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Abstract: One of the central goals of evolutionary biology is to understand the genomic basis
of adaptive divergence. Different aspects of evolutionary processes should be studied through
genome-wide approaches, therefore maximizing the investigated genomic space. However, in-depth
genome-scale analyses often are restricted to a model or economically important species and their
closely related wild congeners with available reference genomes. Here, we present the high-quality
chromosome-level genome assembly of Chouardia litardierei, a plant species with exceptional ecological
plasticity. By combining PacBio and Hi-C sequencing technologies, we generated a 3.7 Gbp genome
with a scaffold N50 size of 210 Mbp. Over 80% of the genome comprised repetitive elements, among
which the LTR retrotransposons prevailed. Approximately 86% of the 27,257 predicted genes were
functionally annotated using public databases. For the comparative analysis of different ecotypes’
genomes, the whole-genome sequencing of two individuals, each from a distinct ecotype, was
performed. The detected above-average SNP density within coding regions suggests increased
adaptive divergence-related mutation rates, therefore confirming the assumed divergence processes
within the group. The constructed genome presents an invaluable resource for future research
activities oriented toward the investigation of the genetics underlying the adaptive divergence that is
likely unfolding among the studied species’ ecotypes.

Keywords: Chouardia litardierei; PacBio; Hi-C; chromosome-level genome; draft genome; local adaptation

1. Introduction

Amethyst meadow squill (Chouardia litardierei (Breist.) Speta) (Figure 1A) is a bulbous
perennial species of the Hyacinthaceae family. It grows naturally across the western and
central parts of the Dinaric Alps in the Balkan Peninsula, occupying highly contrasting
ecological niches [1,2] and therefore meadow, seashore, and mountainous ecotypes can be
recognized (Figure 1B).

The meadow ecotype, distributed throughout the central and northern parts of the species
distribution area, is found across karst fields at altitudes of up to 1000 m. These flat-floored
and periodically flooded enclosed depressions are characterized by a unique microclimate
and hydrological and geomorphological conditions compared to the surrounding areas [3].
The seashore ecotype occupies the lowlands of northern Dalmatia across the northwestern
part of the species distribution range. These populations grow in salt marshes reaching the
seashore, which experience Mediterranean climate conditions [4,5]. Finally, the mountainous
ecotype is distributed throughout the southern parts of the species’ distribution range and in
comparison to the aforementioned two ecotypes, occupies a highly contrasting habitat. Its
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populations inhabit arid, rocky slopes of high mountains with very little or virtually no soil in
rock crevices at altitudes of up to 2000 m that are characterized by extreme seasonality of most
climatic elements. Despite occupying contrasting environments, these groups of populations
can hardly be distinguished from each other by any morphological trait. There was an
attempt to describe the mountainous ecotype as a separate taxon based on morphological and
phenological analyses [2], but the research was based on vague and unreliable approaches,
therefore leaving room for justified doubts in the results. C. litardierei undoubtedly is a complex
species characterized by very pronounced ecological plasticity. However, unlike in some other
cases [6], it seems only the specific habitat, and not any morphological trait, can be used for
reliable recognition of the ecotypes. We plan to use this species as a study system for a thorough
investigation of the genetics underlying the ecological divergence and speciation process.
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Figure 1. (A) Chouardia litardierei in full bloom, (B) the distribution area of Chouardia litardierei and
contrasting habitat types it occupies. The distribution area of Chouardia litardierei is marked with
a dotted line. In circles, from left to right, meadow, seashore, and mountainous ecotype habitats
are shown.

To date, no significant research that investigated this species’ ecological divergence or
genetics has been performed. Besides the previously mentioned analyses by Šilić [2], the
cytogenetic characterization of two individuals representing meadow and mountainous
ecotypes was also performed [7]. Karyograms revealed that both ecotypes share the
same number of chromosomes (2n = 26), with one long, two middle-sized, and ten small
chromosome pairs. In addition, the 1C haploid genome size was estimated at 4.13 pg [8] or
4.039 Gbp according to the conversion by Doležel et al. [9].

