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Abstract: Spirocyclic compounds containing heterocyclic moieties represent promising 3D scaf-
folds for modern drug design. In the search for novel anti-flaviviral agents, we have obtained a
series of 3-[N,N-bis(sulfonyl)amino]isoxazolines containing spiro-annulated cyclooctane rings and
assessed their antiviral activity against tick-borne encephalitis (TBEV), yellow fever (YFV), and
West Nile (WNV) viruses. The structural analogs of spirocyclic compounds with a single sulfonyl
group or 1,2-annulated cyclooctane ring were also investigated. Almost all the studied 3-[N,N-
bis(sulfonyl)amino]isoxazolines revealed antiviral activity against TBEV and WNV. The most active
against TBEV was spiro-isoxazoline derivative containing p-nitrophenyl groups in the sulfonyl part
(EC50 2.0 ± 0.5 µM), while the highest potency against WNV was found for the compounds with
lipophilic substituents in sulfonyl moiety, naphtyl being the most favorable one (EC50 1.3 ± 0.5 µM).
In summary, two novel scaffolds of anti-flaviviral agents based on N,N-bis(sulfonyl)amino]isoxazoline
were proposed, and the compounds of this type demonstrated activity against TBEV and WNV.

Keywords: tick-borne encephalitis virus; yellow fever virus; West Nile virus; antivirals; isoxazolines;
spiro-compounds; 1,2-annulated compounds; sulfonylation

1. Introduction

In the past two decades, spirocyclic compounds appeared at the focus of research in the
field of drug design and discovery as promising 3D scaffolds, enlarging the chemical space,
allowing the construction of new types of lead compounds, and improving their potency,
selectivity, and pharmacokinetic properties [1]. Spiroheterocyclic motifs are present in a
number of approved drugs and natural compounds [1–4] (Figure 1). Such an interest in
spirocyclic structures echoed in the field of synthetic organic chemistry, giving rise to a
number of elegant preparative approaches to compounds of this type [5–11].

On the other hand, medium-sized rings (8–11 atoms) are rarely used for the construc-
tion of spirocyclic structures, reflecting the general tendency concerning medium rings.
Although they possess appealing properties, such as a unique balance between rigidity
and flexibility and diverse geometry, improve binding affinity to target enzymes, and are
present in both bioactive and natural compounds (Figure 1) [12–14], application of medium
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rings in drug design is limited by the lack of synthetic approaches. Successful efforts to
obtain the compounds containing medium rings, in most cases with heteroatoms, have
been recently reported, illustrating the arising interest in such structures and the need for
synthetic methods for them [15–17].
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Figure 1. Examples of approved drugs, natural and bioactive compounds with spirocyclic motifs,
medium rings, isoxazoline moieties, and their combinations.

Isoxazoles and isoxazolines reveal a broad range of biological activities, including
antitumor, antibacterial, antimalarial, antisclerotic, antidiabetic, and others (Figure 1), and
a number of examples exist of how the insertion of an isoxazoline moiety increases the
potency of the bioactive compounds [18–23]. The most general approach to isoxazoline
derivatives is 1,3-dipolar cycloaddition, though other methods, taking advantage of metal-
mediated and radical processes, are constantly gaining more significance [24,25]. Recently
we have elaborated the preparative approach to spiro- and 1,2-annulated 3-aminoisoxazoles
1,2, containing an 8-membered ring, and demonstrated their potent antiviral activity against
influenza A virus (Figure 2) [26]. A series of 3-(N-sulfonylamino)isoxazolines 3 was also
obtained and found to possess low-to-no cytotoxicity, making them attractive for the search
of other applications in lead discovery [26].
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Figure 2. Previously obtained aminoisoxazoline derivatives 1–3 [26].

Flaviviruses are arthropod-borne viruses that are mainly transmitted between birds
and wild animals by the bite of infected blood-sucking arthropods, such as mosquitoes
or ticks. Unfortunately, humans could be bitten and infected too, resulting in fevers and
encephalitides of different severity, from mild to even lethal, therefore representing a
constant epidemic threat [27]. Currently, there are no specific medications for the treatment
of flavivirus-borne diseases, so patient care is usually symptomatic, and the main way of
preventing infection is vaccination [28]. Nevertheless, vaccines do not provide complete
protectivity [29], and there is still no human vaccine against West Nile virus [30]. Thus, the
development of specific anti-flaviviral drugs is still very important. Previously we have
found several structural types of compounds showing antiviral activity against tick-borne
encephalitis (TBEV), yellow fever (YFV), and West Nile (WNV) viruses [28,31–38]. As can
be seen in examples (Figure 3), they possess quite a diverse structure.
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Figure 3. Examples of compounds with antiviral activity against TBEV, YFV, WNV, and DENV [31–33,35,39].

A heterocyclic core, spiro-annulated or 1,2-annulated to carbocycle and furnished
with lipophilic substituents, may be distinguished as a peculiar pattern. For example,
spiropyrazolopyridone derivatives were identified as dengue virus type 2 (DENV-2) in-
hibitors [40], while substituted 4,6-dihydrospiro[[1–3]triazolo[4,5-b]pyridine-7,3′-indoline]-
2′,5(3H)-dione analogs such as JMX0254 (Figure 3) effectively inhibit NS4B protein activity
of dengue virus type 1 (DENV-1) [39]. That inspired us to synthesize a series of novel
3-[N,N-bis(sulfonyl)amino]isoxazolines 4,5, containing spiro-annulated or 1,2-annulated
cyclooctane rings (Figure 4), and probe them as novel anti-flaviviral agents along with the
previously obtained series of 3-(N-sulfonylamino)isoxazolines 3.
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Figure 4. Structures of 3-[N,N-bis(sulfonyl)amino]isoxazolines 4,5, investigated in the present work,
and previously studied isoxazole derivative 6 that was used as a positive control [41].

2. Results and Discussion
2.1. Chemistry

Target 3-[N,N-bis(sulfonyl)amino]isoxazolines were obtained via sulfonylation of 3-
aminoisoxazolines 1,2 or, in some cases, 3-(sulfonylamino)isoxazolines 3 upon treatment
with corresponding sulfonyl chlorides (Table 1). Depending on the starting amine and
sulfonyl chloride, the chosen method, reaction time, and reagent ratio were varied in order
to improve the preparative yield (see Section 3.2).

