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Abstract: The importance of 3D protein structure in proteolytic processing is well known. However,
despite the plethora of existing methods for predicting proteolytic sites, only a few of them utilize the
structural features of potential substrates as predictors. Moreover, to our knowledge, there is currently
no method available for predicting the structural susceptibility of protein regions to proteolysis. We
developed such a method using data from CutDB, a database that contains experimentally verified
proteolytic events. For prediction, we utilized structural features that have been shown to influence
proteolysis in earlier studies, such as solvent accessibility, secondary structure, and temperature
factor. Additionally, we introduced new structural features, including length of protruded loops and
flexibility of protein termini. To maximize the prediction quality of the method, we carefully curated
the training set, selected an appropriate machine learning method, and sampled negative examples
to determine the optimal positive-to-negative class size ratio. We demonstrated that combining our
method with models of protease primary specificity can outperform existing bioinformatics methods
for the prediction of proteolytic sites. We also discussed the possibility of utilizing this method for
bioinformatics prediction of other post-translational modifications.

Keywords: regulatory proteolysis; proteases; protease substrates; substrate identification

1. Introduction

After synthesis, proteins within living cells undergo a wide range of chemical modifi-
cations collectively referred to as post-translational modifications (PTMs) [1]. To date, about
a dozen types of PTMs are known, including phosphorylation, acetylation, glycosylation,
ubiquitination, methylation, and others [2]. Unlike most types of post-translational modifi-
cations, which involve the addition of small chemical groups, proteolysis is an irreversible
post-translational modification that catalyzes the hydrolysis of the peptide bond [3]. To
perform cleavage, a protease needs to bind to the polypeptide chain in the vicinity of the
cleaved peptide bond [4]. The ability of a protease to bind to a polypeptide chain in a
specific amino acid context is known as protease specificity, which is an intrinsic property of
the protease’s active site pocket [5]. The broad or narrow specificity of a protease refers to its
ability to cleave a wide or restricted range of substrate sequences, respectively. As proteases
have evolved to fulfill specific biological functions, the variations in protease specificity can
be attributed to evolutionary adaptation [6]. Thus, proteases with broad specificity usually
participate in processes such as protein degradation or processing, breaking down proteins
into smaller peptides and amino acids. On the other hand, regulatory proteases typically
possess narrow specificity, allowing precise cleavages of specific proteins in specific cellular
contexts to regulate signaling pathways or protein activation/inactivation [7]. The 3D
structure of substrates is not crucial for digestive proteases since the substrate is cleaved
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into short peptides, losing its native 3D structure. However, it plays a significant role in
regulatory proteolysis, as potential cleavage sites can be shielded within the hydrophobic
core of the protein [8–10].

Our understanding of regulatory proteolytic networks in multicellular organisms is still
limited, making it crucial to conduct further research in this direction. Experimental work
to identify protease substrates and cleavage sites is highly labor-intensive. However, the
guidance provided by bioinformatics predictions can significantly facilitate this process. To
date, numerous bioinformatics methods exist for predicting proteolytic cleavage sites [11–20].
However, many of these methods primarily focus on modeling protease sequence preferences
near the cleavage site and often do not incorporate information about the 3D structures of
potential substrates [21]. While some methods incorporate specific structural features of
the substrate into their prediction models [17,22], to our knowledge, only one method
considers the 3D structure of the substrate as an input [23]. However, even this method
does not provide separate probabilities for the structural susceptibility of the peptide bonds
of the considered protein to proteolysis. The Nickpred method [8], which was originally
developed for this purpose, is no longer available. To address this gap in the field, we
developed a method for predicting the susceptibility of protein regions to proteolysis based
on the known 3D structure of the potential substrate.