During the process of speciation, a group of individuals diverges into two or more
distinct phylogenetic lineages. In populations initially indistinguishable from each other,
either genetically or morphologically, the accumulation of genetic differences can gradually
lead to the emergence of a new species [10,11]. The type of speciation in which “barriers to
gene flow evolve between populations as a result of ecologically based divergent selection”
is referred to as ecological speciation [12]. As a consequence of organism adaptation to
specific environmental conditions during ecological speciation, new morphologically and
genetically divergent ecotypes found in a specific habitat rather than a specific geographic
area, can emerge [13]. One of the central goals of evolutionary biology is to understand
the genomic basis of adaptive evolution [14,15]. It is widely accepted that different aspects
of evolutionary processes should be studied through genome-wide approaches, therefore
maximizing the investigated genomic space. However, genome-scale analyses are often



Int. J. Mol. Sci. 2023, 24, 10755 3 of 16

restricted to a model or economically important species (and their closely related wild
congeners) with available high-quality reference genomes [16–18]. In recent years, with the
advancement of different NGS techniques and the inevitable increase in their affordability,
more non-model species’ genomes are being sequenced and assembled de novo [19–21].

Here, we present the high-quality chromosome-scale genome assembly for C. litardierei,
which is also, to the best of our knowledge, the first reported genome assembly within the
Hyacinthaceae family. By implementing PacBio HiFi sequencing and Hi-C scaffolding, a
haploid 3.7 Gb genome organized in 13 pseudochromosomes was revealed. The obtained
results represent the initial step in comprehensive research that will investigate the process
of adaptive divergence and speciation that is likely unfolding among the ecotypes of the
studied species. The availability of the species’ genome assembly will enable the study of
the ecotypes’ genome architecture, genome–environment association (GEA), and genome-
wide association studies (GWAS), which will elucidate the genomic mechanisms underlying
the ongoing evolutionary processes in C. litardierei.

2. Results
2.1. Genome Sequencing and Assembly

After sequencing, high-quality PacBio CCS reads were obtained from subreads with
a quality score of Q20 (1% error rate). More than 6.5 M PacBio HiFi reads were available
with a total of 94.54 Gbp (23× genome coverage, genome size based on the k-mer analysis),
producing an average read length of 14.5 Kbp. In addition, 861 M Hi-C read-pairs were
obtained, resulting in 432 Gbp (105× genome coverage) in total. Based on k-mer analysis,
the genome size of amethyst meadow squill was estimated at 4.085 Gbp. After processing
the hifiasm assembly using Quast, the initial genome assembly of 3.67 Gbp with an average
contig N50 of 12.9 Mbp was produced.

After processing the initial assembly and Hi-C data with 3D-DNA, the assembly
results were moderately improved and the scaffold N50 measure topped 200 Mbp. The N50
measure obtained after the 3D-DNA pipeline should be considered reliable due to misjoins
having been resolved by the pipeline. The rearrangement of scaffolds produced by the 3D-
DNA pipeline with the Juicebox tool resulted in the recognition of 13 pseudochromosomes:
one very long, two middle-sized, and ten small chromosomes (Figures 2 and 3).
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Figure 3. Genome features of 10 Mbp windows across the Chouardia litardierei genome. From
outer to inner circles: chromosomes, GC content, gene density (purple), total repeats (green), DNA
transposons density (light blue), Copia elements density (blue), Gypsy elements density (dark blue),
and intra-genome syntenic blocks where the bandwidth is proportional to the syntenic block size.

The obtained assembly was polished using the HyPo tool, and the results are presented
in Table 1. The N50 value reached more than 210 Mbp, and the largest scaffold was nearly
825 Mbp. The 13 largest scaffolds (representing pseudochromosomes) range from 146 Mbp to
825 Mbp, with a total size of 3.33 Gbp. This value represents 90% of the complete assembly and
81.6% of the predicted genome length. The rest of the assembly consists of numerous smaller
sequences (2.3 Mbp and smaller) that did not successfully merge with the pseudochromosomes.
Finally, the BUSCO completeness score of 97.4% confirmed the high quality of the obtained
genome assembly. The summary statistics are presented in Table 1.