The interaction of amines 1 and 2 with mesyl chloride and benzyl sulfonyl chloride in
the presence of N,N-diisopropylethylamine (DIPEA) (Method A) gave hardly separable
mixtures of the products of one- and two-fold sulfonylation, even when an excess of
sulfonyl chloride was used. That resulted in lowering the yields of compounds 4a,b, and
5b, and despite all the efforts, we were not able to obtain compound 5a in analytically
pure form.
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Table 1. Synthesis of 3-[N,N-bis(sulfonyl)amino]isoxazolines 4a–l and 5b–l.
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Spirocyclic isoxazoline 1 interacted with aryl sulfonyl chlorides in the presence of
DIPEA (Method A), affording the products of two-fold sulfonylation, generally in moderate
yields. Nevertheless, bis(sulfonyl)amines 4e,h could not be obtained in these conditions.
Compound 4e was successfully obtained via sulfonylation of 3-(sulfonylamino)isoxazoline
3e using the mixture of triethylamine (TEA) and 4-dimethylaminopyridine (DMAP) as the
bases (Method C); this method was also probed for the synthesis of bis(sulfonyl)amine
4f more the doubling the yield of the target compound. 2-Nitrobenzenesulfonyl chloride
did not give products of two-fold sulfonylation in the presence of N-bases (DIPEA, TEA,
DMAP). We managed to obtain compound 4h, containing o-nitrophenyl substituents, only
using pyridine as a solvent (Method B).
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The reactions of isoxazoline 2 with both EWG- and EDG-substituted aryl sulfonyl
chlorides in the presence of DIPEA (Method A) in most cases proceeded smoothly, giving
3-[N,N-bis(sulfonyl)amino]isoxazolines 5c–l in the yields up to quantitative. The exceptions
were sterically hindered o-substituted aryl sulfonyl and naphtyl sulfonyl chlorides—the re-
actions of compound 2 with the latter afforded target heterocycles 5e,h,j in moderate yields.

Such a difference in reactivity between spirocyclic and bicyclic amines 1,2 could be
explained according to their geometry. The spiro-annulated carbocycle in compound 1
hinders both sides of the isoxazoline ring, while 1,2-annulated cyclooctane leaves one side
of the ring unhindered, thus not preventing the amino group from serving as a nucleophile.

2.2. Antiviral Activity Assessment

For two series of 3-[N,N-bis(sulfonyl)amino]isoxazolines 4a–l and 5b–l, antiviral ac-
tivity was investigated against TBEV on porcine embryo kidney (PEK) cells using plaque
reduction assay based on the estimation of the plaque-forming efficiency of a virus in the
presence of different concentrations of a compound. Acute and chronic cytotoxicity of these
compounds was studied using resazurin cell viability assay—viable cells turn resazurin
into fluorescent resorufin (Table 2; see also Supplementary Materials). In order to compare
the bioactivity of mono- and bissulfonylated derivatives, the same tests were performed for
the series of previously obtained [26] 3-(N-sulfonylamino)isoxazolines 3a–h,j–l. Previously
studied isoxazole derivative 6 (Figure 4) that showed anti-TBEV activity [41] was used as a
positive control. Despite it not being structurally similar to the compounds studied in this
work, it allowed us to confirm the validity of the obtained EC50 values.

Most of bis(sulfonyl)amines 4 and 5 and several sulfonylamines 3 revealed anti-
TBEV activity in micromolar concentrations. The most favorable substituents in sul-
fonyl moiety were found to be trimethylphenyl (3–5e), 2- or 4-nitrophenyl (3–5h, 4–5i)
and naphtyl (3–5j)—all the types of isoxazolines containing these groups demonstrated
antiviral activity.

Comparing spiro-annulated sulfonyl- and bis(sulfonyl)amines 3c–h,j–l and 4c–h,j–l,
containing aromatic substituents, one can observe that bis(sulfonyl) derivatives 4 system-
atically show higher potency than their mono-substituted analogs 3 (3e,h,j vs. 4e,h,j) or
demonstrate antiviral activity in the cases where compounds 3 are inactive (3c,d,f,l vs.
4c,d,f,l). On the contrary, mono-benzyl substituted sulfonylamine 3b was more potent than
its bis-substituted congener 4b.

Compounds 4b–l and 5b–l, containing spiro-annulated or 1,2-annulated cyclooctane
moieties, did not show a clear relation between antiviral activity and the configuration of
the two-ring system. Spiro-isoxazolines 4c,d,f,i,l were more potent than 1,2-annulated
analogs, while for compounds 4b,g,h,j,k, the relation is opposite. Nevertheless, the
most potent compounds of all the investigated species, namely 4c and 4i, belong to the
spiro-isoxazoline series.

For all the compounds 3–5, we have also determined the antiviral activity against
WNV on African green monkey kidney (Vero) cells using the plaque reduction assay. The
acute and chronic cytotoxicity of these compounds was studied using the resazurin cell
viability assay (Table 3). Favipiravir was used as a positive control in this screening [42].

Almost all the tested compounds, except 5l, inhibited WNV reproduction. In sul-
fonylamine series 3, the most active were benzyl- and thiophenyl-substituted deriva-
tives 3b and 3k. All the bis(sulfonyl)amines 4 were active in micromolar concentrations.
Bis(sulfonyl)amines 4c–l bearing aromatic or heteroaromatic substituents demonstrated
higher potency than methyl or benzyl substituted compounds 4a,b. The highest potency
was found for compounds 4c–e,j with lipophilic substituents in sulfonyl moiety, naphtyl
being the most favorable one. Isoxazolines 5 containing the 1,2-annulated cyclooctane
moiety generally demonstrated lesser anti-WNV activity than their spiro-annulated analogs
4, except benzyl derivative 5b, that was more active than its analog 4b, and almost equally
active compounds 4e and 5e. It is also interesting that the addition of the second pyridyl
group to the sulfonylamine 3l, resulting in the compound 4l, did not affect the EC50 value,
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while a change in the position of cyclooctane moiety from spiro-annulated to 1,2-annulated
one (compounds 4l and 5l, respectively) resulted in the complete loss of anti-WNV activity.

Table 2. Anti-TBEV activity and chronic cytotoxicity of compounds 3–5.
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Finally, all compounds 3–5 have been tested for anti-YFV activity. Spiro-isoxazoline
3b, bearing benzylsulfonyl moiety, was found to be active with EC50 24 ± 11 µM, while
other isoxazolines demonstrated no activity in concentrations up to 50 µM. Compound 6
was used as a positive control.
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Table 3. Anti-WNV activity and chronic cytotoxicity of compounds 3–5.

cmpd WNV EC50,
µM

Vero 1

(7 Days)
CC50, µM

cmpd WNV EC50,
µM

Vero
(7 Days)

CC50, µM
cmpd WNV EC50,

µM

Vero
(7 Days)

CC50, µM

3a 31.0 ± 2.0 >50 4a 10 ± 6 >50 - - -

3b 9.9 ± 1.5 >50 4b 16 ± 8 >50 5b 6.3 ± 1.2 >50

3c 25 ± 7 >50 4c 2.6 ± 1.4 >50 5c 18 ± 4 >50

3d 14 ± 5 >50 4d 3.0 ± 1.9 >50 5d 14 ± 8 >50

3e 22 ± 4 >50 4e 4.8 ± 1.0 >50 5e 4.0 ± 0.6 >50

3f 18 ± 6 >50 4f 7.1 ± 1.0 >50 5f 16 ± 10 >50

3g 28.4 ± 2.2 >50 4g 9.8 ± 2.6 >50 5g 12 ± 6 >50

3h 21.5 ± 0.9 >50 4h 7.8 ± 1.0 33.28 ± 0.02 5h 17 ± 3 >50

- - - 4i 5.3 ± 1.0 28.3 ± 2.4 5i 19 ± 11 >50

3j 20.3 ± 0.3 31 ± 3 4j 1.3 ± 0.5 >50 5j 5.9 ± 1.8 >50

3k 6.1 ± 1.3 >50 4k 10 ± 4 >50 5k 18 ± 4 12.0 ± 2.4

3l 11 ± 7 >50 4l 8 ± 4 >50 5l >50 >50

Favipiravir 102 ± 28 >1000
1 African green monkey kidney cells.

