronal

differentiation [90]

sNPC and OPC

• Matrigel
• Gelatin/fibrin blend
• GelMA
• PEGDA + AG/MC

Extrusion

• Axon propagation
• NPC maturation
• No OPC maturation or axon

myelination
• Neuronal spontaneous and

induced activity

[85]

iPSC-derived cortical
neurons and glial cells.

• Matrigel/Alginate Extrusion
• Cell viability up to 70 days

post-printing
• Functional neural network

[92]

iPSC = induced pluripotent stem cell; NPC = neural precursor cell; RGD = arginine-glycine-aspartic
acid; GelMA = gelatin methacrylamide; sNPC = spinal NPC; OPC = oligodendrocyte progenitor cell;
PEGDA = poly(ethylene glycol) diacrylate; AG/MC = alginate mixed with methylcellulose.

There are three main printing methods: laser-assisted, inkjet, and extrusion-based
techniques (Figure 3). Laser-assisted bioprinting utilizes two co-planar slides, where a laser
is used to transfer bio-ink droplets from the donor to the collector slide. This process is
mediated by the formation and expansion of microbubbles on the surface of the donor
slide. This nozzle-free technique allows for greater freedom in the choice of bio-ink and
results in lower damage to the cells during printing. However, it is also associated with
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high costs, and slide preparation is complex and time-consuming. The inkjet technique
utilizes a drop-on-demand method where micrometric droplets of bio-ink are ejected from
the dispenser tip by applying a thermal or mechanical force [93–95]. Inkjet was one of the
earliest approaches to bioprinting and enables the precise placement of cells with droplets
in the picoliter range. However, this technique is only suitable for low-viscosity materials,
despite being low-cost and straightforward [17,87]. Extrusion-based bioprinting involves
physically extruding the material through the dispenser tip using pneumatic or piston-
driven actuators in a continuous manner [96]. This technique is one of the most widely
used, but it allows for lower resolution and is particularly suitable for viscous gels. After
deposition, materials require a sol-gel transition, from liquid- to solid-like behavior, which
can be achieved via direct printing into a cross-linking solution, such as calcium chloride
for alginate [97], or using temperature changes or light for photo-cross-linked materials [98].
Coaxial needle printing, which simultaneously extrudes bio-ink and coagulation solution,
is an approach that uses ionic crosslinking [99,100].
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Figure 3. Three-dimensional bioprinting techniques. The figure represents the main printing tech-
niques used for printing cells. Cells are encapsulated in a bio-compatible material (bio-ink) and
printed. Through laser-assisted printing, the material is transferred from a donor to a receiver slide
through a laser; in ink-jet printers, the material is dispensed drop-wise applying a force (thermal,
acoustic, or mechanical) at the dispenser tip; extrusion-based techniques allow for the continuous
extrusion of the material through the nozzle.

Hsieh et al. [101] demonstrated that murine NSCs embedded in thermoresponsive
water-based polyurethane dispersions could be printed and implanted into a zebrafish
brain injury model, leading to the successful rescue of functions of the impaired CNS.
Joung et al. [85] combined extrusion-based bioprinting with 3D-printed scaffolds to model
the spinal cord. They used an alginate and methylcellulose blend scaffold, and simulta-
neously printed neuronal progenitor cell (NPC) or oligodendrocyte progenitor cell (OPC)
bio-ink into the scaffold, resulting in the development of functional neurons with extensive
axon propagation. Gu et al. [75] used an extrusion-based technique to print neuronal
constructs. They printed human iPSCs with a bio-ink composed of alginate, chitosan, and
agarose, cross-linked in calcium chloride, which allowed in situ proliferation and differen-
tiation into neuroglia and neurons. These cells displayed functional features 30–40 days
post-printing. Recent implementations of extrusion 3D bioprinting techniques include their
integration with microfluidic devices [102]. Microfluidic-based devices are made of mi-
crochannels containing microliter to picoliter volumes of fluids that interconnect chambers
where different types of cells can be placed, closely modeling compartmentalized microen-
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vironments. Microfluidic chips have also been demonstrated to be optimal platforms to
model endothelial layers and therefore vascularized systems [103,104]. Yu et al. [81] demon-
strated that functional tissue structures can be directly printed on microfluidic devices. The
integration of 3D bioprinters with microfluidic-based heads allows the precise control of
bio-ink volume, the printing of higher cell concentrations [105], the simultaneous extrusion
of different materials [100], and the possibility to mimic complex or graded patterns and
tissue compositions [106]. De la Vega et al. [77] printed hiPSC-derived NPCs into cylindri-
cal constructs with an extrusion-based microfluidic printer using a fibrin, chitosan, and
alginate bio-ink containing purmorphamine- and retinoic acid-loaded microspheres. This
allowed for the continuous release of these drugs, leading to differentiation and maturation
into spinal motor neurons.