Table 1. Summary results for the final assembly of the Chouardia litardierei genome.

Sequence

Assembly size (bp) 3,698,590,323
GC content (%) 42.90

Number of scaffolds 9916
Number of scaffolds (≥50 kbp) 1803

Longest scaffold (bp) 824,692,949
Scaffold N50 size (bp) 210,067,440

Number of contigs 3111
Number of contigs (≥50 kbp) 1611

Longest contig (bp) 54,979,118
Contig N50 size (bp) 12,914,002

Pseudochromosome
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Table 1. Cont.

Sequence

Number 13
Size range (Mbp) 145.64–824.69

BUSCO score

Complete BUSCOs (%) 97.4
Complete and single-copy BUSCOs (%) 89.9
Complete and duplicated BUSCOs (%) 7.5

Fragmented BUSCOs (%) 2.4
Missing BUSCOs (%) 0.2

2.2. Repetitive Elements Annotation

The annotation of repetitive elements revealed 2.99 Gbp of repetitive sequences repre-
senting 80.90% of the C. litardierei genome, with transposable elements (TEs) occupying
69.97% of the genome assembly. In addition, the analysis revealed that LTR retrotrans-
posons were by far the most abundant repeat sequences (63.25% of the genome assembly),
of which Copia and Gypsy, two superfamilies, account for 27.03% and 36.01% of the assem-
bled sequences, respectively. Other detected repeat elements were unclassified elements
(7.81%), DNA transposons (3.67%), long interspersed nuclear elements (LINEs; 2.99%), and
others with lower abundances (Table 2).

Table 2. Classification of the repetitive elements in the Chouardia litardierei genome.

Percent (%) Total Length (Mbp)

Retrotransposons
LINE 2.99 110.72
SINE 0.06 2.14
LTR 63.25 2339.37

DNA Transposons 3.67 135.60
Unclassified 7.81 288.98

Satellites 0.14 5.10
Simple repeats 1.42 52.63

Low complexity 0.31 11.53
Rolling circles 0.58 21.30

Small RNA 0.70 25.88
Total 80.90 2991.99

2.3. RNA Sequencing

The RNA sequencing yielded a total of 99.59 M raw reads. After trimming, 96.75 M
reads with an average length of 135.6 bp were retained. The summary of the RNA sequenc-
ing results from different tissues is given in Table 3.

Table 3. RNA sequencing data from different Chouardia litardierei tissues.

Root Leaf Flower Developing
Fruit

No. of raw reads 22,769,326 24,504,881 28,584,130 23,731,351
Total nucleotides [Mbp] 3013.5 3360.2 3918.0 3070.6

GC content [%] 47.90 49.18 49.65 51.26
Average length [bp] 123.0 137.1 137.1 129.4
Min-max length [bp] 8–383 8–381 8–381 8–384

No. of reads after trimming 22,079,991 23,884,368 27,738,059 23,053,022
Total nucleotides after

trimming [Mbp] 2957.7 3309.0 3855.2 3018.6

Average read length after
trimming [bp] 134.0 138.5 139.0 131.0
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2.4. Gene Prediction and Annotation

By combining several approaches, we predicted 27,257 gene models, of which 23,297
were mapped to 13 pseudochromosomes, while the remaining 3960 were mapped to smaller
scaffolds. Their average length, CDS length, and exon number were 3109.9 bp, 764.1 bp, and
4.2 bp, respectively (Table 4). Among the predicted genes, 23,398 were functionally annotated
using the public databases Swiss-Prot, InterPro, NCBI NR, and EggNog (Figure 4A).
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Table 4. Summary of the gene prediction and annotation results of Chouardia litardierei.