2. Results
2.1. The Three-Dimensional Structure of a Protease Substrate Determines the Susceptibility of
Protein Regions to Proteolysis

Our aim was to develop a method that predicts the susceptibility of protein regions
to proteolysis. This method takes the three-dimensional structure of a potential protease
substrate as input and provides a cleavage susceptibility score for each peptide bond of the
protein. Our predictive model was constructed using experimentally verified proteolytic
events extracted from the CutDB [24]. We mapped the proteolytic sites from CutDB onto
the available 3D structures of substrates extracted from the Protein Data Bank (PDB) [25]
to create a training set. For each peptide bond, we calculated the structural features
that were identified in earlier studies as predictors of proteolytic susceptibility [26,27].
The set of structural features used for prediction included well-known predictors such
as solvent accessibility, secondary structure, and B-factor, as well as additional features
developed by our group, including loop length and regions of flexible N- and C-termini (see
Figure 1 and Methods for a complete list of features). We estimated the prediction quality
of the developed method using the cross-validation technique on the training set and a
separate testing dataset, which was collected from recent literature on proteolytic cleavage
experiments. To maximize the prediction quality, we applied eight machine learning
methods and ultimately selected Linear Discriminant Analysis (Figure 1B). Our training
set was highly imbalanced, consisting of 445 positive examples (cleavage sites) and 68,840
negative examples. Therefore, we sampled the negative class in various proportions relative
to the size of the positive class and examined the impact of the positive-to-negative class
size ratio on the prediction quality (Figures 1C and S1). We found that the quality of the
prediction was generally independent of the class size ratio; thus, to simplify calculations,
we chose a 1:1 class size ratio (Figure 1C). We also visualized the predicted cleavage
susceptibility scores on the 3D structures of substrates and confirmed that the method
assigns higher scores to protruded loops, regions with a high B-factor, N- and C- flexible
termini, and solvent-accessible regions (Figure 1D), as expected from earlier studies [26,27].
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Figure 1. (A) List of structural features used in the method, along with examples of their distribution 
along the protein polypeptide chain visualized within the substrate structures. The color bar repre-
sents a color scale ranging from 0 to 1, indicating numerical features such as solvent accessibility, 
temperature factor, and loop length, as well as binary features such as terminal regions. The second-
ary structure is visualized using a different color scheme: helices are shown in green, beta strands 
in light blue, and loops in yellow. (B) Prediction quality, measured using the Area Under the ROC 
Curve (AUC), of various machine learning methods calculated via cross-validation using the train-
ing set of CutDB proteolytic events mapped onto PDB structures. Negative class examples were 
sampled to achieve a 1:1 positive-to-negative class size ratio. (C) Dependence of the method’s pre-
diction quality on different positive-to-negative class ratios. (D) Visualization of the proteolytic sus-
ceptibility probabilities predicted by our method for the 3D structure of the protease substrate. 

2.2. Extension of the Training Set with AlphFold Models Improves the Quality of Prediction 
Recent progress in artificial intelligence has led to breakthroughs in various fields of 

study, including computational molecular biology. Thus, the recently introduced protein 
structure prediction method AlphaFold has significantly outperformed other methods in 
this field and has demonstrated a prediction quality comparable to experimental methods 
[28]. Later, AlphaFold was applied to the entire human proteome, and high-quality pre-
dicted 3D structures were made publicly available in the AlphaFold Protein Structure Da-
tabase [29]. We used 3D protein structures predicted by AlphaFold to expand our training 
set and construct a new model with the aim of comparing its prediction quality to the 
previous version of the model, which was solely based on PDB 3D structures. However, 
not all structural features extracted from PDB 3D structures are available in AlphaFold 
models, notably, experimental-specific features such as the temperature factor (B-factor). 

Figure 1. (A) List of structural features used in the method, along with examples of their distribu-
tion along the protein polypeptide chain visualized within the substrate structures. The color bar
represents a color scale ranging from 0 to 1, indicating numerical features such as solvent accessi-
bility, temperature factor, and loop length, as well as binary features such as terminal regions. The
secondary structure is visualized using a different color scheme: helices are shown in green, beta
strands in light blue, and loops in yellow. (B) Prediction quality, measured using the Area Under
the ROC Curve (AUC), of various machine learning methods calculated via cross-validation using
the training set of CutDB proteolytic events mapped onto PDB structures. Negative class examples
were sampled to achieve a 1:1 positive-to-negative class size ratio. (C) Dependence of the method’s
prediction quality on different positive-to-negative class ratios. (D) Visualization of the proteolytic
susceptibility probabilities predicted by our method for the 3D structure of the protease substrate.

