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Abstract: There is an increasing interest in understanding the connection between the immune and
cardiovascular systems, which are highly integrated and communicate through finely regulated
cross-talking mechanisms. Recent evidence has demonstrated that the immune system does indeed
have a key role in the response to cardiac injury and in cardiac regeneration. Among the immune cells,
macrophages appear to have a prominent role in this context, with different subtypes described so far
that each have a specific influence on cardiac remodeling and repair. Similarly, there are significant
differences in how the innate and adaptive immune systems affect the response to cardiac damage.
Understanding all these mechanisms may have relevant clinical implications. Several studies have
already demonstrated that stem cell-based therapies support myocardial repair. However, the exact
role that cardiac macrophages and their modulation may have in this setting is still unclear. The
current need to decipher the dual role of immunity in boosting both heart injury and repair is due, at
least for a significant part, to unresolved questions related to the complexity of cardiac macrophage
phenotypes. The aim of this review is to provide an overview on the role of the immune system, and
of macrophages in particular, in the response to cardiac injury and to outline, through the modulation
of the immune response, potential novel therapeutic strategies for cardiac regeneration.

Keywords: macrophages; innate immunity; cardiac regeneration; inflammation

1. Introduction

Cardiovascular diseases (CVDs) represent the leading cause of death worldwide,
accounting for about 31% of all deaths [1]. The recent technological and therapeutical
advances, along with a better understanding of the pathophysiological mechanisms in-
volved in several CVDs, have led to the increased survival rates of these patients. This is
however counterbalanced by an increased number of patients suffering from the sequalae
of an acute cardiovascular event. For instance, patients with a previous acute coronary
syndrome are still at risk of developing heart failure (HF) due to the presence of repara-
tive fibrosis and consequent adverse cardiac remodeling with impaired function [2]. The
adult heart harbors multiple heterogeneous cellular components, including cardiomyocytes
(CMs), fibroblasts, smooth muscle cells, endothelial cells, cardiac stem cells, pericytes,
and a plethora of immune cells [3], as shown in Figure 1. The latter are actively involved
in the inflammatory response that follows cardiac injury in attempts to antagonize and
repair myocardial damage and restore cardiac homeostasis. The goal is the clearance of
the fibrotic tissue with the initiation of a reparative cascade preventing adverse myocar-
dial tissue remodeling. Among all the innate immune cells, macrophages are specifically
involved in the onset and resolution of inflammation. Their dysregulation is a primary
contributor to tissue inflammaging, a pro-inflammatory status associated with high levels
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of pro-inflammatory markers. Tissue-resident C-C chemokine receptor 2 (CCR2−) and
tissue-resident/systemically recruited CCR2+ cardiac macrophages differentially affect
cardiac remodeling and repair following myocardial injury [4] (Figure 1). An exhaustive
comprehension of the different responses induced by the two subsets of cells is key for
the development of new therapeutic strategies to prevent fibrosis and adverse remodeling
and promote the formation of new functional myocardium. The intrinsic regenerative
potential of the adult heart after an injury is in fact significantly limited, at least in response
to ischemic damage [5,6]. It has been demonstrated that this endogenous potential can
be fostered after an ischemic injury using several approaches, from the administration of
exogenous cell therapy to RNA therapeutics [7–9]. However, this reparative response may
be further reduced by the concomitant presence of cardiovascular risk factors (i.e., aging or
diabetes) that create an adverse cellular microenvironment halting regeneration [7,10–16].
In this scenario, cell therapy was intended as an alternative strategy to restore/replace
the damaged and dysfunctional cardiac tissue to improve cardiac function [7,17,18]. The
immune response and the endogenous cardiac repair system interact to modulate damage
resulting from inflammatory response. It is still an open question however as to whether
specific aspects of the immune/inflammatory response are responsible for a predominantly
fibrotic and poorly regenerative response to injury in the adult heart and/or whether their
modulation could positively affect the regenerative response. The aim of this review is
to provide a comprehensive analysis about the interaction between the immune response
and the cardiac reparative/regenerative process, focusing on the specific role of the cells
involved in this tangle.
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Figure 1. Schematic representation of the main cardiac cellular component of the adult heart. Among
the immune cells, macrophages can be distinguished in CCR2+ and CCR2– cardiac macrophages.

2. Innate Immunomodulation after Injury

Insults that induce cardiomyocyte death promote the activation of the immune
response to restore tissue integrity [19]. The immune system is involved in damage-
associated signaling, inflammation, revascularization, and fibrotic scar formation [19].
Macrophages play a key role in all the stages of the immune response, with distinct
phenotypes performing specific functions at different time points [20]. It is known that
macrophages derived from monocytes can be further classified into two main types: the
pro-inflammatory M1 type and the resolving M2 type [21]. However, it is also widely
accepted that the M1/M2 paradigm is just a simplification, and the exact sources and
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phenotypes of macrophages are yet to be fully clarified. In addition, it still remains unclear
if M1 macrophages can switch to an M2 type, representing a mixed phenotype, or if these
two subsets of macrophages necessarily originate from completely different sources [22].
Nevertheless, it has been established that the cellular response to heart damage can be
divided into three distinct phases: the inflammatory, proliferative, and resolutive phases
(Figure 2) [23].
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2.1. Inflammatory Phase