It should be noted that all the tested compounds demonstrated no acute cytotoxicity
against PEK cells (see Supplementary Materials), and only compound 5i was slightly
toxic during 7 days of incubation. In the case of Vero cells, compounds 3j, 4i, and 5k
showed both acute and chronic cytotoxicity, while 4h was only acute toxic (Table 3; see also
Supplementary Materials). Thus, the compounds studied here represent a substantially
novel class of non-toxic antivirals, deserving further detailed studies of the mechanism of
action and antiviral efficiency in vivo.

3. Materials and Methods
3.1. General Remarks

1H and 13C NMR spectra were recorded on a 400 MHz spectrometer Agilent 400-MR
(400.0 and 100.6 MHz for 1H and 13C, respectively; Agilent Technologies, Santa Clara, CA,
USA) at r.t. in CDCl3; chemical shifts δ were measured with reference to the solvent (CDCl3,
δH = 7.26 ppm, δC = 77.16 ppm). When necessary, assignments of signals in NMR spectra
were made using 2D techniques. Accurate mass measurements (HRMS) were obtained
on Bruker micrOTOF II (Bruker Daltonik GmbH, Bremen, Gemany) with electrospray
ionization (ESI). Analytical thin-layer chromatography was carried out with silica gel
plates supported on aluminum (ALUGRAM® Xtra SIL G/UV254, Macherey-Nagel, Duren,
Germany); the detection was performed by a UV lamp (254 nm). Column chromatography
was performed on silica gel (Silica 60, 0.015–0.04 mm, Macherey-Nagel, Duren, Germany).
3-Aminoisoxazolines 1,2 and compounds 3a–l were obtained via described methods [26].
All other starting materials were commercially available. All reagents except commercial
products of satisfactory quality were purified according to literature procedures prior
to use.

Stock solutions of the compounds with a concentration of 5 mM were prepared in
DMSO (Amresco, Cleveland, OH, USA).

3.2. Synthesis of Compounds 4,5 (General Methods)

Method A. To the solution of 3-aminoisoxazoline 1 or 2 (0.18 mmol) in dry DCM
(2 mL), DIPEA (4 equiv, 0.72 mmol, 93 mg, 125 µL) was added under argon. The reaction
mixture was cooled down to 0 ◦C, and sulfonyl chloride (0.9–5.5 equiv, 0.16–1.0 mmol)
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was added. Then the mixture was allowed to warm up to r.t., stirred for 3 h–8 days, and
quenched with water (6 mL). The organic layer was separated, and the water layer was
extracted with DCM (3 × 6 mL). Combined organic layers were washed with saturated
aqueous NaHCO3 (9 mL) and brine (9 mL) and dried over MgSO4. The solvent was
evaporated under reduced pressure. The product was isolated via preparative column
chromatography (SiO2).

Method B. To the solution of 3-aminoisoxazoline 1 (0.28 mmol, 50 mg) in dry pyridine
(1 mL), DIPEA (7.9 equiv, 2.2 mmol, 284 mg, 0.38 mL) was added under argon. The
reaction mixture was cooled down to 0 ◦C, and 2-nitrobenzenesulfonyl chloride (5.9 equiv,
1.65 mmol, 365 mg) in dry pyridine (0.5 mL) was added. Then the mixture was allowed
to warm up to r.t., stirred for 3 days, and quenched with 1M HCl (6 mL). The organic
layer was separated, and the water layer was extracted with DCM (3 × 6 mL). Combined
organic layers were washed with saturated aqueous NaHCO3 (9 mL) and brine (9 mL) and
dried over MgSO4. The solvent was evaporated under reduced pressure. The product was
isolated via preparative column chromatography (SiO2).

Method C. To the solution of 3-(sulfonylamino)isoxazoline 3e or 3f (0.1 mmol) in dry
DCM (1.2 mL), TEA (3 equiv, 0.3 mmol, 0.04 mL, 30 mg) and DMAP (0.2 equiv, 0.02 mmol,
2.5 mg) were added under argon. The reaction mixture was cooled down to 0 ◦C, and
sulfonyl chloride (1.1–2.4 equiv, 0.11–0.24 mmol) was added. Then the mixture was allowed
to warm up to the r.t., stirred for 1–2 days, and quenched with water (5 mL). The organic
layer was separated, and the water layer was extracted with DCM (3 × 5 mL). Combined
organic layers were washed with brine (9 mL) and dried over MgSO4. The solvent was
evaporated under reduced pressure. The product was isolated via preparative column
chromatography (SiO2).

3.2.1. N-(Methylsulfonyl)-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-yl)methanesulfonamide (4a)

Yield 14 mg (23%), method A; reaction time 2 days; 1 mmol of sulfonyl chloride was
used. White crystals, m.p. 139–141 ◦C. Rf = 0.20 (petroleum ether:EtOAc = 8:1).

1H NMR (δ, ppm): 1.40–1.85 (m, 12H, 7CH2); 2.09–2.17 (m, 2H, 2CH2); 2.81 (s, 2H,
CH2, Isox); 3.46 (s, 6H, 2CH3).

13C NMR (δ, ppm): 22.0 (2CH2), 24.4 (CH2), 28.0 (2CH2), 35.0 (2CH2), 43.8 (CH2, Isox),
45.6 (2CH3), 95.3 (Cspiro), 149.4 (C, Isox).

HRMS (ESI+, m/z): calculated for C12H22N2O5S2 [M+H]+, 339.1043; found, 339.1042.

3.2.2. N-(Benzylsulfonyl)-1-phenyl-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-
yl)methanesulfonamide (4b)

Yield 15 mg (19%), method A; reaction time 3 days; 0.16 mmol of sulfonyl chloride
was used. White crystals, m.p. 176–177 ◦C. Rf = 0.28 (petroleum ether:DCM = 1:2).

1H NMR (δ, ppm): 1.19–1.30 (m, 2H, 2CH2); 1.30–1.44 (m, 2H, 2CH2); 1.44–1.66 (m, 8H,
7CH2); 1.49 (s, 2H, CH2, Isox); 1.85–1.96 (m, 2H, 2CH2); 4.87 (s, 4H, 2CH2, Bn); 7.36–7.46
(m, 6H, 6CH, Ph); 7.47–7.57 (m, 4H, 4CH, Ph).

13C NMR (δ, ppm): 21.9 (2CH2), 24.3 (CH2), 27.9 (2CH2), 34.7 (2CH2), 43.5 (CH2, Isox),
61.8 (2CH2, Bn), 94.8 (Cspiro), 126.8 (C, Isox), 129.2 (4CH, Ph), 129.7 (2CH, Ph), 131.8 (4CH,
Ph), 150.4 (2C, Ph).

HRMS (ESI+, m/z): calculated for C24H30N2O5S2 [M+H]+, 491.1669; found, 491.1667.

3.2.3. N-(Phenylsulfonyl)-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-yl)benzenesulfonamide (4c)

Yield 59 mg (71%), method A; reaction time 2 days; 1 mmol of sulfonyl chloride was
used. White crystals, m.p. 139–141 ◦C. Rf = 0.21 (petroleum ether:EtOAc = 3:1).