2.2. Extension of the Training Set with AlphFold Models Improves the Quality of Prediction

Recent progress in artificial intelligence has led to breakthroughs in various fields of
study, including computational molecular biology. Thus, the recently introduced protein
structure prediction method AlphaFold has significantly outperformed other methods in
this field and has demonstrated a prediction quality comparable to experimental meth-
ods [28]. Later, AlphaFold was applied to the entire human proteome, and high-quality
predicted 3D structures were made publicly available in the AlphaFold Protein Structure
Database [29]. We used 3D protein structures predicted by AlphaFold to expand our train-
ing set and construct a new model with the aim of comparing its prediction quality to the
previous version of the model, which was solely based on PDB 3D structures. However, not
all structural features extracted from PDB 3D structures are available in AlphaFold models,
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notably, experimental-specific features such as the temperature factor (B-factor). Therefore,
we reconstructed our initial PDB-based model, excluding the experiment-specific features,
and compared its performance with the model constructed using the training set extended
with AlphaFold-predicted 3D structures (Figure 2A). The latter model demonstrated better
prediction quality and the difference between the median values of the models’ Area Under
the Curve (AUC) of the Receiver Operating Characteristic curve (ROC) [30] was 0.05. It
is worth noting that the AlphaFold method provides values for the prediction confidence
for each amino acid position of the protein. We analyzed whether this feature alone could
predict susceptibility to proteolysis and found that it possesses substantial predictive power
(Figure 2B).
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Figure 2. (A) Improvement in prediction quality of the method after extension of the training set
using AlphaFold models. (B) Comparison of AlphaFold confidence score with solvent accessibility
and loop length in predicting proteolytic sites.

2.3. Comparison to Other Proteolytic Site Prediction Methods

To the best of our knowledge, our method is the first to estimate the structural sus-
ceptibilities of protein regions to proteolysis regardless of specific proteases. Thus, there
is currently no method available to directly compare prediction qualities. However, if we
add knowledge on protease specificity into our method, for example by using a position-
specific scoring matrix (PSSM) [31,32], we can compare our method with 3D structure-based
methods that also incorporate information on protease specificity. To this end, we chose
Procleave [23], the most recent and reliable method for the identification of proteolytic
sites, for comparison. This method can predict cleavage sites for 27 proteases, including
matrix metalloproteases, cathepsins, and other proteinases. We generated PSSM matrices
for these proteases using data from the MEROPS database (see Section 4 [33]. To integrate
the structural susceptibility predicted by our method with protease sequence specificity,
we created a dataset that included two features: the structural score and the PSSM score.
This dataset was used to train the prediction model using data from CutDB (Figure 3A).
The obtained model demonstrated improved performance on the testing set compared to
the Procleave method (Figure 3B). The AUC ROC mean values were 0.962 and 0.937, re-
spectively, while the respective median values were 0.97 and 0.966. However, the statistical
difference estimated using the Wilcoxon test was not found to be significant.
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Figure 3. (A) A schematic representation of combining the proteolytic susceptibility probabilities pre-
dicted by our 3D structure-based method with protease sequence specificity models for comparison
with other proteolytic site prediction methods. (B) Comparison of prediction quality between our
method combined with protease sequence specificity models and the Procleave method.