Gene Prediction

Number of predicted genes 27,257
Number of predicted genes in 13 pseudochromosomes 23,297

Chr1 1237
Chr2 1152
Chr3 1477
Chr4 2137
Chr5 1757
Chr6 1309
Chr7 1429
Chr8 1513
Chr9 1435

Chr10 1589
Chr11 1344
Chr12 2373
Chr13 4545

Mean gene length (bp) 3109.9
Mean CDS length (bp) 764.1
Mean exon length (bp) 181.0

Mean intron length (bp) 728.0
Avg. exons per gene 4.2

Gene annotation

NCBI NR annotated (%) 17,602
EggNog annotated (%) 14,691
InterPro annotated (%) 22,633

Swiss-Prot annotated (%) 12,782
Number of annotated genes 23,398

Proportion of annotated genes (%) 85.8%

2.5. Evolution Analysis

To elucidate the evolutionary history of C. litardierei within monocots, seven species
across the group and one dicot (A. thaliana as an outgroup) were selected for the phylogenetic
analysis. A total of 24,356 orthologous families of genes were identified: 377 single-copy
families, 5189 shared by all studied species, 5486 shared only by monocots representatives,
and 6621 shared by C. litardierei and A. officinalis (Figure 4C). For C. litardierei 1458 private
gene families were recognized. Single-copy ortho-groups were used for the phylogenetic tree
construction. Species formed groups that were in accordance with their already recognized
phylogenetic relationships. C. litardierei paired with A. officinalis within the order Asparagales,
while Z. mays, H. vulgare, and O. sativa grouped as representatives of the Poaceae family. As
representatives of different families, D. rotundata, M. acuminata, and A. comosus were positioned
separately, as was the case with A. thaliana as the sole representative of dicots that served as
the outgroup. The divergence time between C. litardierei and A. officinalis was estimated at
49.9 Mya. The divergence times among the other analyzed species and gene family expansions
and contractions are indicated in Figure 5.

2.6. Ecotypes Genomes Comparison

To perform a basic comparison of the different ecotypes’ genomes, two additional
samples, one representing the meadow, and another the mountainous ecotype, were
sequenced. Illumina PE150 sequencing yielded 364 and 370 M reads for the meadow and
mountainous ecotype individuals, respectively. However, the usability of such a short-
read data set was limited and does not allow detailed comparative analyses of genomes
characterized by very high proportions of repetitive elements. Nonetheless, we were
able to calculate pairwise distances between the constructed genome assembly and the
additional samples based on the total number of detected SNPs (Figure 6) and analyze
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their distribution across the genomes (Figure 7). Additionally, the SNP abundances within
genes and on the genome level were compared and expressed as the average distance
between neighboring SNPs. The results showed that the mountainous ecotype was the
most diverged one, while a substantially higher density of SNPs was detected within genes
compared to the entire genome.
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Figure 6. Genetic distances and distribution of SNPs among studied Chouardia litardierei
genomes. Assembly—draft genome assembly of an individual belonging to the seashore ecotype;
Sample 1—individual belonging to the meadow ecotype; Sample 2—individual belonging to the
mountainous ecotype. (A) The total number of SNPs for the given sample pair is shown below
the diagonal, and the number of SNPs detected in genes is shown above the diagonal (in millions).
(B) Mean distance between neighboring SNPs throughout the genome for the given sample pair is
shown below the diagonal, and the mean distance between neighboring SNPs within detected genes
is shown above the diagonal (in base pairs).
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3. Discussion