iPSC-derived cortical neurons and glial cells were successfully printed by Salaris
et al. in 2019 [91] using a custom extrusion-based bioprinter implemented with co-axial
wet-spinning microfluidic devices to print Matrigel/alginate-embedded cells and crosslink-
ing solution simultaneously. The cells could further differentiate within the construct,
expressing both neuronal and astrocytic markers, with good long-term cell survival (up
to 40 days post-printing). Moreover, functional analysis revealed properties typical of
immature neuronal networks.

In conclusion, the recent technology of 3D bioprinting still faces numerous challenges:
on the one hand, the development of ink formulations and materials that guarantee the
reproduction of complex tissue composition with specific mechanical and physical proper-
ties (such as porosity, or the coexistence of organic and inorganic building blocks necessary
to reproduce the bone structures, see Refs. [73,107–109]). On the other hand, there is an
increasing need for sophisticated printing technologies to process the needed material to
model human tissues correctly. In the case of neuronal 3D structures [110,111], this technol-
ogy is additionally challenged by the physiological properties of neurons, such as building
a three-dimensional, often patterned network. Overall, 3D bioprinting represents a promis-
ing technology to model organized neuronal structures reproducibly. Finally, recently, 3D
printing has also been employed to standardize the production of organoids [111–115].
Despite still being at the beginning stages, and no attempts having yet been made with
neural tissues, the convergence between 3D bioprinting technology and organoids is an
appealing strategy in brain research.

Organ-on-a-chip is a transformative approach that harnesses the versatility of mi-
crofluidic platforms for the engineering of new functional tissues. Spanning from this,
organoids-on-a-chip are currently attracting attention, due to the optimal results obtained
from the synergistic combination between organoids and microfluidic technology. Com-
prehensive reviews have recently detailed the latest results in brain organoid-on-chip
technology elsewhere [116,117]. Among the most relevant advancements in brain organoid-
on-a-chip research, the work from Karzbrun and colleagues has revealed the underlying
mechanisms of folding involved in neurodevelopmental disorders [118]. The authors re-
ported the formation of surface wrinkles during the in vitro self-organization of human
brain organoids pre-assembled in microfabricated compartments. The microchip platform
was engineered to host and facilitate brain organoid assembly and monitoring with in situ
imaging technology during weeks of development. The folding wavelength was found
to scale linearly with the thickness of the forming tissue, indicating a balance between
energies associated with bending and stretching. Moving beyond the study of brain devel-
opment, Wang and co-workers [119] reported the use of a novel brain organoid-on-a-chip
approach to study prenatal nicotine exposure. A multi-inlet device housing a number
of brain organoids was engineered to offer the possibility to screen for a single drug on
multiple organoids at the same time. The overall development of the brain organoids
was guided and ultimately satisfactory, resulting in the ability to recapitulate defined
neural differentiation and regionalization. Nicotine exposure was found to induce pre-
mature and abnormal differentiation with the overexpression of TUJ1 and the disruption
of neurodevelopment with the expression of PAX2, PAX6, FOXG1, and KROX20, among
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other markers indicating pathological alteration. Brain organoid-on-a-chip platforms have
demonstrated unparalleled potential in generating functional models for the screening of
new therapeutics. Nevertheless, the lack of available microfabrication facilities, the difficul-
ties associated with engineering methodologies to replicate microfluidic architecture, as
well as the limited number of organoids that can be cultivated at the same time are some of
the pivotal factors that are currently limiting incremental research associated with brain
organoid-on-a-chip technology.