3. Discussion

In this study, we presented a method for estimating structural susceptibility to prote-
olysis protein regions based on the known three-dimensional structure of a protein. It is
known that the 3D structure of the protease substrate significantly influences the ability
of protease to cleave a protein’s peptide bonds [8–10,26,34,35]. Indeed, it is a common
opinion that protein regions in the hydrophobic core of a protein are hardly accessible to
proteolytic processing while the 3D structure of the protein is intact [8–10]. Another pro-
tein property that influences proteolytic processing is the secondary structure: our [26,27]
and other [8–10,34,35] studies showed that loops are cleaved more easily than helices,
and helices are cleaved more easily than beta-sheets. These and other known structural
preferences of limited proteolysis seem universal for different types of proteases, contrary
to protease sequence specificity [26]. Although several proteolysis prediction tools use
specific structural features, there is, to our knowledge, no method that estimates the general
susceptibility to proteolysis of protein regions based on known 3D structure. We developed
and presented here such a type of method to fill this gap in the field.

We incorporated into the method structural features that influenced proteolytic pro-
cessing according to current knowledge from our [26,27] and previous [8–10,34,35] studies.
We also developed two additional structural features—loop length and N- and C- termini
regions—based on our earlier observations [26]. To maximize prediction quality, we tried
several machine learning methods and chose Linear Discriminant Analysis, which showed
the best results for our task. Together, these efforts allowed us to develop a method demon-
strating a quality of prediction comparable with state-of-the-art proteolytic site prediction
tools, such as Procleave, when combined with protease primary specificity models.

Our method estimates the susceptibility of being proteolytically processed for each
peptide bond of the considered protein with a known 3D structure. As the number of
cleavages performed in a protein by a particular protease depends on its colocalization and
the colocalization duration [36,37], we did not apply any threshold to the predicted cleavage
probability. Thus, our method did not classify protein peptide bonds into presumably
cleaved and uncleaved ones. Moreover, after the first cleavage, a substrate can change its
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conformation or even become denatured; thus, predicted proteolytic sites can lose their
confidence [38]. A new round of prediction is preferable if the 3D structure of the protein
after conformations induced by the first cleavage changes is known.

Future research in proteolytic site prediction could focus on developing a method that
combines prediction of structural susceptibility of protein regions, using the methodology
developed in this study as a universal component applicable to all proteases, along with
protease-specific models as plug-in modules. In this study, we demonstrated the relevance
of this approach. In conclusion, we speculate that the scope of our method extends beyond
the prediction of proteolytic events to encompass other post-translational modifications.
Indeed, our method assigns higher probabilities of proteolytic sites to the hydrophilic exte-
rior rather than the hydrophobic core of the protein, to protruded loops rather than helices
and beta-sheets, and to flexible protein regions instead of the stable parts of the protein
structure. This trend may hold true for various other post-translational modifications.

4. Materials and Methods
4.1. Data Collection and Processing

Information on experimentally verified proteolytic events was extracted from CutDB [39].
For each proteolytic event, we considered three attributes: the substrate identifier, the
position of the proteolytic site within the substrate sequence, and the protease MEROPS
code (Supplemental File S1). In total, we extracted 4576 proteolytic events related to
2062 unique substrates cleaved by 457 proteases. All substrate sequences were collected
into a single FASTA file and then queried against the PDB database [25] using BLAST [40].
If the retrieved results included structures with a sequence identity of over 90% of the
queried substrate sequence, the top structure in the list was associated with the protease
substrate. Otherwise, the substrate was categorized as unmapped. In total, we found
585 three-dimensional structures of substrates associated with 1499 proteolytic events
cleaved by 256 proteases. To map substrate amino acid positions into the 3D structure, we
aligned substrate and 3D structure sequences using Clustal Omega [41]. The number of
proteolytic sites upon mapping decreased by more than twofold (777 proteolytic sites, 323
structures, 183 proteases), as many of them were mapped into disordered regions. Since
some of the secondary proteolytic cleavages observed in the experiments could occur after
the loss of the intact substrate’s 3D structure, we visualized the cleavage sites on the 3D
structures using Chimera [42] and performed manual curation. We excluded proteolytic
events if there were multiple cleavages attributed to a single publication and if they were
predominantly located within the hydrophobic core of the substrate, indicating a potential
loss of the 3D structure during the experiment. The final training dataset comprised
445 proteolytic events, specifically associated with peptide bonds in 190 3D structures of
substrates that underwent proteolytic processing by 130 proteases. The average number of
proteolytic events per protein in the training set was 2.34, with a median of one.

