
Citation: Alonso-Peña, M.; Del

Barrio, M.; Peleteiro-Vigil, A.;

Jimenez-Gonzalez, C.; Santos-Laso,

A.; Arias-Loste, M.T.; Iruzubieta, P.;

Crespo, J. Innovative Therapeutic

Approaches in Non-Alcoholic Fatty

Liver Disease: When Knowing Your

Patient Is Key. Int. J. Mol. Sci. 2023,

24, 10718. https://doi.org/10.3390/

ijms241310718

Academic Editors: Mariapia Vairetti,

Giuseppe Colucci and Andrea

Ferrigno

Received: 27 April 2023

Revised: 21 June 2023

Accepted: 24 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Innovative Therapeutic Approaches in Non-Alcoholic Fatty
Liver Disease: When Knowing Your Patient Is Key
Marta Alonso-Peña 1 , Maria Del Barrio 1, Ana Peleteiro-Vigil 1 , Carolina Jimenez-Gonzalez 1,
Alvaro Santos-Laso 1, Maria Teresa Arias-Loste 1 , Paula Iruzubieta 1 and Javier Crespo 1,2,*

1 Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases,
Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain;
malonso@idival.org (M.A.-P.)

2 Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
* Correspondence: javier.crespo@scsalud.es

Abstract: Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging
from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from
the dysfunction of multiple pathways and thus multiple molecular triggers involved in the dis-
ease have been described. The development of NASH entails the activation of inflammatory and
fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic co-
morbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular
disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the
multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range
of interventions and drugs, with little success. Here, we propose a narrative review of the different
phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents
and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD
patients and personalized treatment is an innovative therapeutic approach that may lead to better
therapeutic outcomes.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) includes a wide spectrum of liver injuries
ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), which is charac-
terized by a variable grade of inflammation and hepatocellular damage [1,2] and may
further progress to more severe hepatic disorders [3]. NAFLD is a growing contributor
to end-stage liver disease and liver transplantation [4]. Additionally, NAFLD exhibits a
robust correlation with numerous extra-hepatic metabolic conditions, including type 2
diabetes mellitus (T2DM), obesity, hypertension, cardiovascular disease and chronic kidney
disease, among others. Consequently, this elevates the mortality rate associated with the
condition [5,6]. Such attributes have led to suggestions for a nomenclature change to
metabolic-associated fatty liver disease (MAFLD), which carries significant implications for
patient management strategies [7]. However, besides metabolic dysfunction, other diseases
result in hepatic steatosis, such as alcohol- and drug-induced liver injury, viral infections
and chronic inflammatory diseases. Undoubtedly, this liver condition should no longer
be considered a “histological disease” and moved away from the two-stage division into
NAFLD and NASH as such categorization may not fully reflect the diverse range of disease
progression in response to modifications in the underlying metabolic dysfunction or med-
ical treatments [8]. Furthermore, consensus regarding the NAFLD or MAFLD name has
not been achieved among experts. Here, we will use NAFLD nomenclature as a standard,
except for research on MAFLD as specified by authors.
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Two main events have been defined in the pathophysiology of NAFLD: lipid accumu-
lation within the hepatocytes, especially free fatty acids (FFAs), and liver-related innate
immune responses [9]. However, inflammation may precede steatosis as inflammatory
events may lead to lipid accumulation [10]. Therefore, there are many factors influencing
NAFLD initiation and progression: environmental exposure, lifestyle, genetic susceptibility,
metabolic status and the microbiome [11]. All these factors could induce either steatosis
or inflammation, which further triggers endoplasmic reticulum stress, expression of pro-
inflammatory cytokines, oxidative stress, hepatic insulin resistance and apoptosis [9,12,13]
(Figure 1). The complex interaction of all these mechanisms suggests the existence of
different phenotypes within NAFLD that differ in the molecular pathways altered which
could result in different natural history, disease course and clinical outcomes.
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Figure 1. Non-alcoholic fatty liver disease (NAFLD) includes a spectrum of liver manifestations
ranging from steatosis to cirrhosis. Progression of the disease is determined by different pathological
pathways, mainly metabolism impairment and liver inflammation, which are influenced by patients’
lifestyles, genetics, microbiomes and environmental factors. Interventions on these factors could
promote regression at early stages of the disease.

This review is aimed at discussing the potential stratification of NAFLD patients to
provide personalized health care and treatment by summarizing current knowledge about
the characteristics of NAFLD patients that could influence pathophysiology and both liver
and extrahepatic manifestations of the disease. Understanding the different phenotypes
encompassed under NAFLD diagnosis will improve treatment strategies and foster the
identification of successful treatments for this pathology by improving clinical trials’ design
and control for individual genetic predisposition, signal transduction, or metabolic profiles.

2. How to Phenotype NAFLD Patients

Despite more than a decade of extensive research focusing on NAFLD, there is cur-
rently no approved therapy for NASH. The complexity and heterogeneity of NAFLD
represent important impediments to the discovery of highly effective drug treatments. In
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addition, clinical trials are not controlled for individual genetic predisposition or signal
transduction or metabolic profiles. Trial recruitment is currently based on liver histologic
involvement, but many pathological pathways can lead to the same histological phenotype.
Therefore, clinical trial reporting for NAFLD is suboptimal, limiting our understanding [14].
The initial step is trying to change this simplistic view of NAFLD, both in clinical trials
and in daily clinical practice. A multi-omics data integration approach for NAFLD patients
could help us to properly subphenotype and stratify patients, paving the way for precision
medicine in NAFLD.