6. The Versatility of 3D Brain Organoids: Modeling Neurodevelopmental and
Neurodegenerative Disorders Unraveling Pathophysiological Mechanisms

As we reported so far, 3D brain organoids have emerged as a potent tool for modeling
human neurological disorders, including neurodevelopmental and neurodegenerative
disorders, thus offering a physiologically relevant and personalized approach over 2D
cell cultures [120,121]. Organoids can be derived from patient-specific iPSCs offering an
opportunity to model diseases using cells from affected individuals. Moreover, organoids
can recapitulate aspects of organ development, allowing researchers to study disease
processes during embryonic development. In addition, organoids can be generated in large
numbers, facilitating the high-throughput screening of drugs and therapeutic compounds,
potentially accelerating the drug discovery process (Figure 4).
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Figure 4. Brain organoids: modeling brain disorders, drug screening, and immune response investi-
gations. Brain organoids serve as sophisticated models that replicate the intricate cellular interactions
and developmental processes of the brain. They have proven invaluable in unraveling the underlying
mechanisms of various conditions such as Fragile X syndrome, 22q11.2 deletion syndrome, Tourette’s
syndrome, Alzheimer’s disease, and Parkinson’s disease. Moreover, these organoids provide a valu-
able platform for screening potential drug candidates and identifying therapeutic agents. Researchers
can also infect organoids with viruses or expose them to toxins to study the impact on neural cells
and investigate the subsequent immune response. These capabilities make brain organoids a versatile
tool for advancing our understanding of brain disorders and exploring novel treatment strategies.

Patient-derived stem cells can be utilized to generate brain organoids of a specific
pathology, considering not only the disease but also the genetic background of the patient.
These advancements in organoid technology open new horizons to better decipher mech-
anisms involved in brain development and maturation, as well as pathologies affecting
neurons and glial cells. They hold value in drug development and screening and the
exploration of personalized therapies [122–124]. It has to be noticed that the absence of
microglia and proper vascularization, including the presence of the blood–brain barrier
(BBB), has been recognized as a significant limitation in brain organoids when it comes
to modeling brain functions in pathological conditions, particularly in drug testing ex-
periments [125]. The role of microglia and the immune system cannot be overlooked, as
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they play crucial roles in various neurological conditions. Additionally, vascularization is
essential for drug distribution within the organoid, and disruptions in BBB integrity are
commonly observed in neurodegenerative disorders, brain cancers, and traumatic brain
injuries. These limitations underscore the need for further advancements in brain organoid
technology to mimic the complex cellular interactions and pathological features of the brain
more accurately [125].

Brain organoids have emerged as a valuable tool for modeling neurodevelopmental
genetic disorders, allowing researchers to recreate pathologies, such as Tourette’s Syn-
drome [126], microcephaly, and macrocephaly, and investigate the impact of pathogens
on brain development [127–129]. For instance, studies using induced pluripotent stem
cells (iPSCs) from microcephaly patients have demonstrated smaller organoids and pre-
mature differentiation in the neural progenitor regions [128], while the deletion of the
tumor-suppressor gene PTEN in human iPSCs results in the formation of abnormally
large organoids with the over-proliferation and delayed neurogenesis of neural progenitor
cells [129]. Brain organoids have also proved to be valuable for investigating viral infec-
tions, including the Zika virus, the herpes simplex virus (HSV), and the cytomegalovirus.
In brain organoids, the Zika virus specifically targets SOX2-positive neural progenitor
cells, leading to suppressed proliferation, increased cell death, and a significant reduction
in organoid size [17,129,130]. Similarly, early-stage brain organoids composed of human
iPSC-derived neural rosettes infected with HSV-1 exhibit a loss of structural integrity and
neuronal alterations [131]. These studies highlight the utility of brain organoids in studying
the effects of viral infections on brain development and function [131–136].