4.2. Structural Features

The selection of structural features for use in the prediction model was based on our
earlier studies [26,27] as well as other relevant research in the field [8–10,34,35]. Primary
structural features were solvent accessibility, secondary structure, and temperature factor (B-
factor). Solvent accessibility and secondary structure were obtained using the DSSP tool [43].
B-factor was extracted from the PDB files of protease substrates’ 3D structures. Based on
our earlier observations of an increased density of cleavage sites in long protruded loops
and C- and N-protein termini, we introduced two specific structural features associated
with these observations. First, we added the length of the loop as a feature and assigned
it to all peptide bonds within the loop. Second, we defined the regions of the C- and
N-protein termini as unstructured terminal protein regions that are adjacent to the regular
secondary structure elements, with the exception of short ones (see comments in the source
code). Solvent accessibility, loop length, and B-factor were normalized using min-max
scaling. The secondary structure was converted into three binary features that indicated
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the presence or absence of specific types of secondary structures. C- and N-protein termini
were encoded as a binary variable. A single binary variable was used to represent the C-
and N-protein termini.

4.3. Training Set Processing and Selection of the Machine Learning Method

To create the training set, we computed the mentioned structural features for every
amino acid in each substrate. Next, we assigned the structural features calculated for the
amino acid at P1 position of the cleavage sites (Schechter–Berger notation) [44] to each
peptide bond, as this position has previously been identified as the most important from a
structural perspective [26,45–47]. We applied multiple machine learning methods from the
scikit-learn library [48], such as Random Forest, Decision Trees, Naïve Bayes, SVM, Logistic
Regression, XGBoost, Linear and Quadratic Discriminant Analysis, to identify the optimal
method for our task (Figure 1B). The quality of the models was assessed via the AUC ROC
metric using a 10-fold cross-validation technique. We also varied the proportions of the
negative class relative to the positive class to assess the impact of the positive–negative class
size ratio on the prediction quality and determine the optimal ratio (Figure 1C). We found
that the quality of prediction was generally independent of the class size ratio; therefore,
we chose a 1:1 class size ratio. Among the applied machine learning methods, Linear
Discriminant Analysis demonstrated the best quality of prediction.

4.4. Extending Training Set with AlphaFold Models

Structure models were downloaded from the AlphaFold Protein Structure Database [29].
BLAST [40] was used to query the remaining protease substrates against the AlphaFold
models. Filtering of the BLAST search results, mapping of the cleavage sites into AlphaFold
models, and visualization followed a similar procedure as described above for the search
against PDB. The numbers of proteolytic sites, substrates, and associated proteases at each
filtering step were as follows: 3168, 1209, and 317 after the BLAST search step; 2925, 1209,
and 317 after the mapping step; and 2918, 1205, and 314 after the curation step, respectively.
In this dataset, proteins had an average of 2.42 proteolytic events, with a median of one
event per protein.

4.5. Combining the Method with Protease Sequence Specificity Models

A testing set of proteolytic events was created using the MEROPS database [33]. We
selected proteolytic events that were added to the database after the release of the Procleave
method [23]. At each filtering step, the counts of proteolytic sites, substrates, and associated
proteases were as follows: 213, 129, and 3 after extraction from MEROPS; 81, 48, and 3 after
BLAST search; 43, 27, and 3 after mapping; and 28, 18, and 3 after the curation process,
respectively. In the testing set, the average number of proteolytic events per protein was
2.34, while the median value was one. Protease sequence specificity models, in the form of
PSSM matrices [31], were constructed following the method described in [49]. To combine
the predicted values of structural susceptibility to proteolysis generated by our method
with the sequence specificity scores generated by PSSM models, we created a training set
that included these two features and applied the Naïve Bayes method. The obtained model
was applied to the testing set and compared with the Procleave results.
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