Cardiomyocyte death and the subsequent release of intracellular components into the
extracellular compartment trigger the inflammatory response, attracting resident immune
cells. These components, known also as Damage-Associated Molecular Patterns (DAMPs),
include nucleic acid fragments, heat shock proteins, adenosine triphosphate (ATP), and
fragmented extracellular matrix (ECM) components. They primarily activate the innate
immune pathways and the inflammatory response through Toll-like receptors (TLRs)
and NOD-like receptors (NLRs), which are expressed on both cardiomyocytes (CMs)
and resident immune cells [24,25]. This leads to the release of specific pro-inflammatory
cytokines, particularly Interleukin (IL)-1β and IL-18 [26].

Furthermore, DAMPs activate the complement system, which recognizes and subse-
quently destroys damaged cells through phagocytosis [27]. Uncontrolled activation and
amplification of the complement cascade can be detrimental, resulting in significant tissue
damage. However, the neutralization of complement can reduce myocardial injury and
mortality in patients with myocardial infarction (MI) [28].

After an injury, vascular endothelial cells increase the expression of endothelial intercel-
lular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), while
histamine released by mast cells increases vascular permeability. Both of these phenomena
contribute to facilitating leucocyte infiltration. Consequently, multiple cellular effectors
such as neutrophils and monocytes are attracted to the sites of damage. Neutrophils are
the first to migrate, followed by monocytes, which subsequently differentiate into M1-type
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macrophages. The reactive oxygen species (ROS) generated by activated neutrophils [29]
promote the infiltration and proliferation of monocytes, dendritic cells, natural killer (NK)
cells, T helper cell type 1 (Th1), T helper cell type 17 (Th17), B-lymphocytes, and additional
neutrophils [30]. Additionally, neutrophils serve as a source of matrix-degrading enzymes
and are responsible for the phagocytosis of the degraded matrix components and cells
coated in complement opsonin [31].

Neutrophil activity can also contribute to exacerbating injury. The secretion of
myeloperoxidase (MPO) by neutrophils, in fact, leads to maladaptive cardiac remod-
eling after injury. For instance, deletion of MPO in adult wild-type (WT) mice results in
decreased left ventricular (LV) dilatation and a significant improvement in LV function com-
pared to the control group [32]. Furthermore, the depletion of endothelial Brahma-related
gene 1 (Brg1), which mediates neutrophil–endothelium adhesion, results in decreased ven-
tricular fibrosis, reduced infarct size, and better recovery of cardiac function [33]. Inhibition
of certain neutrophil-derived enzymes and the reduction of neutrophil infiltration achieved
through antibody-mediated blockage of specific adhesion molecules have been shown to
decrease tissue damage following MI and reperfusion [34]. Monocytes represent the second
type of immune cells involved in the inflammatory phase. Interferon (IFN)-γ, Tumor Necro-
sis Factor (TNF)-α, and DAMPs promote monocyte recruitment and their differentiation
into M1-type macrophages, which are inflammatory macrophages. These M1 macrophages,
in turn, release other pro-inflammatory factors such as TNF-α, IL-1β, chemokine C-X-C mo-
tif ligand 10 (CXCL10), IL-6, IL-12, and IL-23 [35,36]. As with neutrophils, monocytes also
release matrix metallopeptidase 9 (MMP-9) that degrades basement membranes, thereby
facilitating the recruitment of additional immune cells [37].

2.2. Proliferative Phase

The inflammatory phase ends when M1 macrophages phagocytose neutrophils [38].
At this stage, M1 macrophages decrease their production of pro-inflammatory factors
and begin to increase the secretion of two anti-inflammatory factors, namely IL-10 and
transforming growth factor beta (TGF-β). This represents a signal of a shift towards the
M2 phenotype. It is important to note that macrophages likely exist along a spectrum of
mixed phenotypes [39] and exhibit plasticity [40]; thus, the M1/M2 paradigm may be an
oversimplified and inaccurate classification. Analysis using single-cell RNA sequencing
(sc-RNA seq) has revealed the presence of distinct macrophage phenotypes associated
with regenerative and fibrotic processes [41]. Regardless, macrophages operating at this
stage promote angiogenesis by secreting IL-10, TGF-β, and vascular endothelial growth
factor (VEGF) [42], as well as activate fibroblasts [43]. TGF-β stimulates newly formed
myofibroblasts to secrete collagen (predominantly type III), fibronectin, and other extracel-
lular components [44]. Additionally, macrophages regulate matrix turnover through the
modulation of MMPs and tissue inhibitors of metallopeptidases (TIMPs) [45]. As a result
of all these processes, a temporary collagenous matrix enriched in fibrin and fibronectin is
formed [44,45].

2.3. Resolutive Phase

The final phase is the resolutive phase, during which a remodeling process occurs
involving the replacement of newly laid type III collagen with type I collagen. Type I
collagen becomes cross-linked, resulting in a stronger scar with increased tensile strength.
The matrix becomes less populated with cells as most of the remaining leukocytes undergo
apoptosis. However, some myofibroblasts may persist, and their presence can have a
negative impact on cardiac function due to their distinct electrical properties compared to
CMs [46].