Brain organoids have become a valuable tool for studying neurodevelopmental disor-
ders such as schizophrenia (SZ), and fragile X syndrome (FXS). SZ is a complex and severe
neuropsychiatric disorder associated with a wide range of debilitating symptoms. Many
aspects of its multifactorial complexity are still unknown, and some are accepted to be an
early developmental deficiency with a more specifically neurodevelopmental origin. The
neurodevelopmental hypothesis suggests that the interactions of multiple genes trigger a
cascade of neuropathological events during the embryonic and post-natal development
of the brain that may be initiated by environmental factors such as maternal infections or
infectious agents associated with the onset of inflammatory responses [137] that trigger
symptoms in early adolescence [138] and lead to the emergence of psychosis at the time of
the transition from late adolescence to young adulthood. The disorder can be heritable and
polygenic, with risk alleles distributed widely across the genome [139] and people with
SZ are enriched by rare copy variants (CVs) in genes associated with neurodevelopmental
disorders, particularly autism spectrum disorders and intellectual disability [140]. CVs can
disrupt gene function by increasing or decreasing gene dosage, and one recurrent CV is a
deletion in the 22q11.2 region that typically encompasses around 50 protein-coding genes
and is the most common CV in humans [141]. This deletion causes the 22q11.2 deletion
syndrome (DS), a neurodevelopmental disorder that is one of the most frequent genetic
risk factors for SZ [142,143], and, like SZ, the 22q11.2 DS patients display neurodevelop-
mental delays and cognitive dysfunctions [144]. One challenge facing researchers trying to
elucidate the mechanisms underlying SZ and 22q11.2 DS is that the molecular and cellular
processes governing embryonic and early postnatal brain maturation are still unclear.

Recent studies on mice models of 22q11.2 DS have provided important
insights [143,145–147] including a description of circuit dysfunctions [148–150] and the
implication of mitochondrial dysfunctions in the onset of cognitive phenotypes [151–153].
However, the molecular and cellular mechanisms leading to human neuronal phenotypes
remain poorly understood. In recent years, some studies have begun to explore transcrip-
tional changes and the implication of mitochondrial dysfunctions in neural cells derived
from 22q11DS patients [154–156], but the functional defects in human 22q11.2 DS neurons
and the underlying mechanisms have not been investigated. Therefore, understanding the
timepoints of neuronal and, eventually, glial cell phenotypes during cell differentiation
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and maturation processes could lead to an insight into the development of the cellular
phenotypes associated with the disorder.

Cerebral organoids provide a promising tool to investigate the molecular and cellular
alterations involved in the onset of 22q11.2 DS, exploiting the possibility to directly use
patient-derived IPSCs which consider not only the footprint of the disease but also the
genetic background of the patient, enabling the evaluation of specific early pathological
targets for drug development. Khan and colleagues successfully generated 3D cerebral cor-
tical organoids from 22q11.2 DS-derived IPSCs. They analyzed the transcriptional profile
along 100 days of differentiation and found an altered expression of several genes, related
to RNA modification and RNA silencing, mitochondria functions, and neuronal excitability,
including those coding for calcium transport. Electrophysiological and calcium imaging
experiments confirmed changes in spontaneous firing and depolarization-induced calcium
signaling in 22q11.2 DS cortical neurons due to abnormalities in the resting membrane
potential and defects in the function of the voltage-gated L-type calcium channels. Inter-
estingly, the voltage-gated L-type calcium channels have been identified as common risk
genes for SZ [157], thus suggesting that alterations of cytoplasmic calcium signaling may
be one of the key targets for drug development.

FXS, the most common single-gene cause of autism spectrum disorder (ASD), is
characterized by an expansion of the CGG triplet in the FMR1 gene, leading to the loss
of the FMR1 protein [158]). The FMRP protein, which is involved in RNA regulation,
plays a crucial role in neuronal development, synaptic plasticity, and dendritic spine
architecture [159], and recent studies on FXS-patient-derived neural progenitor cells (NPCs)
have indeed revealed abnormal gene expressions related to protein synthesis, neural
development, and migration [160–163]. Differential gene expression analysis revealed
218 differentially expressed genes involved in cell fate commitment and differentiation,
with down-regulated genes related to fate specification, migration, differentiation, and
maturation, and up-regulated genes associated with cell proliferation [164]. A recent study
by Kang et al. [165] observed alterations in neural proliferation and differentiation in brain
organoids derived from FXS patients’ iPSCs during a developmental period corresponding
to mid-fetal human brain development. In FXS, alterations in gene expressions related
to synapse development, axon targeting, and cytoskeleton organization [166] result in an
imbalance between excitatory and inhibitory signaling [28,167–171].