1H NMR (δ, ppm): 1.34–1.65 (m, 5H, 5CH2); 1.66–1.81 (m, 3H, 3CH2); 1.84–2.00 (m,
4H, 4CH2); 2.44–2.58 (m, 2H, 2CH2); 3.03 (s, 2H, CH2, Isox); 7.30–7.41 (m, 4H, 4CH, Ph);
7.51–7.60 (m, 2H, 2CH, Ph); 7.69–7.77 (m, 4H, 4CH, Ph).
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13C NMR (δ, ppm): 22.7 (2CH2), 25.0 (CH2), 28.0 (2CH2), 28.4 (CH2, Isox), 33.2 (2CH2),
93.1 (Cspiro), 118.0 (C, Isox), 128.9 (4CH, Ph), 129.6 (4CH, Ph), 134.5 (2CH, Ph), 135.3
(2C(SO2)).

HRMS (ESI+, m/z): calculated for C22H26N2O5S2 [M+NH4]+, 480.1621; found, 480.1622.

3.2.4. 4-Methyl-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-yl)-N-tosylbenzenesulfonamide (4d)

Yield 49 mg (56%), method A; reaction time 2 days; 1 mmol of sulfonyl chloride was
used. White crystals, m.p. 151–153 ◦C. Rf = 0.41 (petroleum ether:DCM = 1:3).

1H NMR (δ, ppm): 1.34–1.65 (m, 5H, 5CH2); 1.66–1.81 (m, 3H, 3CH2); 1.84–2.00 (m,
4H, 4CH2); 2.40 (s, 6H, 2CH3); 2.43–2.56 (m, 2H, 2CH2); 3.02 (s, 2H, CH2, Isox); 7.08–7.19
(m, 4H, 4CH, Ar); 7.57–7.67 (m, 4H, 4CH, Ar).

13C NMR (δ, ppm): 21.9 (2CH3), 22.7 (2CH2), 25.0 (CH2), 28.0 (2CH2), 28.3 (CH2, Isox),
33.2 (2CH2), 92.8 (Cspiro), 118.1 (C, Isox), 129.4 (4CH, Ar), 129.7 (4CH, Ar), 132.4 (2C(SO2)),
145.8 (2C, Ar).

HRMS (ESI+, m/z): calculated for C24H30N2O5S2 [M+NH4]+, 508.1934; found, 508.1939.

3.2.5. N-(Mesitylsulfonyl)-2,4,6-trimethyl-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-
yl)benzenesulfonamide (4e)

Yield 33 mg (60%), method C; 0.11 mmol of sulfonyl chloride was used. White crystals,
m.p. 180–182 ◦C. Rf = 0.21 (petroleum ether:EtOAc = 7:1).

1H NMR (δ, ppm): 1.20–1.73 (m, 14H, 7CH2); 2.33 (s, 6H, 2CH3); 2.61 (s, 2H, CH2,
Isox); 2.74 (s, 12H, 4CH3); 7.01 (s, 4H, 4CH, Ar).

13C NMR (δ, ppm): 21.4 (2CH3), 22.2 (2CH2), 23.6 (4CH3), 24.1 (CH2), 27.8 (2CH2,
cy-Oct + CH2, Isox), 33.3 (2CH2), 91.4 (Cspiro), 117.3 (C, Isox), 132.3 (4CH, Ar + 2C(SO2)),
142.8 (4C, Ar), 145.2 (2C, Ar).

HRMS (ESI+, m/z): calculated for C28H38N2O5S2 [M+NH4]+, 546.2560; found, 546.2553.

3.2.6. N-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)-N-(1-oxa-2-azaspiro[4.7]dodec-2-
en-3-yl)-2,3-dihydrobenzo[b][1,4]dioxine-6-sulfonamide (4f)

Yield 38 mg (36%), method A; reaction time 2 days, 1 mmol of sulfonyl chloride was
used; 35 mg (61%), method C; 0.24 mmol of sulfonyl chloride was used. White crystals,
m.p. 191–193 ◦C. Rf = 0.32 (petroleum ether:EtOAc = 1:1).

1H NMR (δ, ppm; J, Hz): 1.34–1.65 (m, 5H, 5CH2); 1.66–1.81 (m, 3H, 3CH2); 1.84–2.00
(m, 4H, 4CH2); 2.46–2.58 (m, 2H, 2CH2); 3.03 (s, 2H, CH2, Isox); 4.20–4.36 (m, 8H, 4CH2O);
6.77 (br.d, 3J 8.6, 1H, CH, Ar); 7.20 (br.d, 4J 2.3, 1H, CH, Ar); 7.12–7.20 (m, 2H, 2CH, Ar);
7.23 (dd, 3J 8.6, 4J 2.3, 1H, CH, Ar).

13C NMR (δ, ppm): 22.2 (2CH2), 25.0 (CH2), 28.0 (2CH2), 28.4 (CH2, Isox), 33.1 (2CH2),
64.1 (2CH2O), 64.8 (2CH2O), 92.9 (Cspiro), 117.3 (2CH, Ar), 118.2 (C, Isox), 119.2 (2CH, Ar),
123.5 (2CH, Ar), 127.1 (2C, Ar), 143.1 (2C, Ar), 149.0 (2C, Ar).

HRMS (ESI+, m/z): calculated for C26H30N2O9S2 [M+Na]+, 601.1285; found, 601.1280.

3.2.7. N-((2,4-Difluorophenyl)sulfonyl)-2,4-difluoro-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-
3-yl)benzenesulfonamide (4g)

Yield 45 mg (47%), method A; reaction time 4 days, 0.54 mmol of sulfonyl chloride
was used. White crystals, m.p. 61–62 ◦C. Rf = 0.56 (DCM).

1H NMR (δ, ppm; J, Hz): 1.32–1.53 (m, 3H, 3CH2); 1.54–1.66 (m, 2H, 2CH2); 1.68–1.78
(m, 3H, 3CH2); 1.78–1.90 (m, 2H, 2CH2); 1.95 (ddd, 2JHH 15.2, 3JHH 8.1, 3JHH 2.2, 2H, 2CH2);
2.45 (ddd, 2JHH 15.2, 3JHH 10.6, 3JHH 2.1, 2H, 2CH2); 3.00 (s, 2H, CH2, Isox); 6.98 (ddd, 3JHF
10.2, 3JHF 8.5, 4JHH 4.0, 2H, 2CH, Ar); 7.08 (dddd, 3JHF 7.4, 5JHF 1.1, 3JHH 9.0, 4JHH 2.5, 2H,
2CH, Ar); 8.02 (ddd, 4JHF 7.8, 4JHF 6.0, 3JHH 9.0, 2H, 2CH, Ar).