Here, we present a draft genome assembly for Chouardia litardierei, a non-model
monocot species from the Hyacinthaceae family. By combining long-read sequencing
and the chromosome conformation capture method, we successfully assembled a high-
quality 3.7 Gbp genome of C. litardierei, and the obtained result agrees with the previously
reported genome size for the species [8]. By inspecting the Taxonomy Browser of the
NCBI repository (https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/tree/?taxon=4447
(accessed on 17 April 2023)), it became obvious that, within monocots, most species with
assembled genomes are either of substantial economic importance (maize, wheat, rice,
pineapple, banana, asparagus, jams, onion, garlic, etc.) or their wild relatives. In a lower
taxonomic rank, within the order Asparagales, assembled genomes of well-known groups
of orchids (i.e., Dendrobium, Vanilla, and Phalaenopsis) and Asparagus prevail, once again
showing bias towards species of economic importance. Of less closely related species to
C. litardierei within Asparagales that have available genome assemblies, few can be men-
tioned. The genome assembly of Asparagus setaceus was 720 Mb in size and characterized
by 1393 scaffolds and a 2.19 Mb N50 scaffold value [22]. The 1.19 Gb Dendrobium nobile
genome assembly reached a 64.5 Mb N50 scaffold value [23], while the Cymbidium goeringii
genome, of very similar size to the genome of C. litardierei (3.99 vs. 3.70 Gbp, respectively),
had an N50 scaffold size of 178.2 Mb [24]. Since we reached the N50 scaffold value of more
than 210 Mb, this indicates the high contiguity of the assembled genome. In addition, the
BUSCO score of over 97% additionally supported this conclusion. Additionally, a revealed
chromosome size distribution perfectly matches the only known karyotype for this species
reported by Siljak-Yakovlev et al. [7].

The annotation of repetitive elements revealed that TEs occupy almost 70% of the
genome, with LTR retrotransposons being the most abundant class. Such a result was not

https://www.ncbi.nlm.nih.gov/data-hub/taxonomy/tree/?taxon=4447


Int. J. Mol. Sci. 2023, 24, 10755 10 of 16

surprising, as it is well known that genome size in plants greatly depends on these elements’
abundance [25,26]. Our results are mostly consistent with those reported for other monocot
species. For instance, the Hordeum vulgare ssp. vulgare genome (5.1 Gbp in size, Poaceae)
consists of 72.8% TE elements [27], the genome of Areca catechu (2.6 Gbp, Arecaceae) of
80.4% [28], and that of Allium fistulosum (Amaryllidaceae 11.2 Gbp) of 69% [29]. At the
same time, genomes of some other monocots, such as Setaria italica (423 Mbp, Poaceae) [30],
Trichopus zeylanicus (713 Mbp, Dioscoreaceae) [31], and Kobresia myosuroides (400 Mbp,
Cyperaceae) [32] reportedly harbor substantially fewer transposable elements, occupying
41%, 36%, and 44.9% of their genomes, respectively. As mentioned, since the abundance of
TEs strongly influences the genome size, species characterized by smaller genomes usually
have fewer TEs as well.

To reach high accuracy for the genome annotation, we implemented various ap-
proaches to annotate protein-coding genes. Out of the 27,257 predicted genes, most of them
(85.8%) were matched with a functional annotation in at least one public database, while
almost half of them (44.5%) were matched in all selected databases.

The genus Prospero represents a closely related group to C. litardierei. It formerly
belonged to Scilla, and the same is true for the Chouardia studied here. Prospero, especially
the P. autumnale s.l. group, is well known for its structural genome rearrangements and
multiple ploidy levels and was used as the model group for research on the evolutionary
implications of karyotype differentiation [33,34]. In addition, Siljak-Yakovlev et al. [7]
hypothesized that the genome of C. litardierei could have originated through whole-genome
duplication events. To verify whether the C. litardierei genome shares some characteristics
with P. autumnale s.l., or has indeed originated through a whole-genome duplication event,
we performed intra-genome syntenic gene block analysis. However, no clues supporting
any of these assumptions were found, as it became clear that the C. litardierei genome did
not undergo any such structural rearrangements since only a few gene blocks co-occurred
on more than one position across the genome. In contrast to the limited distribution
area of C. litardierei, P. autumnale s.l. stretches across the Mediterranean basin, so we can
assume that the vast distances and subsequent geographical isolation eventually led to the
establishment of groups of populations characterized by specific cytotypes.