The exact mechanisms that trigger this phase are not yet fully understood. Typically,
the described events progress through a series of cascade steps involving the reduction of
pro-inflammatory factors, cessation of granulocyte recruitment, and an increase in mono-
cyte levels. Monocyte-derived macrophages play a crucial role in removing inflammatory
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cells and tissue debris, leading to the resolution of inflammation and promotion of the
recovery of cardiac structure and contractile function [47,48].

3. Adaptive Immune Response

In addition to the innate immune response, the release of DAMPs triggers an adaptive
immune response, which involves the activation of B-lymphocytes and T-lymphocytes.
Moreover, in the presence of an inflammatory environment, cardiac self-antigens such as
myosin and troponin can disrupt the tolerance mechanism, leading to the activation of long-
lived antigen-specific adaptive immune cells [49,50]. While the innate immune response is
regulated by negative feedback mechanisms aimed at resolving early inflammation, the
adaptive immune response does not appear to be controlled in the same manner. The
release of substantial amounts of self-antigens can ultimately result in autoimmune tissue
damage, leading to the subsequent release of more self-antigens.

The precise role of B-lymphocytes in this phase is still not fully understood, although
there is evidence suggesting their involvement in the immune response to cardiac injury.
Mice with depleted B-lymphocytes have shown improved cardiac function after MI [51].
Furthermore, activated B-lymphocytes produce pro-inflammatory cytokines such as TNF-α
which directly contribute to myocardial dysfunction by reducing contractility, inducing
myocyte apoptosis [52], and promoting fibroblast differentiation into myofibroblasts [53].
Similarly, the exact function of T-lymphocytes in response to cardiac injury has not been
completely elucidated. The rapid changes in the local environment following an insult lead
to the emergence of a heterogeneous subpopulation of T-lymphocytes which, depending on
the timing and type of cardiac damage, have varying effects that can either have a positive
or detrimental impact on the healing process [54]. Specifically, regulatory T-lymphocytes
appear to play a beneficial role in the immediate post-MI phase [55,56]. Conversely, it
has been demonstrated that CD4+ T cells, but not CD8+ T cells, contribute to myocardial
ischemia–reperfusion injury through the release of IFN-γ [54].

Indeed, in the context of cardiac injury, the adaptive immune response can have
an overall negative effect, potentially leading to further tissue damage. The continuous
exposure to self-antigens can trigger persistent immune autoreactivity that may eventually
involve previously unaffected cardiac regions of the heart. This process can contribute to
negative remodeling and LV dilation.

4. Distinct Cardiac Macrophage Subsets among the Adult Heart

The adult mammalian heart harbors heterogeneous populations of macrophages, each
originating from distinct developmental pathways [57,58]. Macrophages serve as resident
immune cells in the tissue and play a crucial role in maintaining tissue homeostasis [59].
Following an injury, the recruitment of specific macrophage subsets influences the cellular
microenvironment and the resulting response to cardiac injury. These macrophage subsets
can either contribute to maladaptive remodeling through a pro-inflammatory response [60]
or promote reparative processes, including cardiac regeneration [21,61]. As mentioned ear-
lier, macrophages are typically classified into two types: M1 and M2. M1-type macrophages
are classically activated by factors such as IFN-γ and lipopolysaccharide (LPS), leading to a
pro-inflammatory response [62]. On the other hand, M2-type macrophages are alternatively
activated in response to cytokines such as IL-4 and IL-13, exhibiting a resolving phenotype
in vitro [63].

However, recent experiments utilizing genetic lineage tracing and fate mapping have
challenged the simplistic classification of macrophages into M1 and M2 types. These
findings suggest that the polarization process of macrophages may be more complex
and dynamic than previously thought, and the observed markers on in vitro-generated
macrophages may not accurately reflect the phenotype of macrophages in vivo, particularly
in classically activated mice models [64]. Furthermore, it is important to differentiate be-
tween macrophages derived from circulating monocytes and tissue-resident macrophages,
which exhibit tissue-specific features [57,58]. Tissue-resident macrophages originate from
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the yolk sac or fetal monocyte progenitors [65], and they are ontogenetically older than
macrophages derived from the bone marrow [66]. These tissue-resident macrophages
are evolutionarily conserved throughout the lifespan [67]. In the murine heart, resident
cardiac macrophages constitute around 5–10% of the non-myocyte population, and their
percentage increases following cardiac damage [68]. Within cardiac tissue, at least two
distinct macrophage subsets and one monocyte subset have been identified based on the
presence or absence of the CCR2 receptor on their surface. CCR2 negative (CCR2−) cells
originate from yolk sac progenitors and are detected in the cardiac tissue around embryonic
day 12.5 (E12.5) [58]. These cells are primarily located within the myocardial wall and in
close proximity to the coronary vasculature. On the other hand, CCR2 positive (CCR2+)
cells are derived from fetal monocyte progenitors and can be found in the trabecular projec-
tion of the endocardium starting from E14.5 [58]. CCR2− cells, also known as a “resident
macrophage population”, are self-regenerating macrophages that do not require prior
monocyte recruitment. CCR2+ cells, derived from hematopoiesis, are maintained through
monocyte recruitment and are referred to as the “non-resident macrophage” population
derived from circulating monocytes [69]. Although cardiac macrophages can exhibit M1
or M2 phenotypes in response to various stimuli, it is important to note that this pheno-
typic expression may not be permanent. Studies have shown that cardiac macrophages,
primarily exhibiting an M2-like phenotype, can transition to an M1-like phenotype in
aged mice [70]. Moreover, tissue-specific gene expression in cardiac macrophages can be
significantly altered in response to injuries such as MI, stroke, or sepsis [70].