13C NMR (δ, ppm; J, Hz): 22.7 (2CH2); 25.1 (CH2); 28.0 (2CH2); 28.2 (CH2, Isox); 33.1
(2CH2); 93.5 (Cspiro); 106.2 (dd, 2JCF 26, 2JCF 26, 2CH, Ar); 112.4 (dd, 2JCF 22, 4JCF 4, 2CH,
Ar); 117.7 (C, Isox); 120.0 (dd, 2JCF 13, 2JCF 4, 2C(SO2)); 135.5 (d, 3JCF 11, 2CH, Ar); 161.2
(dd, 1JCF 265, 3JCF 14, 2CF, Ar); 167.7 (dd, 1JCF 262, 3JCF 12, 2CF, Ar).
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19F NMR (δ, ppm; J, Hz): −98.03 (dddd, 4JFF 15.3, 3JHF 10.2, 4JHF 7.8, 5JHF 1.1, 2F, CF,
Ar); −95.27 (dddd, 4JFF 15.3, 3JHF 8.5, 3JHF 7.4, 4JHF 6.0, 2F, CF, Ar).

HRMS (ESI+, m/z): calculated for C22H22F4N2O5S2 [M+Na]+, 557.0798; found, 557.0795.

3.2.8. 2-Nitro-N-((2-nitrophenyl)sulfonyl)-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-
yl)benzenesulfonamide (4h)

Yield 30 mg (20%), method B. Light-yellow crystals, m.p. 155–157 ◦C. Rf = 0.23
(petroleum ether:EtOAc = 2:1).

1H NMR (δ, ppm): 1.33–1.95 (m, 12H, 7CH2); 2.33–2.42 (m, 2H, 2CH2); 2.95 (s, 2H,
CH2, Isox); 7.61–7.66 (m, 2H, 2CH, Ar); 7.71–7.79 (m, 4H, 4CH, Ar); 8.31–8.37 (m, 2H,
2CH, Ar).

13C NMR (δ, ppm): 22.6 (2CH2), 25.1 (CH2), 27.9 (2CH2), 28.3 (CH2, Isox), 32.9 (2CH2),
94.6 (Cspiro), 117.5 (C, Isox), 124.5 (2CH), 130.1 (2C(SO2)), 132.1 (2CH), 132.5 (2CH), 135.7
(2CH), 148.4 (2C(NO2)).

HRMS (ESI+, m/z): calculated for C22H24N4O9S2 [M+NH4]+, 570.1323; found, 570.1322.

3.2.9. 4-Nitro-N-((4-nitrophenyl)sulfonyl)-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-
yl)benzenesulfonamide (4i)

Yield 19 mg (57%), method A; reaction time 3 h, 0.63 mmol of sulfonyl chloride was
used. White crystals, m.p. 178–180 ◦C. Rf = 0.33 (petroleum ether:EtOAc = 4:1).

1H NMR (δ, ppm): 1.33–1.46 (m, 3H, 3CH2); 1.51–1.64 (m, 2H, 2CH2); 1.68–1.90 (m, 7H,
7CH2); 2.36–2.49 (m, 2H, 2CH2); 2.97 (s, 2H, CH2, Isox); 8.21–8.29 (m, 4H, 4CH); 8.35–8.43
(m, 4H, 4CH).

13C NMR (δ, ppm): 22.7 (2CH2), 25.2 (CH2), 27.9 (2CH2), 28.1 (CH2, Isox), 33.3 (2CH2),
94.0 (Cspiro), 117.7 (C, Isox), 124.2 (4CH), 131.6 (4CH), 141.2 (2C(SO2)), 151.5 (2C(NO2)).

HRMS (ESI+, m/z): calculated for C22H24N4O9S2 [M+Na]+, 575.0877; found, 575.0876.

3.2.10. N-(Naphthalen-2-ylsulfonyl)-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-
yl)naphthalene-2-sulfonamide (4j)

Yield 73 mg (72%), method A; reaction time 8 days, 0.54 mmol of sulfonyl chloride
was used. White crystals, m.p. 160–161 ◦C. Rf = 0.39 (petroleum ether:DCM = 1:4).

1H NMR (δ, ppm; J, Hz): 1.36–1.88 (m, 8H, 5CH2); 1.92–2.15 (m, 4H, 4CH2); 2.61–2.75
(m, 2H, 2CH2); 3.14 (s, 2H, CH2, Isox); 7.36 (d, 3J 8.7, 2H, 2CH); 7.38–7.42 (m, 2H, 2CH);
7.45–7.50 (m, 2H, 2CH); 7.50–7.53 (m, 4H, 4CH); 7.55 (dd, 3J 8.7, 4J 1.9, 2H, 2CH); 8.09 (d, 4J
1.9, 2H, 2CH).

13C NMR (δ, ppm): 22.7 (2CH2), 25.0 (CH2), 28.1 (2CH2), 28.6 (CH2, Isox), 33.2 (2CH2),
93.6 (Cspiro), 118.2 (C, Isox), 123.2 (2CH), 127.65 (2CH), 127.67 (2CH), 128.7 (2CH), 129.3
(2CH), 129.7 (2CH), 131.31 (2C), 131.38 (2C), 131.40 (2CH), 135.2 (2C).

HRMS (ESI+, m/z): calculated for C30H30N2O5S2 [M+Na]+, 585.1488; found, 585.1477.

3.2.11. N-(1-Oxa-2-azaspiro[4.7]dodec-2-en-3-yl)-N-(thiophen-2-ylsulfonyl)thiophene-2-
sulfonamide (4k)

Yield 27 mg (32%), method A; reaction time 2 days; 1 mmol of sulfonyl chloride was
used. White crystals, m.p. 147–147 ◦C. Rf = 0.2 (petroleum ether:DCM = 1:3)

1H NMR (δ, ppm; J, Hz): 1.34–2.03 (m, 12H, 7CH2); 2.48–2.61 (m, 2H, CH2); 3.01 (s, 2H,
CH2, Isox); 6.95–6.99 (m, 2H, 2CH, Tioph); 7.57–7.60 (m, 2H, 2CH, Tioph); 7.65–7.68 (m, 2H,
2CH, Tioph).

13C NMR (δ, ppm): 22.8 (2CH2), 25.1 (CH2), 28.1 (2CH2), 28.5 (CH2, Isox), 33.2
(2CH2), 93.6 (Cspiro), 117.8 (C, Isox), 127.2 (2CH, Tioph), 133.6 (2C(SO2)), 136.3 (2CH,
Tioph), 137.2(2CH, Tioph).

HRMS (ESI+, m/z): calculated for C18H22N2O5S4 [M+Na]+, 497.0304; found, 497.0300.
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3.2.12. N-(Pyridin-3-ylsulfonyl)-N-(1-oxa-2-azaspiro[4.7]dodec-2-en-3-yl)pyridine-3-
sulfonamide (4l)

Yield 77 mg (92%), method A; reaction time 4 days, 0.54 mmol of sulfonyl chloride
was used. White crystals, m.p. 151–152 ◦C. Rf = 0.41 (DCM:MeOH = 25:1).

1H NMR (δ, ppm; J, Hz): 1.34–1.52 (m, 3H, 3CH2); 1.54–1.66 (m, 2H, 2CH2); 1.69–1.97
(m, 7H, 7CH2); 2.43–2.55 (m, 2H, 2CH2); 3.00 (s, 2H, CH2, Isox); 7.45 (ddd, 3JHH 8.2, 3JHH
4.9, 5JHH 0.8, 2H, 2CH, Py); 8.25 (ddd, 3JHH 8.2, 4JHH 2.4, 4JHH 1.6, 2H, 2CH, Py); 8.86 (dd,
3JHH 4.9, 4JHH 1.6, 2H, 2CH, Py); 9.02 (dd, 4JHH 2.4, 5JHH 0.8, 2H, 2CH, Py).