The evolutionary analysis confirmed the positioning of C. litardierei and the entire
Hyacinthaceae family within Asparagales. At the same time, it confirmed that the genus
Asparagus, the closest relative to C. litardierei with the available draft genome, can hardly
be treated as a close relative since the divergence time was estimated at around 50 Mya.
This result further emphasizes the importance of our work, as C. litardierei is an obvious
representative of, so far, a neglected phylogenetic group in terms of available genomic
resources. Regarding other phylogenetic relationships and divergence times among the
analyzed representatives of various monocot groups, our results were in high agreement
with other similar studies [32,35,36].

Comparative analyses of the assembled genome and two individuals belonging to
different ecotypes were of limited success. A shotgun-sequencing approach with a 150 bp
read length greatly limited our abilities for in-depth analyses. Nonetheless, we were able to
extract SNPs and analyze their distribution across the genomes. The results supported our
initial assumption that a higher degree of relatedness is present between the seashore and
meadow ecotypes, while the mountainous ecotype is more diverged and possibly represents
a separate lineage. In addition, the analysis of SNP distribution within and outside protein-
coding regions indicated an above-average density of variations within the coding regions.
This result shows that some regions are evolving at a higher pace than others, possibly
as a consequence of yet undetermined selective pressures. However, such a conclusion
based on only three individuals is likely premature, as research that would include a
substantially larger sample set is required for more reliable conclusions. The reasoning
behind performing this analysis was to determine if there are any indications of ongoing
divergence processes among the lineages, which in the end, we successfully identified.
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4. Materials and Methods
4.1. Sample Collection, DNA Extraction, and Sequencing

Fresh leaf material from an individual belonging to the seashore ecotype of the studied
species was collected and immediately placed in a silica gel for rapid desiccation. High-
molecular-weight DNA extraction following the CTAB method [37], DNA quality control,
PacBio HiFi, and Hi-C library preparation and sequencing were performed by Brigham
Young University DNA Sequencing Center (Provo, UT, USA). In short, PacBio circular
consensus sequencing (CCS) libraries were constructed and sequenced on the 8M SMRT
cell of the PacBio Sequel II instrument (Pacific Biosciences of California, Menlo Park, CA,
USA), while Hi-C libraries were constructed using a Dovetail® Omni-C® Kit and sequenced
on an Illumina HiSeq platform (Illumina Inc., San Diego, CA, USA) to generate 2 × 250
paired-ends reads.

4.2. Genome Assembly

Before the assembly process, the genome size of C. litardierei was estimated using a
k-mer counting method and the tool Jellyfish 2.3.0 [38]. PacBio HiFi reads were processed
by Jellyfish to determine their k-mer distribution, and the k-mer size of 19 was selected.
The genome size was estimated as the total number of counted k-mers divided by the
highest frequency of k-mers that occurred. PacBio HiFi reads were assembled into contigs
using hifiasm 0.16.1-r375 [39]. Racon 1.4.17 [40] was used in an attempt to improve read
quality before the assembly process. The contigs obtained by hifiasm were polished using
two rounds of consensus correction with Racon and PacBio HiFi reads.

The generated contigs were scaffolded into pseudochromosomes using Hi-C data.
Hi-C reads were first processed following the Omni-C data analysis and quality control
protocol, recording valid ligation events and removing PCR duplicates. After initial pro-
cessing, the Hi-C reads were mapped to contigs using the Juicer tool [41], producing contact
map information. To detect misjoins in contigs and to join contigs located on the same
chromosomes, 3D-DNA v180922 [42] was used. For the manual rearrangement of obtained
scaffolds into pseudochromosomes, we used the Juicebox tool [43]. The same software was
also used to generate a FASTA file with sequences corresponding to 13 manually assembled
chromosomes, with Ns filling the gaps between scaffolds within each chromosome. This
final assembly was further polished with PacBio HiFi reads using the HyPo polisher [44].
HiFi reads were mapped to the final assembly using the minimap2 tool 2.23 [45] with the
option “-x map-hifi”.