In mice, the expression of CCR2, major histocompatibility complex (MHC) class II, and
CD11c allows for further differentiation into three subtypes of cardiac macrophages [57].
There are two predominant CCR2− populations: MHCIIhigh/CD11clow and MHCIIlow/
CD11clow. These subsets are derived from yolk sac progenitors and are renewed through
in situ proliferation. Additionally, there is a CCR2+, MHCIIhigh, and CD11chigh subset,
which is slowly replaced by circulating monocytes. Furthermore, there is one monocyte
subset characterized by CCR2+/MHC-IIlow expression. Transcriptomic analysis of these
subsets reveals both overlapping and non-overlapping functions. CCR2+ macrophages
exhibit a significant number of genes involved in the inflammatory process, suggesting pro-
inflammatory activity [57,58,71]. The MHCIIhigh subsets have genes involved in antigen
presentation to T cells, indicating a potential role in immune surveillance [57,58,71]. The
CCR2−/MHCIIlow subset has demonstrated uptake of apoptotic/necrotic cells, indicating
a role in the clearance of dead cells and prevention of immune response [71]. It is important
to note that these subsets represent only a part of the cardiac macrophages described in the
literature. Additional studies have identified four distinct cardiac macrophage clusters with
unique functions at steady state [72]. For example, CCR2−/TIMD4+/LYVE1+/MHCIIlow

corresponds to the CCR2−/MHCIIlow subset and expresses genes involved in homeostasis
and regeneration [58]. Similar CCR2 macrophage subsets have also been identified in the
human heart, suggesting comparable functions [73]. In the human heart, distinct subsets
of monocytes and macrophages can be identified based on the expression of CCR2 and
HLA-DR [73]. Human cardiac macrophages are characterized by the co-expression of CD14,
CD45, and CD64 markers. Within the CD14+/CD45+/CD64+ population, three subsets can
be distinguished based on the expression of the human homologue of MHC-II (HLA-DR)
and CCR2: CCR2+HLA-DRlow, CCR2+HLA-DRhigh, and CCR2−HLA-DRhigh cells [73]. It
is important to note that there are differences between mouse and human macrophages. In
mice, CCR2− macrophages are divided into MHCIIlow and MHCIIhigh subsets, while in
humans they are predominantly HLA-DRhigh.

5. Cardiac Macrophage Recruitment following Myocardial Injury

In the response to cardiac injury, both cardiac and non-cardiac macrophages play a
role. Following acute MI in mice, there is a significant reduction of approximately 60% in
the number of resident CCR2− macrophages in the infarcted area within 2 days of the
event [74]. These resident macrophages are replaced by inflammatory CCR2+ monocytes



Int. J. Mol. Sci. 2023, 24, 10747 7 of 18

and monocyte-derived macrophages. The role of these monocyte-derived macrophages is
to promote monocyte recruitment through the production of C-C motif ligand 2 (CCL2),
overcoming the inhibitory effect exerted by resident CCR2− macrophages. While these
monocyte-derived macrophages have a pro-inflammatory function, their production of
inflammatory factors is generally lower than that of recruited CCR2+ macrophages [4].
To differentiate cardiac CCR2+ macrophages from circulating monocytes and monocytes-
derived macrophages, the expression of type I IFN-stimulated genes can be used. This
suggests that CCR2+ macrophages are responsive to type I IFN produced during myocar-
dial infarction.

In murine models, circulating monocytes consist of two subsets: classical pro- inflam-
matory monocytes expressing high levels of lymphocyte antigen 6 complex (Ly6C) (or
CD14high/CD16− in humans) that are recruited to sites of inflammation and non-classical
Ly6Clow monocytes (or CD14low/CD16+ in humans) that survey the luminal surface of
vascular endothelial cells [75–77].

Indeed, both Ly6Chigh and Ly6Clow monocytes participate in the immune response
observed in the infarcted heart, representing distinct phases of monocytes recruitment [75,78].
During the initial inflammatory phase, there is a peak in the recruitment of Ly6Chigh monocytes
observed at around 3 days post infarction, followed by a gradual decline. These Ly6Chigh

monocytes express CCR2 and migrate into the injured site in response to the chemokine
CCL2. Upon migration, they differentiate into recruited CCR2+ macrophages. CCL2 plays a
crucial role in the recruitment of the Ly6Chigh monocyte into the infarcted area, and CCL2-
deficient (CCL2−/−) mice have shown reduced monocyte infiltration, interstitial fibrosis,
and ventricular dysfunction in response to myocardial ischemia compared to WT mice [79].
Once recruited, CCR2+ macrophages contribute to the immune response by releasing pro-
inflammatory factors and matrix metalloproteinases that facilitate the degradation of the
extracellular matrix and removal of debris and necrotic cells. Therefore, a reduction in
circulating monocytes can result in the accumulation of uncleared debris, necrotic tissue, and
myocardial fibrosis [75].