13C NMR (δ, ppm): 22.7 (2CH2), 25.1 (CH2), 27.9 (2CH2), 28.2 (CH2, Isox), 33.2 (2CH2),
93.9 (Cspiro), 117.8 (C, Isox), 123.8 (2CH, Py), 132.3 (2C(SO2)), 137.6 (2CH, Py), 150.1 (2CH,
Py), 155.2 (2CH, Py).

HRMS (ESI+, m/z): calculated for C20H24N4O5S2 [M+H]+, 465.1261; found, 465.1256.

3.2.13. N-(Benzylsulfonyl)-N-(3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-3-yl)-1-
phenylmethanesulfonamide (5b)

Yield 25 mg (29%), method A; reaction time 1 day, 0.54 mmol of sulfonyl chloride was
used. White crystals, m.p. 198–199 ◦C. Rf = 0.45 (petroleum etherl:EtOAc = 8:1).

1H NMR (δ, ppm; J, Hz): 0.30–0.48 (m, 1H, CH2); 0.92–1.03 (m, 2H, CH2); 1.10–1.62 (m,
7H, 4CH2); 1.82–1.95 (m, 2H, CH2); 2.43–2.55 (m, 1H, CH, cy-Oct); 4.53–4.64 (m, 1H, CH-O,
cy-Oct); 4.89 (d, 3J 13.9, 2H, 2CH2, Bn); 5.09 (d, 3J 13.9, 2H, 2CH2, Bn); 7.37–7.47 (m, 6H,
6CH, Ph); 7.47–7.55 (m, 4H, 4CH, Ph).

13C NMR (δ, ppm): 22.7 (CH2), 25.1 (CH2), 25.2 (CH2), 25.6 (CH2), 26.1 (CH2), 29.8
(CH2), 49.5 (CH, cy-Oct), 61.7 (2CH2, Bn), 88.1 (CH-O, cy-Oct), 126.7 (C, Isox), 129.2 (4CH,
Ph), 129.7 (2CH, Ph), 131.6 (4CH, Ph), 154.9 (2C, Ph).

HRMS (ESI+, m/z): calculated for C23H28N2O5S2 [M+H]+, 477.1512; found, 477.1502.

3.2.14. N-(3a,4,5,6,7,8,9,9a-Octahydrocycloocta[d]isoxazol-3-yl)-N-
(phenylsulfonyl)benzenesulfonamide (5c)

Yield 63 mg (78%), method A; reaction time 6 h, 0.45 mmol of sulfonyl chloride was
used. White crystals, m.p. 107–108 ◦C. Rf = 0.56 (DCM).

1H NMR (δ, ppm): 1.36–2.16 (m, 11H, 6CH2); 2.17–2.31 (m, 1H, CH2); 3.76–3.87 (m,
1H, CH, cy-Oct); 4.62–4.73 (m, 1H, CH-O, cy-Oct); 7.22–7.41 (m, 4H, 4CH, Ph); 7.47–7.61 (m,
2H, 2CH, Ph); 7.61–7.73 (m, 4H, 4CH, Ph).

13C NMR (δ, ppm): 23.4 (CH2), 24.2 (CH2), 25.2 (CH2), 27.4 (CH2), 27.9 (CH2), 29.7
(CH2), 34.6 (CH, cy-Oct), 89.9 (CH-O, cy-Oct), 120.4 (C, Isox), 128.8 (2CH, Ph), 129.0 (2CH,
Ph), 129.4 (2CH, Ph), 129.6 (2CH, Ph), 134.1 (2C(SO2)), 134.6 (CH, Ph), 134.7 (CH, Ph).

HRMS (ESI+, m/z): calculated for C21H24N2O5S2 [M+H]+, 449.1199; found, 449.1198.

3.2.15. 4-Methyl-N-(3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-3-yl)-N-
tosylbenzenesulfonamide (5d)

Yield 65 mg (76%), method A; reaction time 1 day, 0.54 mmol of sulfonyl chloride was
used. White crystals, m.p. 113–114 ◦C. Rf = 0.21 (petroleum ether:EtOAc = 2:1).

1H NMR (δ, ppm): 1.36–1.84 (m, 8H, 4CH2); 1.86–2.15 (m, 3H, 2CH2); 2.16–2.30 (m,
1H, CH2); 2.39 (s, 3H, CH3); 2.40 (s, 3H, CH3); 3.75–3.86 (m, 1H, CH, cy-Oct); 4.58–4.68 (m,
1H, CH-O, cy-Oct); 7.00–7.19 (m, 4H, 4CH, Ar); 7.52–7.60 (m, 4H, 4CH, Ar).

13C NMR (δ, ppm): 21.8 (2CH3), 23.4 (CH2), 24.2 (CH2), 25.2 (CH2), 27.5 (CH2), 28.0
(CH2), 29.7 (CH2), 34.6 (CH, cy-Oct), 89.6 (CH-O, cy-Oct), 120.4 (C, Isox), 129.3 (2CH, Ar),
129.5 (4CH, Ar), 129.8 (2CH, Ar), 131.3 (C(SO2)), 132.0 (C(SO2)), 145.9 (C, Ar), 146.1 (C, Ar).

HRMS (ESI+, m/z): calculated for C23H28N2O5S2 [M+H]+, 477.1512; found, 477.1505.

3.2.16. N-(Mesitylsulfonyl)-2,4,6-trimethyl-N-(3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-
3-yl)benzenesulfonamide (5e)

Yield 33 mg (34%), method A; reaction time 3 days, 0.54 mmol of sulfonyl chloride
was used. White crystals, m.p. 148–149 ◦C. Rf = 0.47 (DCM).
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1H NMR (δ, ppm): 0.97–1.17 (m, 2H, 2CH2); 1.20–1.67 (m, 8H, 6CH2); 1.82–1.95 (m, 2H,
2CH2); 2.33 (s, 6H, 2CH3); 2.74 (br.s, 12H, 4CH3); 3.13–3.20 (m, 1H, CH, cy-Oct); 3.68–3.78
(m, 1H, CH-O, cy-Oct); 7.03 (br.s, 4H, 4CH, Ar).

13C NMR (δ, ppm): 21.3 (2CH3), 22.9 (CH2), 23.4 (br.s, 4CH3 + CH2), 25.2 (CH2), 27.3
(CH2), 29.3 (CH2), 29.4 (CH2), 34.7 (CH, cy-Oct), 87.3 (CH-O, cy-Oct), 119.4 (C, Isox), 132.4
(4CH, Ar + 2C(SO2)), 142.7 (4C, Ar), 145.3 (2C, Ar).

HRMS (ESI+, m/z): calculated for C27H36N2O5S2 [M+Na]+, 555.1958; found, 555.1958.