FMRP knockout brain organoids have shown significant phenotypes of immature
astroglial cells by revealing an increased number of GFAP-positive cells [28], a situation
similar to the FXS postmortem brain tissues [172,173]. Interestingly, the gene of FMR1 is also
part of group I of metabotropic glutamate receptor (mGlu) signaling, and FMR1 together
with the mGlu type 5 and the scaffold proteins Homer1b and Shank3 are highly expressed
in immature astrocytes [174,175], but their expression decreases over the differentiation
and maturation of the cells, thus suggesting that they can play crucial roles during the
acquisition of the astrocytic phenotype [176]. Indeed, accumulating evidence indicates that
mGluR5 signaling in immature astrocytes controls astrocyte morphogenesis [177], thus
suggesting that abnormal astrocyte maturation may also occur in the absence of FMR1
in the brain organoids [28]. These findings highlight the potential of brain organoids in
unraveling the underlying mechanisms of neurodevelopmental disorders, particularly
providing insights into the pathophysiology of FXS.

The use of “fused” dorsal–ventral forebrain organoids, also known as assembloids,
generated from iPSCs, has provided valuable insights into the cellular and molecular
mechanisms underlying Timothy syndrome (TS) [54,178]. TS is a rare and severe neu-
rodevelopmental disorder caused by a mutation in an L-type calcium channel subunit.
Calcium influx through voltage-gated calcium channels is involved in regulating processes
such as cytoskeletal dynamics, cell adhesion, and signaling pathways crucial for neuronal
migration [179], and in TS-patient-derived brain organoids, Birey et al. [180] showed the
inefficient migration of cortical interneurons and increased calcium signaling following
depolarization. These findings shed light on the role of calcium signaling in interneuron
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migration and the establishment of neural circuits. To gain a more comprehensive un-
derstanding of TS pathophysiology, Revah et al. [181] transplanted TS brain organoids
into the cerebral cortex of newborn athymic rats. This transplantation approach enabled
the investigation of organoid maturation and integration with a functional neural circuit,
leading to the manifestation of disease-related phenotypes. These models offer valuable
insights into the pathophysiology of TS and have the potential to identify novel therapeutic
targets for this neurodevelopmental disorder.

Another promising tool for the study of Tourette’s syndrome is represented by basal
ganglia organoids [182]. Tourette’s syndrome is a neuropsychiatric disorder characterized
by uncontrollable motor or vocal tics that manifest in childhood and that very often
co-occur with obsessive-compulsive disorder (OCD). Tourette’s syndrome and OCD are
compulsive repetitive behaviors that are considered to be neurodevelopmental in origin,
but their etiology and pathophysiology are unknown. Convergent neuroimaging and
neurophysiological findings support a model in which abnormal cortico-striato-thalamo-
cortical (CSTC) loops [183,184] and abnormalities in the basal ganglia may play a crucial
role in the onset of symptoms [185]. Supporting the CSTC loop hypothesis, it is known
that the optogenetic activation of the prefrontal cortex (PFC) induces excessive grooming
in rodents [184] and that dopamine, one important modulator in CSTC circuits, plays a
role in the onset of OCD symptoms in patients [186,187] and of stereotypical behavior in
rodents [188,189]. There is also strong evidence that the dopaminergic system plays a key
role in Tourette’s syndrome [190] and there might be some therapeutic role for dopamine
D2 receptor blockers in OCD [191]. The current CSTC model of OC-like behavior and
the hypothesis of dopaminergic involvement are both entirely neurocentric, but recent
studies have identified a role for astrocytes in the modulation of dopamine homeostasis
in the PFC [176] and revealed the importance of these cells in a number of behaviors,
including repetitive behaviors [189,192], thus indicating that animal behavior is not a result
of neuronal activity alone but requires the coordinated activity of neurons and astrocytes.
Overall, these studies on rodent models of OC-like disorders have provided important
insights, but human neuronal and astroglial phenotypes remain poorly described.

To better understand the neuronal pathways leading to OC-like disorders, recent
studies have explored the early developmental pathophysiology of Tourette’s syndrome by
using iPSC-derived basal ganglia organoids [182]. Repetitive behaviors and tic release elicit
prominent activity in the basal ganglia [193], and neuroimaging data suggest decreases
in the striatal volume in Tourette’s syndrome patients [193]. The basal ganglia organoids
exhibit impaired development of medial ganglionic eminence and reduced differentiation
of cholinergic and GABAergic interneurons. The transcriptome analysis revealed the mis-
patterning of the ventral telencephalon with a relative lack of ventromedial progenitors
accompanied by enhanced dorsolateral fates. This results in the developmental loss of
interneurons, suggesting that the interneuron loss noted in the postmortem basal ganglia
of patients with Tourette’s syndrome is a potential consequence of an inherent tendency of
the basal ganglia to undergo different regional specifications. These findings contribute to
our understanding of Tourette’s syndrome etiology and offer a developmental lens to the
pathologies currently associated with Tourette’s syndrome such as OC-like disorders.