Ly6Clow monocytes appear later in the response to cardiac injury, with a peak observed
at around day 7 post injury, and they represent a significant portion (approximately 75%)
of the total macrophage population by day 16. These Ly6Clow monocytes give rise to
reparative and non-inflammatory macrophages. Ly6Clow monocytes express high levels of
growth factors such as VEGF [75], which are involved in promoting myofibroblast accumu-
lation, angiogenesis, and collagen deposition [78]. Previous studies have proven that two
different pathways are responsible for the accumulation of Ly6Clow macrophages in the
damaged area [75]. One pathway is related to the expression of C-X3-C Motif Chemokine
Receptor 1 (CX3CR1) in the injured zone. Additionally, it is possible that Ly6Chigh mono-
cytes directly differentiate into proliferating Ly6Clow macrophages within the myocardium,
driven by the induction of the orphan nuclear receptor Nr4a1 [78]. Depletion of Nr4a1 re-
sults in increased expression levels of CCR2 among cardiac Ly6Chigh monocytes, leading to
the induction of macrophages with high pro-inflammatory activity. The lack of Nr4a1 has
also been associated with impaired LV function after myocardial infarction, limited car-
diac healing, enhanced myocardial scar size, and reduced collagen density [78]. There-
fore, Nr4a1 plays a crucial role in regulating the differentiation and function of Ly6Clow

macrophages in the context of cardiac injury.

6. Macrophages and Cardiac Tissue Regeneration

The debate regarding cardiac regeneration and the existence and role of endogenous
resident cardiac stem cells (CSCs) is indeed ongoing. While the regenerative capacity of
skeletal muscle mediated by satellite cells is well established, the presence and phenotypic
characterization of CSCs in the heart are still subjects of investigation [15]. In skeletal
muscle regeneration, the process begins with an inflammatory response triggered by an
insult. This leads to the activation, differentiation, and fusion of satellite cells, including
muscle stem cells. These activated satellite cells contribute to the growth and remodeling
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of newly formed myofibers. Interestingly, a small portion of myogenic precursor cells does
not undergo terminal differentiation, instead remaining as a pool of stem cells that can be
utilized for future regeneration if needed [80]. It has been demonstrated that the complete
elimination of the satellite cell pool, specifically all Pax7+ cells, in adult skeletal muscle
suppresses muscle regeneration entirely [81].

Indeed, macrophages have been implicated in the fate of skeletal muscle satellite stem
cells during regeneration [82]. While the exact role of resident macrophages in this context
is not yet fully understood, studies have shown their involvement in regulating tissue
homeostasis under normal conditions. However, they appear to have limited phagocytic ca-
pacity during injury and instead act as sentinels, becoming activated in response to DAMPs
and promoting the recruitment of circulating leukocytes [83]. Similar to the observations in
cardiac injury, the recruitment of monocytes/macrophages in skeletal muscle regeneration
follows a sequential pattern [84,85]. The pro-inflammatory Ly6Chigh monocytes are the first
population recruited during the acute phase of inflammation, while the anti-inflammatory
Ly6Clow subset appears later [86]. It has been demonstrated that Ly6Clow macrophages can
arise from the Ly6Chigh subset [84,85], as evidenced by an in vivo experiment showing a
nearly complete transition to the Ly6Clow phenotype by day 3 after acute injury [85]. The
sequential presence of Ly6Chigh and Ly6Clow macrophages is associated with specific events
in the regenerative process [87]. One study demonstrated numerous regenerating areas
seven days after an injury, characterized by the presence of proliferating cells (ki67+/CD56+)
and/or differentiating cells (myogenin+) [82]. These areas also exhibited a positive presence
of both pro-inflammatory macrophages (identified by the expression of iNOS and COX2 in
CD68pos cells) and anti-inflammatory macrophages (marked with CD206 and CD163).
Specifically, pro-inflammatory markers were commonly expressed by macrophages in re-
generating areas containing only myogenin− cells compared to those containing at least one
myogenin+. Conversely, Arg1 macrophages (another anti-inflammatory marker) were more
abundant in regenerating areas containing myogenin+-proliferating myogenic precursor
cells (MPCs) compared to those lacking differentiating MPCs. Collectively, these findings
suggest a preferential association between proliferating MPCs and macrophages expressing
pro-inflammatory markers, while regenerating areas with differentiating myogenin+ MPCs
tend to be associated with anti-inflammatory macrophages.