3.2.17. N-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)-N-(3a,4,5,6,7,8,9,9a-
octahydrocycloocta[d]isoxazol-3-yl)-2,3-dihydrobenzo[b][1,4]dioxine-6-sulfonamide (5f)

Yield 60 mg (59%), method A; reaction time 1 day, 0.54 mmol of sulfonyl chloride was
used. White crystals, m.p. 129–130 ◦C. Rf = 0.22 (DCM).

1H NMR (δ, ppm; J, Hz): 1.35–2.16 (m, 11H, 2CH2); 2.17–2.32 (m, 1H, CH2); 3.76–3.91
(m, 1H, CH, cy-Oct); 4.15–4.44 (m, 8H, 4CH2O); 4.63–4.70 (m, 1H, CH-O, cy-Oct); 6.76 (d, 3J
8.7, 1H, CH, Ar); 6.77 (d, 3J 8.7, 1H, CH, Ar); 7.09 (br.d, 4J 1.2, 1H, CH, Ar); 7.12–7.20 (m,
2H, 2CH, Ar); 7.23 (br.dd, 3J 8.7, 4J 1.2, 1H, CH, Ar).

13C NMR (δ, ppm): 23.4 (CH2), 24.2 (CH2), 25.2 (CH2), 27.5 (CH2), 28.0 (CH2), 29.9
(CH2), 34.6 (CH, cy-Oct), 64.0 (2CH2O), 64.8 (2CH2O), 89.9 (CH-O, cy-Oct), 117.3 (CH, Ar),
117.4 (CH, Ar), 119.0 (CH, Ar), 119.1 (CH, Ar), 120.5 (C, Isox), 123.4 (CH, Ar), 123.8 (CH,
Ar), 126.0 (C(SO2)), 126.7 (C(SO2)), 143.0 (C, Ar), 143.2 (C, Ar), 149.1 (C, Ar), 149.3 (C, Ar).

HRMS (ESI+, m/z): calculated for C25H28N2O9S2 [M+Na]+, 587.1128; found, 587.1128.

3.2.18. N-((2,4-difluorophenyl)sulfonyl)-2,4-difluoro-N-(3a,4,5,6,7,8,9,9a-
octahydrocycloocta[d]isoxazol-3-yl)benzenesulfonamide (5g)

Yield 92 mg (98%), method A; reaction time 1 day, 0.54 mmol of sulfonyl chloride was
used. White crystals, m.p. 129–131 ◦C. Rf = 0.56 (DCM).

1H NMR (δ, ppm; J, Hz): 1.34–2.18 (m, 11H, 6CH2); 2.19–2.34 (m, 1H, CH2); 3.62–3.79
(m, 1H, CH, cy-Oct); 4.62–4.82 (m, 1H, CH-O, cy-Oct); 7.00 (ddd, 3JHF 9.9, 3JHF 8.6, 4JHH 2.4,
2H, 2CH, Ar); 7.04–7.16 (m, 2H, 2CH, Ar); 8.02 (br.s, 2H, 2CH, Ar).

13C NMR (δ, ppm; J, Hz): 23.3 (CH2), 24.0 (CH2), 25.3 (CH2), 27.6 (CH2), 28.7 (CH2),
29.3 (CH2), 34.5 (CH, cy-Oct), 89.0 (CH-O, cy-Oct), 106.2 (dd, 2JCF 26, 2JCF 26, 2CH, Ar),
112.5 (dd, 2JCF 22, 4JCF 3, 2CH, Ar), 119.1–119.6 (m, C(SO2)), 119.8 (C, Isox), 120.0–120.3 (m,
C(SO2)), 134.9–135.8 (m, 2CH, Ar), 161.3 (m, 1JCF 267, 2CF, Ar), 167.7 (dd, 1JCF 262, 3JCF 12,
2CF, Ar).

NMR 19F (δ, ppm): −99.65 (br.s, 1F, CF, Ar); −98.32 (br.s, 1F, CF, Ar); −94.96 (br.s, 1F,
CF, Ar); −94.87 (br.s, 1F, CF, Ar).

HRMS (ESI+, m/z): calculated for C21H20F4N2O5S2 [M+Na]+, 543.0642; found, 543.0642.

3.2.19. 2-Nitro-N-((2-nitrophenyl)sulfonyl)-N-(3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-
3-yl)benzenesulfonamide (5h)

Yield 47 mg (49%), method A; reaction time 9 h, 0.45 mmol of sulfonyl chloride was
used. White crystals, m.p. 153–154 ◦C. Rf = 0.58 (petroleum ether:EtOAc = 1:1).

1H NMR (δ, ppm; J, Hz): 1.42–2.14 (m, 11H, 6CH2); 2.16–2.28 (m, 1H, CH2); 3.62–3.73
(m, 1H, CH, cy-Oct); 4.70–4.77 (m, 1H, CH-O, cy-Oct); 7.74 (br.d, 3J 7.7, 2H, 2CH, Ar);
7.78–7.93 (m, 4H, 4CH, Ar); 8.27–8.44 (m, 2H, 2CH, Ar).

13C NMR (δ, ppm): 23.3 (CH2), 24.4 (CH2), 25.1 (CH2), 27.4 (CH2), 27.8 (CH2), 29.2
(CH2), 35.1 (CH, cy-Oct), 89.0 (CH-O, cy-Oct), 120.2 (C, Isox), 124.5 (2CH, Ar), 128.1
(2C(SO2)), 132.3 (2CH, Ar), 134.0 (2CH, Ar), 136.5 (2CH, Ar), 149.0 (2C(NO2)).

HRMS (ESI+, m/z): calculated for C21H22N4O9S2 [M+Na]+, 561.0720; found, 561.0713.

3.2.20. 4-Nitro-N-((4-nitrophenyl)sulfonyl)-N-(3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-
3-yl)benzenesulfonamide (5i)

Yield 95 mg (98%), method A; reaction time 3 h, 0.36 mmol of sulfonyl chloride was
used. White crystals, m.p. 139–140 ◦C. Rf = 0.32 (petroleum ether:EtOAc = 4:1).
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1H NMR (δ, ppm): 1.38–2.18 (m, 11H, 6CH2); 2.18–2.31 (m, 1H, CH2); 3.61–3.68 (m,
1H, CH, cy-Oct); 4.57–4.69 (m, 1H, CH-O, cy-Oct); 8.04–8.23 (m, 4H, 4CH, Ar); 8.27–8.44 (m,
4H, 4CH, Ar).

13C NMR (δ, ppm): 23.7 (CH2), 24.4 (CH2), 25.2 (CH2), 27.35 (CH2), 27.40 (CH2), 29.2
(CH2), 34.7 (CH, cy-Oct), 90.0 (CH-O, cy-Oct), 120.0 (C, Isox), 124.3 (4CH, Ar), 131.4 (2CH,
Ar), 131.6 (2CH, Ar), 139.9 (C(SO2)), 140.7 (C(SO2)), 151.5 (2C(NO2), Ar).

HRMS (ESI+, m/z): calculated for C21H22N4O9S2 [M+Na]+, 561.0720; found, 561.0713.

3.2.21. N-(Naphthalen-2-ylsulfonyl)-N-(3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-3-
yl)naphthalene-2-sulfonamide (5j)

Yield 51 mg (52%), method A; reaction time 9 h, 0.45 mmol of sulfonyl chloride was
used. White crystals, m.p. 160–162 ◦C. Rf = 0.44 (DCM).