Brain organoids offer researchers a valuable platform to study the molecular mecha-
nisms underlying neurodegenerative diseases such as Alzheimer’s (AD) and Parkinson’s
(PD), enabling the observation of changes in gene expression, protein function, and cellular
interactions. It is noteworthy that neurodegenerative diseases are commonly associated
with late-onset symptoms and are linked to the aging process. However, emerging evidence
suggests that pathological mechanisms, such as amyloid-β accumulation in AD or changes
in brain structure and function in PD, can initiate decades before symptom onset [194–197].
Moreover, genetic predisposition can lead to the development of neuronal and glial dys-
functions at an earlier age. By utilizing organoid technology, researchers have successfully
recapitulated neuropathological hallmarks associated with AD, including amyloid-β de-
position, the hyperphosphorylation of tau protein, continuous aggregation in 3D models,
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neuroinflammation, and gliosis [25,194,198,199]. Most of the contributions come from brain
organoids modeling familial AD, which represents a small fraction (<5%) of AD cases
caused by genetic variants in the amyloid precursor protein (APP) gene or presenilin genes
(PSEN1, PSEN2), while the majority of cases (sporadic AD) result from a combination
of multiple factors [200,201]. These organoids can also be gene-edited to express specific
genetic variations or those derived from patient-derived iPSCs. Abnormalities in tau pro-
tein, synaptic dysfunction, disturbance in the balance of excitatory and inhibitory neuronal
circuits, and the presence of amyloid-β plaques contribute to enhanced neuronal hyperac-
tivity observed in AD organoids compared to wild type [202,203]. Co-cultures of microglia
and brain organoids have been utilized to study the interaction between microglia, neural
cells, and pathological features of Alzheimer’s disease. Specifically, the role of APOE4, the
strongest genetic risk factor for late-onset sporadic AD, has been investigated in co-culture
models, revealing a reduced Aβ plaque clearance ability compared to APOE3 [204]. AD
brain organoids have also been employed as a drug platform, demonstrating a reduction
in amyloid-β aggregates through the use of β- or γ-secretase modulators, along with
mitigating the effect of tau pathology [194].

Human-derived 3D models of Parkinson’s disease (PD) offer a close resemblance to
the disease phenotype, exhibiting characteristic features such as the shortened neurite
length of dopaminergic neurons and α-synuclein aggregation, surpassing the limitations of
2D and animal models [205]. Brain organoids derived from PD patients carrying missense
mutations in the LRRK2 gene, associated with late-onset disease, demonstrate impaired
dopaminergic neuron development and reduced astrocytic activity [206,207]. Additionally,
brain organoids have been employed to investigate the molecular mechanisms underlying
α-synuclein deposition, revealing a correlation with LRRK2 mutation [205]. Furthermore,
PD organoids have been instrumental in studying the juvenile form of PD by introducing
mutations into the DNAJ6 gene. Mutant organoids exhibit impaired neurodevelopment,
reduced dopamine release, increased oxidative impairment, and dysfunctions in mitochon-
dria and lysosomes [208].