There is growing interest in research focused on promoting cardiac regeneration
through stem cell transplantation or the induction of endogenous CSCs [88,89]. While pre-
clinical and clinical trials have reported beneficial effects of stem cell therapy on infarcted
hearts, there are currently limited data regarding stem cell survival after transplantation
and their ability to generate new functional myocytes [90]. It has been suggested that the
pro-inflammatory environment following cardiac injury can lead to damage to transplanted
stem cells, primarily through the stimulation of apoptosis, necrosis, and autophagy cas-
cades [91,92]. Additionally, the pro-inflammatory cytokines present in this environment
may contribute to the failure of stem cells to commit to the cardiac lineage [93]. However,
it appears that the functional benefits observed with injected cell therapy are related to
an acute inflammation-based wound-healing response [94]. Vagnozzi et al. conducted
experiments on healthy mice to assess the effects of two types of primary adult cells, both
of which contained small fractions of true stem cells: fractionated bone marrow mononu-
clear cells (MNCs) and cardiac mesenchymal cells. These cells were administered either
as living cells or as dead cells, previously killed through a freeze–thaw cycle. In their
findings, Vagnozzi et al. observed a temporary and regional induction of CCR2+ and
CX3CR1+ macrophages following the injection of cells, regardless of cell type or viabil-
ity. This led to a shift in the composition of macrophage subsets, transitioning from a
predominant population of CX3CR1+/CCR2− macrophages in the naive state to a mix
of CCR2+ and CCR2+/CX3CR1+ macrophages. The experiment was also conducted on
mice with induced myocardial infarction one week after ischemia–reperfusion (I-R) injury.
Injection of mononuclear cells, cardiac mesenchymal cells, or zymosan (a yeast-derived
protein–carbohydrate complex capable of inducing sterile inflammation) into the infarct
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border zone improved LV contractility and decreased end-systolic volume. These beneficial
effects were associated with the selective activation of innate immune responses. Impor-
tantly, the positive effects of cell injection on infarcted mice were abolished when a broad
spectrum of immunosuppressant agents or macrophage depletion was co-administered.
However, the experimental design employed by Vagnozzi et al. did not allow for the
detection of new cardiomyocyte formation [94]. However, other studies have demonstrated
the generation of new cardiomyocytes following injury [23,95]. For instance, an acute
cardiomyocyte loss caused by an isoproterenol overdose (ISO) activates the resident cardiac
c-kit+ stem/progenitor cells (CSCs), leading to the generation of new cardiomyocytes that
replace those lost after ISO-induced damage [23].

Similar to what is observed in skeletal muscle, macrophages are also known to be
involved in cardiac regeneration in neonatal mice, which exhibit regenerative potential and
can fully regenerate following MI [19,61,96]. Cardiac macrophage subsets in mice differ
between adults and neonatal mice. Neonatal hearts host only one embryonal-derived
macrophage subset of CCR2−/MHC-IIlow and one monocyte CCR2+ population. In
response to injury, neonatal mice selectively expand CCR2−/MHC-IIlow macrophages
without recruiting additional CCR2+ monocytes. These CCR2− macrophages isolated
from injured neonatal hearts produce lower levels of pro-inflammatory mediators. In
contrast, in adult mice hearts, the CCR2−/MHC-IIlow population is rapidly lost and re-
placed by pro-inflammatory monocytes and monocyte-derived macrophages expressing
CCR2+/MHC-IIhigh, characterized by limited capacity to promote cardiac repair and to
generate inflammation or oxidative stress [21] (Figure 3). Assessing changes in epigenetic
regulation through cardiomyocyte development has been of interest because of the drastic
change in cardiomyocyte proliferation ability after the first few days of life [97]. Changes in
epigenetics have proven to vary from neonatal proliferative-competent to adult terminally
differentiated cardiomyocytes [97]. Furthermore, loss of heart regenerative capacity in
adult versus neonatal mammals is triggered by increasing thyroid hormones and may be a
trade-off for the acquisition of endothermy [98].
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Finally, with aging, myocardial T cells undergo clonal expansion and exhibit an upregu-
lated pro-inflammatory transcription signature, marked by increased IFN-γ production [99].
Physiological T-cell development or adoptive transfer of adult IFN-γ-producing T cells
into neonatal infarcted mice shifted them toward an adult-like healing phenotype with
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monocyte-derived macrophage recruitment, contributing to impaired cardiac regeneration
and promoting irreversible structural and functional cardiac damage [100]. These findings
suggest a trade-off between myocardial regenerative potential and the development of
T-cell competence and allow us to postulate that immunosenescence may account for the
deficit in regenerative capability with age.

Aurora et al. conducted a study comparing the immune response of mice at different
regenerative time points following MI and identified differences in the power and kinetics
of the monocyte and macrophage response to injury [61]. Macrophages can secrete a
plethora of soluble factors that may contribute to the formation of new cardiomyocytes [61].
Their depletion instead promotes fibrotic scar formation, resulting in reduced cardiac
function and angiogenesis in neonatal mice.

Other experimental in vitro observations based on cell tracking strategies or tissue-
specific gene depletion demonstrated the involvement of macrophages in skeletal muscle
regeneration in both mice and human models [82]. It has been postulated that the recruit-
ment of Ly6C+ monocytes/macrophages stimulates the quiescence niche of muscle stem
cells (MuSCs), promoting their proliferation and preventing premature fusion of myogenic
cells. It seems that during the resolutive phase, macrophages reduced inflammation levels
while boosting stem cell angiogenesis, differentiation, and matrix remodeling [101].