The initial and the final assemblies’ quality was assessed using Quast [46] and
BUSCO 5.2.2 [47] to compare the assembly to the gene content of Viridiplantae_odb10
“https://busco-archive.ezlab.org/frame_plants.html (accessed on 7 December 2022)”. For
the genome assembly visualization, we used shinyCircos [48]. The GC content of the
assembled genome was calculated using an in-house script. The density of total re-
peats, DNA transposons, Copia repeats, and Gypsy repeats was determined from the
data obtained through the repetitive element annotation, as explained in the next sub-
section. Intra-genomic syntenic analysis was performed using SyMAP 5.4.0 [49] with the
default parameters.

4.3. Repetitive Elements Annotations

First, the known repeat sequences of Viridiplantae were identified based on Dfam [50]
hidden Markov Model (HMM) sequence profiles (release 3.6) using RepeatMasker 4.1.2-p1 [51]
and the NCBI/RMBLAST search engine. Furthermore, the de novo repeat identification
approach was implemented using RepeatModeler2 2.0.2 [52] with Tandem Repeats Finder
4.10 [53], RECON 1.0.8 [54], and RepeatScout 1.0.6 [55] which enabled LTR Structural analysis.
RepeatClassifier (a module of RepeatModeler2) was implemented for further classification
of de novo repeats into unknown and classified classes. All three groups of repeats were
used in a combined masking step to construct the finally masked version of the genome.

https://busco-archive.ezlab.org/frame_plants.html
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The final BUSCO analysis against Viridiplantae_odb10 was performed on this version of the
masked genome.

4.4. RNA Isolation and Sequencing

For support of the gene prediction, RNA-Seq data were generated. Total RNA was ex-
tracted from roots, leaves, flowers, and unripe fruit using a Monarch® Total RNA Miniprep
Kit (New England BioLabs, Ipswich, MA, USA). The manufacturer’s protocol, with an
on-column DNAse digestion step, was followed. Eluted RNA was quantified utilizing
spectrometry, and integrity was verified by Agilent Bioanalyzer 2100 electrophoresis using
an RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CO, USA). RNA was stored at
−80 ◦C until processing.

RNA sequencing was performed using the Ion Proton system. Total RNA was enriched
for the poly-A mRNA fraction using a Dynabeads® mRNA DIRECT™ Micro Kit (Thermo
Fisher Scientific, Waltham, MA, USA). The isolated mRNAs were used for RNA-Seq library
preparation using the procedure for low-input RNA from the Ion Total RNA-Seq kit v2
(Thermo Fisher Scientific, Waltham, MA, USA). The RNA was fragmented using RNase
III enzymatic digestion followed by ligation of Ion Adapters using four different barcodes
to retain tissue specificity. The samples were reverse transcribed, purified, and cDNA
amplified, and the obtained library was verified using the High Sensitivity DNA Kit
(Agilent Technologies, Santa Clara, CO, USA). The libraries, in equimolar amounts, were
pooled together and amplified by emulsion PCR using an Ion OneTouch™ 2 System and
Ion PI Hi-Q OT2 200 Kit. Template-positive particles were enriched using Dynabeads®

MyOne™ Streptavidin C1 beads (Thermo Fisher Scientific, Waltham, MA, USA) on an Ion
OneTouch™ ES system. The obtained enriched particle samples were sequenced on PI™
Chip v3 using the Ion PI™ Hi-Q™ Sequencing 200 Kit (Thermo Fisher Scientific, Waltham,
MA, USA) following the manufacturer’s protocol. The quality check of trimmed reads after
processing was performed by the FastQC tool [56].

4.5. Gene Prediction and Annotation

To predict protein-coding sequences, we used several approaches implemented using
different tools. First, gene models were developed with the MAKER genome annotation
pipeline (MPI 3.01.04) [57] incorporating: (1) RNA-seq data, (2) protein-based evidence
based on 139,388 Asparagales clade proteins downloaded from the NCBI RefSeq database
“https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 9 January 2023)”, and (3) ab initio
gene predictions obtained using SNAP 2006-07-28 [58] and Augustus 3.2.3 [59]. For SNAP
software training, MAKER models with a max AED threshold of 0.25 and a minimum
length of 50 amino acids were used, and for training Augustus, the BUSCO pipeline was
employed following the method of Card et al. [60]. Three runs of MAKER were run
iteratively to obtain most gene models with an AED score above 0.5.