1H NMR (δ, ppm): 1.42–2.23 (m, 11H, 6CH2); 2.35–2.45 (m, 1H, CH2); 3.93–3.99 (m,
1H, CH, cy-Oct); 4.79–4.86 (m, 1H, CH-O, cy-Oct); 7.30–7.41 (m, 4H, 4CH, Ar); 7.42–7.62 (m,
8H, 8CH, Ar); 7.97 (br.s, 1H, CH, Ar); 8.14 (br.s, 1H, CH, Ar).

13C NMR (δ, ppm): 23.6 (CH2), 24.3 (CH2), 25.3 (CH2), 27.5 (CH2), 28.0 (CH2), 29.9
(CH2), 34.8 (CH, cy-Oct), 90.4 (CH-O, cy-Oct), 120.6 (C, Isox), 123.1 (CH, Ar), 123.5 (CH,
Ar), 127.6 (2CH, Ar), 127.8 (CH, Ar), 127.9 (CH, Ar), 128.6 (CH, Ar), 128.9 (CH, Ar), 129.4
(2CH, Ar), 129.7 (CH, Ar), 129.8 (CH, Ar), 130.5 (C, Ar), 131.1 (C, Ar), 131.3 (C, Ar), 131.4
(CH, Ar + C, Ar), 131.5 (CH, Ar), 135.3 (C(SO2)), 135.4 (C(SO2)).

HRMS (ESI+, m/z): calculated for C29H28N2O5S2 [M+H]+, 549.1512; found, 549.1504.

3.2.22. N-(3a,4,5,6,7,8,9,9a-Octahydrocycloocta[d]isoxazol-3-yl)-N-(thiophen-2-
ylsulfonyl)thiophene-2-sulfonamide (5k)

Yield 54 mg (65%), method A; reaction time 1 day, 0.54 mmol of sulfonyl chloride was
used. White crystals, m.p. 131–132 ◦C. Rf = 0.47 (petroleum ether:EtOAc = 1:1).

1H NMR (δ, ppm): 1.41–2.16 (m, 11H, 6CH2); 2.24–2.36 (m, 1H, CH2); 3.77–3.84 (m,
1H, CH, cy-Oct); 4.70–4.77 (m, 1H, CH-O, cy-Oct); 6.92–7.05 (m, 2H, 2CH, Tioph); 7.54–7.60
(m, 2H, 2CH, Tioph); 7.62–7.70 (m, 2H, 2CH, Tioph).

13C NMR (δ, ppm): 23.5 (CH2), 24.1 (CH2), 25.2 (CH2), 27.5 (CH2), 28.1 (CH2), 29.8
(CH2), 34.8 (CH, cy-Oct), 90.1 (CH-O, cy-Oct), 120.2 (C, Isox), 127.3 (2CH, Tioph), 132.6
(C(SO2)), 133.1 (C(SO2)), 136.4 (CH, Tioph), 136.5 (CH, Tioph), 137.0 (CH, Tioph), 137.2
(CH, Tioph).

HRMS (ESI+, m/z): calculated for C17H20N2O5S4 [M+Na]+, 483.0147; found, 483.0153.

3.2.23. N-(3a,4,5,6,7,8,9,9a-Octahydrocycloocta[d]isoxazol-3-yl)-N-(pyridin-3-
ylsulfonyl)pyridine-3-sulfonamide (5l)

Yield 63 mg (78%), method A; reaction time 9 h, 0.45 mmol of sulfonyl chloride was
used. White crystals, m.p. 150–151 ◦C. Rf = 0.46 (DCM:MeOH = 1:0.05).

1H NMR (δ, ppm): 1.40–2.18 (m, 11H, 6CH2); 2.18–2.31 (m, 1H, CH2); 3.71–3.78 (m,
1H, CH, cy-Oct); 4.67–4.75 (m, 1H, CH-O, cy-Oct); 7.35–7.48 (m, 2H, 2CH, Py); 8.05–8.25 (m,
2H, 2CH, Py); 8.74–8.95 (m, 4H, 4CH, Py).

13C NMR (δ, ppm): 23.6 (CH2), 24.3 (CH2), 25.2 (CH2), 27.4 (CH2), 27.7 (CH2), 29.5
(CH2), 34.7 (CH, cy-Oct), 90.3 (CH-O, cy-Oct), 120.1 (C, Isox), 123.8 (2CH, Py), 130.9 (C(SO2)),
131.6 (C(SO2)), 137.3 (CH, Py), 137.8 (CH, Py), 149.7 (2CH, Py), 155.3 (2CH, Py).

HRMS (ESI+, m/z): calculated for C19H22N4O5S2 [M+H]+, 451.1104; found, 451.1105.

3.3. Biology
3.3.1. Cells and Viruses

Porcine embryo kidney (PEK) cells and African green monkey kidney (Vero) cells
were obtained from the collection of FSASI “Chumakov FSC R&D IBP RAS” (Institute
of Poliomyelitis), Moscow, Russia. PEK cells were grown in the mixture of medium
199 with Earl’s salts and medium 199 with Hanks’ salts (FSASI “Chumakov FSC R&D
IBP RAS” (Institute of Poliomyelitis), Moscow, Russia), supplemented with 5% of heat-
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inactivated fetal bovine serum (Gibco, Grand Island, NY, USA) and penicillin-streptomycin
(Paneco-ltd, Moscow, Russia). Vero cells were grown in DMEM with L-glutamine (FSASI
“Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis)) supplemented with 5% of heat-
inactivated fetal bovine serum (Gibco, Grand Island, NY, USA) and gentamicin (Paneco-ltd,
Moscow, Russia).

Tick-borne encephalitis virus strain Absettarov (GenBank access no. KU885457.1),
yellow fever virus strain 17D (Genbank access no. JN628279.1), and West Nile virus strain
Strix nebulosa-12 (GenBank access no. OP868929) were taken from the collection of FSASI
“Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow, Russia.

3.3.2. Antiviral Activity and Cytotoxicity Assays

Antiviral activity and cytotoxicity of the tested compounds were studied using plaque
reduction assay and resazurin cell viability assay, respectively, as described previously [33].
Each compound was tested in at least two independent experiments.

4. Conclusions

Two series of novel 3-[N,N-bis(sulfonyl)amino]isoxazolines, containing spiro-annulated
or 1,2-annulated cyclooctane rings, were synthesized via sulfonylation of corresponding
3-amino- or 3-(sulfonylamino)isoxazolines. Almost all the obtained compounds revealed
antiviral activity against tick-borne encephalitis and West Nile viruses. The best results
were shown by spirocyclic compounds 4i (TBEV EC50 2.0 ± 0.5 µM) and 4j (WNV EC50
1.3 ± 0.5 µM), respectively. It was also found that spiro-isoxazoline 3b is active against the
yellow fever virus with EC50 24 ± 11 µM. On this basis, we can conclude that spirocyclic
and bicyclic scaffolds, combining isoxazoline and cyclooctane rings, represent promising
structural motifs for the further design of anti-flaviviral agents. The mechanism of action
and molecular target of the compounds described above still need to be established and
will be the subject of further research.
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