Over the past decade, a number of studies have highlighted the crucial roles of inflam-
matory processes in many brain diseases, highlighting a possible role of reactive glial cells
in the pathophysiology of neurodegenerative disorders. Astrocytes are indeed involved
in all forms of brain disease and lesions, to which they respond by undergoing a series of
cellular, molecular, and functional changes known as “reactive astrogliosis” [209]. These
alterations may be transient or long-lasting, and interdisciplinary approaches combining
omics with physiology and genetic manipulations have shown that they can have both
harmful and beneficial effects, thus indicating that astrocytes have multiple states of re-
activity and functions depending on the myriad of intrinsic and extrinsic cues governing
their post-injury gene expression and function [209]. Many aspects of astrocyte function-
ing have been unveiled from studies conducted in murine models; however, growing
evidence shows many differences between mouse and human astrocytes starting from
their development and encompassing morphological, transcriptomic, and physiological
variations when they achieve complete maturation. The study of human reactive astrocytes
has, therefore, been limited by the availability of resources and, more importantly, because
there are important transcriptional and functional differences between rodent and human
astrocytes [127,210]. In a recent study, Cvetkovic et al. address this technical shortcoming
by developing bio-engineered neural organoid cultures containing mature astrocytes which
allow for the investigation of the dynamics of astrocyte reactivity and its downstream
effects on neuronal activity [211,212]. The authors successfully generated multicellular
organoid systems containing astrocytes that exhibited key features of mature cells. After
extensively validating the morphology and gene expression of astrocytes, Cvetkovic et al.
investigated the effects of over-activating calcium signaling in astrocytes on neuronal activ-
ity. They successfully found that the chronic activation of astrocytes resulted in changes
in gene expression like those observed in reactive astrocytes, suggesting aberrant calcium
signaling in inducing a reactive phenotype. However, the observed reactivity did not
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display neurotoxicity as seen in other studies, possibly due to differences in experimental
conditions or the requirement of additional disease-associated stressors [211]. Overall, this
new in vitro model is promising for studying the dynamics of human reactive astrocytes
and their impact on neuronal function [212]. Future research should explore more complex
models that incorporate other cell types involved in neuroinflammatory processes to better
understand the contribution of reactive astrocytes to disease progression and test potential
therapies [212].

7. Conclusions

Over the last decade, 3D brain cultures, such as brain organoids, have emerged as
powerful tools for studying neural function and modeling neurological diseases. Brain
organoids are self-organized 3D structures that recapitulate key aspects of human brain
development and pathology [5]. One of the key advantages of brain organoids is that they
can be generated from patient-specific pluripotent stem cells, providing a personalized
approach to studying disease mechanisms and developing new therapies [213].

There are several methods for generating brain organoids, including self-assembly,
guided differentiation, and bioprinting. Self-assembled organoids are formed by allowing
cells to self-organize into 3D structures without external manipulation. In contrast, guided
differentiation involves the use of growth factors and other signaling molecules to drive
cell differentiation and tissue patterning. Bioprinting allows precise control over the spatial
arrangement of cells and extracellular matrix components, enabling the generation of
complex, multi-layered structures [17].

While each method has its advantages and limitations, the choice of method should be
tailored to the specific research question. For example, self-assembled organoids may better
recapitulate the complex interactions between different cell types and signaling pathways
that occur during brain development, whereas bioprinted organoids may provide more
precise control over tissue structure and composition [62].

Incorporating microglia and vascularization into brain organoids can further enhance
their relevance as disease models and improve drug development outcomes. Microglia are
the resident immune cells of the central nervous system, and they play a critical role in
neuroinflammation and neurodegeneration. Recent studies have shown that microglia can
innately develop within cerebral organoids, providing a new platform for studying their
function in the context of neurodegenerative diseases [62]. In addition, incorporating a
vascular network into brain organoids can improve nutrient and oxygen delivery, allowing
for longer-term culture and more accurate modeling of disease progression and drug
response [213].

We also need to consider some ethical issues surrounding advancements in brain
organoid research, particularly as it moves towards creating more complex models of
mature human cortical regions and their interconnectedness. One significant concern
revolves around the potential emergence of consciousness in brain organoids or the complex
brain assembloids that combine organoids from multiple cell lineages [214].

While these concerns exist, several factors mitigate them. It is difficult to compare
organoid brain waves with those of developing human brains. The neural correlates of
consciousness are complex and involve diverse brain regions. The term “consciousness”
has different meanings, and the ethical implications depend on the specific definition.
Organoids lack the necessary structures for complex consciousness. The moral concerns
may be influenced by the human origin of organoids. However, the absence of social inter-
action and language acquisition makes conscious self-awareness unlikely. Thus, the ethical
challenges related to consciousness in organoids are not significant in current research.

In conclusion, 3D brain cultures offer a promising platform for studying neural func-
tion and developing new therapeutic strategies for neurodevelopmental and neurodegen-
erative disorders. Self-assembled, guided, and bioprinted organoids each have unique
advantages and limitations, and the choice of method should be tailored to the specific
research question. Incorporating microglia and vascularization into brain organoids can



Int. J. Mol. Sci. 2023, 24, 10762 20 of 29

enhance their relevance as disease models and improve drug development outcomes. As
the field continues to advance, it is likely that 3D brain cultures will play an increasingly im-
portant role in unlocking the secrets of neural function and developing effective treatments
for neurological disorders.
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