Additional ab initio gene prediction was obtained using GeneMark-ES [61], followed
by de novo and genome-guided transcriptome assembling using the Trinity 2.14.0 soft-
ware [62] (default parameters). For the construction of the genome-guided transcriptome,
the GMAP tool [63], and SAMtools 1.14 [64] were used to map the reads to the previously
constructed genome assembly and to obtain a coordinate sorted bam file, respectively. The
transcriptomes obtained by Trinity were used as inputs for the PASA alignment assembly
pipeline 2.5.2 [65] (default parameters). The obtained transcriptome was further used
to identify and extract likely coding regions using PASA’s Transdecoder software. For
homology-based gene prediction, the Asparagales protein set was used again. The proteins
were mapped to the previously constructed genome using the miniprot tool [66].

Finally, the MAKER gene annotations together with the PASA transcriptome, PASA
likely coding regions, protein alignments obtained by miniprot, and ab initio predictions
obtained by GeneMark-ES, were analyzed using EVidenceModeler 2.0.0 [67], producing
the final consensus gene set.

https://www.ncbi.nlm.nih.gov/refseq/
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Recognized protein-coding genes were functionally annotated based on entries in
the NCBI NR database [68], Swiss-Prot [69], InterPro [70], and EggNOG [71] databases,
using BLASTP searches with an E-value cut-off of 1.0 × 10−5. For the visualization of the
obtained results, a Venn diagram was constructed.

4.6. Genome Evolution Analysis

Orthologous groups were identified using OrthoFinder 2.5.4 [72] and protein se-
quences from Ananas comosus (L.) Merr., Arabidopsis thaliana (L.) Heynh., Asparagus offic-
inalis L., Dioscorea rotundata Poir., Hordeum vulgare L., Musa acuminata L., Oryza sativa L.,
and Zea mays L. Single-copy ortho-groups were collected and aligned using MUSCLE
3.8.1551 [73]. The alignments were concatenated into a super-alignment and filtered using
Gblocks 0.91.1 [74]. The phylogenetic trees were constructed using RaxML-NG 0.9.0 [75].

Divergence time estimation was performed using the MCMCTree tool in the PAML 4.9j
package [76]. Analyses were run using default settings (200,000 generations with a burn-in
of 2000 iterations). The calibration points for the O. sativa–H. vulgare (42–62 Mya), A. como-
sus–M. acuminata (103–117 Mya), and D. rotundata–A. thaliana (142–164 Mya) were obtained
from the TimeTree database [77] “http://www.timetree.org (accessed on 6 April 2023)”.
Finally, for the identification of gene families’ expansions and contractions, CAFE5 [78]
was implemented.

4.7. Intra-Species Comparison of the Genomes

In addition, to perform a basic comparative analysis of genomes from different eco-
types, two individuals, each from a distinct ecotype (meadow and mountainous ecotypes,
Samples 1 and 2, respectively), were sampled. DNA was extracted from dried leaf material
using the GenElute™ Plant Genomic DNA Miniprep Kit (Sigma–Aldrich, St. Louis, MO,
USA) and sent to Novogene (UK) Company Limited for short-fragment libraries prepa-
ration and PE150 sequencing on an Illumina NovaSeq platform (Illumina Inc., San Diego,
CA, USA). The paired-end reads were mapped to the constructed genome assembly using
the BWA tool 0.7.17 [79], and the variants were called using the FreeBayes tool [80,81].
The obtained data were used to assess the pairwise genetic distances between analyzed
individuals belonging to different ecotypes. In addition, the abundance of the SNPs within
protein-coding regions was analyzed using an in-house script.
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and Chromosome Number Database of Balkan Flora: C-Values in 343 Taxa with Novel Values for 242. Adv. Sci. Lett. 2010, 3,
190–213. [CrossRef]
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