Further studies are needed to determine whether the beneficial effects of cardiac
macrophages on cardiac remodeling can contribute to enhancing the regenerative poten-
tial of CSCs. It is also important to investigate the potential link between macrophage
activation/polarization and the fate of stem cells.

7. Macrophages and Tissue Degeneration during Aging

Aging is a complex phenomenon that involves several physiological changes as well
as the immune system [102,103].

Cell senescence, although often used interchangeably with aging, is instead char-
acterized by multiple hallmarks, including progressive accumulation of DNA damage,
mitochondrial dysfunction, apoptosis, telomere shortening, oncogene activation or in-
activation, epigenetic alterations, and ROS accumulation [104,105]. Senescent cells ac-
quire a senescence-associated secretory phenotype (SASP) that involves the secretion of a
wide range of soluble molecules, varying on the basis of the cell type and the triggering
factor [10,16].

The combination of changes affecting the immune system during aging is known as
immunosenescence and is characterized by the presence of a low-grade inflammation (in-
flammaging) that modulates macrophage activity and phenotype expression [106,107]. Inter-
estingly, inflammaging is a common feature of different age-related diseases such as cardio-
vascular disease [16,108], type 2 diabetes mellitus, and diabetic cardiomyopathy [11,13,109],
conditions all characterized by a loss of cardiac regenerative potential [10,11,13,14,16].

Aging can also negatively affect the ability to mitigate inflammation following a cardiac
injury in murine models through the deregulation of certain metabolic pathways [110]. In
aged mice, the clearance of senescent cells has been found to improve cardiac remodeling
and function after myocardial infarction [7], which was also observed in animal models of
diabetic cardiomyopathy [13]. Furthermore, aged hearts dramatically change the landscape
of their leukocyte population with more monocyte-derived cardiac macrophages, though
they are smaller in size and with larger granulocytes [111].

In addition, the SASP factors can shift macrophage polarization from an anti-
inflammatory phenotype to a pro-inflammatory one [112]. This is in line with the lin-
ear increase in cardiac macrophages with a pro-inflammatory phenotype observed with
aging [36], that may be a result of uncontrolled monocyte recruitment, alterations in mono-
cyte fate determination, or changes in resident macrophage behavior [36].

Resident cardiac macrophages in fact exhibit a reduction in self-renewal ability that is
maintained, at least in part, by the increased contribution of macrophages derived from
circulating monocytes [111]. Similarly, macrophages that are implicated in skeletal muscle
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regeneration underwent significant changes during aging [113]. Their release of prolifer-
ative factors is in fact impaired, with consequences on satellite cell function and muscle
regeneration [113]. Previously, Wang et al. demonstrated that the supernatant obtained
from old bone marrow-derived macrophages (BMDMs), compared to that obtained from
young BMDMs, has a reduced number of proliferative Ki67+ myoblasts [114]. However,
the observed effects of aging on macrophages are widely influenced by the marker and
the experimental model used, as well as by the subtype of population examined. For
example, an increase in anti-inflammatory macrophages (marked as CD68+/CD163+) has
been described in resting muscles of aged mice, correlating with an increase in skeletal
muscle fibrosis [115,116]. Another study instead demonstrated a decrease in the number
of both pro-inflammatory (CD11b+) and anti-inflammatory macrophages (CD163+) in old
subjects compared to young controls (average 71.4 years vs. 31.9 years) [117].

8. Therapeutic Perspectives

All the evidence discussed so far seems to open new interesting therapeutical ap-
proaches based on the modulation of macrophage function. Several data indicate that a
switch towards the cardioprotective anti-inflammatory phenotype can improve cardiac
repair and function after injury [118–120].

In a rat model of acute MI, treatment with phosphatidylserine (PS)-presenting li-
posomes (mimicking the anti-inflammatory effects of apoptotic cells) induced increased
release of anti-inflammatory cytokines such as TGFβ and IL-10, along with concomitant
downregulation of the pro-inflammatory markers TNFα and CD86, in macrophages in
both in vivo and in vitro models. This treatment supported angiogenesis and prevented
ventricular dilatation and remodeling [118].

Additionally, some stem cell therapies also appear to have positive effects on re-
covery after myocardial damage through macrophage modulation. For example, bone
marrow-derived mesenchymal stem cells (BM-MSCs) are able to modify their macrophage
phenotype toward an M2-like status. Infarcted mice treated with BM-MSCs exhibited
increased cardiac expression of F4/80 + CD206 + macrophages and demonstrated an im-
provement in cardiac function, as well as a reduction in pro-inflammatory factors and an
increase in the expression of anti-inflammatory markers [119].

Similar results were obtained using cardiosphere-derived cells (CDCs) that are ca-
pable of secreting exosomes [120,121] enriched with specific small RNAs [122,123] and
proteins [124] in response to cardiac injury. When delivered acutely post MI, these exo-
somes can polarize macrophages to a cardioprotective state, suppressing the expression
of pro-inflammatory cytokines and promoting efferocytosis. In this context, at least under
in vitro conditions, miR-181b seems to be the key mediator of this process [125].

Another promising therapeutic strategy may involve the use of human embryonic stem
cell-derived cardiovascular progenitor cells (hESC-CVPCs). Recent data show that their
use can induce a reparative phenotype in cardiac macrophages in infarcted hearts through
a pathway involving signal transducer and activator of transcription 6 (STAT6). Injection of
hESC-CVPCs into acutely infarcted myocardium significantly improves cardiac function
and scar formation, reducing inflammatory response and cardiomyocyte apoptosis [114].

As already mentioned, the challenge when using stem cells for therapeutic purposes
is mainly related to their limited survival after injection due to failed engraftment, necrosis,
and apoptosis [94]. However, even these ungrafted cells may have a role in cardiac regener-
ation. It has been postulated that the apoptotic transplanted cells can inhibit macrophages
and dendritic cells and stimulate regulatory T cells, resulting in the downregulation of
both innate and adaptive immunity. The result is reduced fibrosis and an overall improved
cardiac outcome [126].

Recent studies have also shown positive effects on cardiac function due to drugs
commonly used in clinical practice that are mediated by the modulation of macrophage pro-
inflammatory activity. Among these drugs, statins, inhibitors of the liver enzyme β-hydroxy
β-methylglutaryl-coenzyme A (HMG-CoA) reductase commonly used in the treatment of
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hypercholesterolemia, have been found. This pharmacological class has also demonstrated
anti-thrombotic and anti-inflammatory properties [127] and can stimulate new myocyte
formation after MI [128]. Pravastatin inhibits IFN-γ-induced macrophage activation, while
simvastatin interrupts MHC class II interactions between macrophages and the adaptive
immune complex [129,130]. In addition, angiotension-converting enzyme inhibitors (ACEi)
such as Enalapril have been shown to reduce angiotensin II (ATII)-stimulated monocyte
recruitment from splenic reservoirs in a murine model, resulting in a 14% improvement in
the ejection fraction following MI [131].

9. Conclusions

The available evidence suggests that specific immunity may significantly contribute
to the different endogenous regenerative responses to injury in regenerative tissues, as
opposed to the non-regenerative response of the adult mammalian heart. Nowadays,
a great number of different immune cell types have been investigated in cardiac repair
and myocardial remodeling after damage, and the main features of their phenotypes are
summarized in Table 1. It remains to be established whether cardiac macrophages (recruited
vs. resident) overall modulate cardiac pathologic remodeling after injury by preventing
an effective regenerative response. Furthermore, it is unknown whether altering the type
of cardiac macrophage response (switching from CCR2+ to CCR2− by eliminating CCR2+

macrophages) promotes effective myocardial regeneration after injury. These missing data
could form the conceptual basis for therapeutic strategies that enhance cardiac tissue-
resident CCR2−, inhibit CCR2+ macrophages, or achieve both; these strategies may also
have the potential to achieve anatomical and functional myocardial regeneration after
injury. Additionally, investing in this research topic will also help to clarify whether
cardiac macrophage-dependent immunity activates the formation of new cardiomyocytes
through CSC myogenic differentiation or through the unexpected duplication of pre-
existing cardiomyocytes.

Table 1. Immune cell systems involved in cardiac repair.

Cell Types Phenotype Activity Active Molecules

N1-Neutrophilis

CD11b
CD16
CD15
CD87

Degranulation
Phagocytosis

Apoptosis
MPO; ROS

N2-Neutrophilis CD11b
CD206

Macrophage polarization
Angiogenesis

Apoptosis
MMP-9; MMP-12, vEGF

Inflammatory Eosinophils
CD62L−
CD49d

CD101high

Degranulation
Oxidative stress Il-5; ROS; EPO

Regulatory Eosinophils
CD62L+

CD101low

Sigle-8+

Macrophage polarization and
angiogenesis Il-4; vEGF; FGF; TGF-β

Monocytes Cd14+CD16−/Ly-6Clow

CXC3R1
Secretion of anti-inflammatory and

angiogenic cytokines
IL-1β; IL-6; TNFa; NO;

TGF-β; vEGF

M1 Macrophages

CCR2
CD68

MHC II
CD86

Phagocytosis
Secretion of inflammatory cytokines IL-12, IL-23; ROS, NO

M2 Macrophages

CD206
IL-1Ra
TGFβ
vEGF

Secretion of anti-inflammatory and
angiogenic cytokines IL-10; IL.1Ra; vEGF; TGF-β

Mast Cells CD64
CD117

Secretion of inflammatory cytokines
Degranulation Histamine; INF-α; IL-6, IFN-γ
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Table 1. Cont.

Cell Types Phenotype Activity Active Molecules

Dendritic Cells MHC II
CD80/CD86 Antigen presentation IL-23

IL-10

B1- and B2-Lymphocytes CD19 Secretion of anti-inflammatory
cytokines IgM, IgG

Regulatory B-Lymphocytes Tim-1 Chemokine production IL-10

NK-Cells CD69 Secretion of inflammatory cytokines CCL7
IFN-γ

T-Lymphocytes
CD4+ T-helper

CD8+ T-cytotoxic
CTLA-4 Tregs

Autoreactivity
Secretion of inflammatory cytokines

IFN-γ
IL-17

TGF-β
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