The importance of the classification of NAFLD patients into different subtypes is
reflected in several studies based on metabolomics [15,16]. These authors identified a
unique serum metabolomic profile of Mat1a (methionine adenosyltransferase 1A) knockout
(KO) mice and 0.1MCD (methionine and choline deficient) model and observed, using a
large cohort of serum samples from biopsied NAFLD patients, that some of them showed
this metabolic signature (M-subtype), identifying those patients that will likely benefit
from therapy with S-adenosylmethionine (SAMe) or Aramchol. However, this approach
also results in a certain number of unclassified patients (denominated indeterminate).
Potential integration of other omics data as well as clinical parameters may improve this
novel subtyping approach for NAFLD patients, allowing further interpretation of the
complex and heterogeneous disease. Multi-omics observations could identify how genetic,
epigenetic, or transcriptional changes lead to metabolic alterations in complex diseases such
as NAFLD in a comprehensive manner [17]. Therefore, a comprehensive landscape of the
main NAFLD drivers and patient outcome determinants may be obtained by integrating
multi-omics and clinical data.

Following state-of-the-art research, in this section, we summarize the main factors to
take into consideration when attending NAFLD patients, which could lead to better clinical
management and treatment (Figure 2).
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Figure 2. Non-alcoholic fatty liver disease (NAFLD) includes a wide spectrum of patients whose
phenotype is determined by the different affection of key processes involved in the pathophysiology of
the disease, including body weight and composition, the presence of metabolic syndrome and type 2
diabetes mellitus, liver histological features, genetic predisposition, the use of toxic substances such
as small amounts of alcohol and steatogenic drugs, infections and alterations in the gut microbiome,
development of vascular disease and systemic inflammation.
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2.1. Histological Features

It is widely accepted that information about disease activity and, in particular, the
extent of liver fibrosis is necessary to assess the severity of liver disease and provide prog-
nosis in NAFLD [18]. Histological evaluation of NAFLD liver biopsies is the gold-standard
technique for the assessment of disease phenotype and progression [4]. The histological
scoring system for staging fibrosis ranges from stage 0 (no fibrosis) to stage 4 (cirrhosis) [18].
However, non-invasive, point-of-care techniques such as imaging modalities (i.e., vibration-
controlled transient elastography [VCTE]) and index-based approaches (i.e., FIB-4, NAFLD
fibrosis score [NFS]) have been proposed as better options for surveillance programs in
at-risk or global populations [19].

It has been shown that the incidence of liver-related complications and all-cause
mortality increased with the degree of fibrosis, with fibrosis grades F3 and F4 being
associated with an increased risk of liver complications and all-cause mortality [4]. These
findings provide support for the use of “progression to cirrhosis” as a generally accepted
surrogate outcome for regulatory approval of therapeutic agents. Moreover, the higher
rate of hepatic decompensation events (i.e., ascites, variceal bleeding, and encephalopathy)
and hepatocellular carcinoma (HCC) among patients with F3 provides a rationale to
test the hypothesis that a one-stage regression of fibrosis may translate to fewer hepatic
decompensation events [4]. However, fibrosis worsened by one stage (from baseline
stage 0 fibrosis) on average during 7.1 years for patients with NASH and by one stage
over 14.3 years for patients with steatosis [18]. This long progression time precludes the
usefulness of “progression to cirrhosis” as a surrogate outcome as clinical trials are not
usually designed for the evaluation of impact over such long periods. In fact, one-stage
regression of fibrosis has not been met in most clinical trials testing pharmacological
treatments for NAFLD [20]. Furthermore, the incidence of non-hepatic cancers is similar
across all fibrosis grades [4], although the leading cause of death in patients with NAFLD
is cardiovascular disease, followed by extrahepatic malignancy [18].

On the other hand, the liver phenotype in NAFLD is defined by histological findings
such as hepatocellular ballooning, steatosis grade and lobular inflammation [21]. Currently,
histologically assessed hepatocyte ballooning is a key feature used in the discrimination
of NASH from steatosis as it is considered a form of hepatocyte injury associated with
fibrogenesis. This distinction is key to patient selection for trial enrolment, and it also serves
as a surrogate endpoint for drug efficacy assessment [22]. Although it is a well-established
way to categorize NAFLD patients, liver histology evaluation shows several limitations
that might impact clinical trial efficacy and patient management. This includes great inter-
and intra-observer variation in pathologists’ assessment of grade of activity in general and
ballooning specifically [22]. In this sense, new techniques have been developed to better
determine liver fat content, such as magnetic resonance-based methods [23], meanwhile
others are still under development [24].

Vilar-Gómez et al. demonstrated the independent association between the presence of
steatosis and all-cause mortality, observing that patients with steatosis had cardiovascular
and malignant mortality rates comparable to those of patients with cirrhosis [25]. These
results strongly suggest that patients with severe steatosis have a higher vascular risk than
other patients. Thus, clinicians should pay attention not only to patients with advanced
fibrosis but also to those patients with moderate or mild fibrosis who have a high degree
of steatosis.

Therefore, although fibrosis assessment and liver phenotyping are essential for the
prognosis of NAFLD, they are insufficient for the correct characterization and management
of NAFLD patients, and new approaches should be developed to overcome the limitations
of histology evaluation.

2.2. Metabolic Comorbidities

It has now been established that the primary causes of mortality in patients with
NAFLD are cardiovascular disease (CVD) and malignancies, while liver-related mortality
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occupies the third position. This finding indicates that NAFLD functions as a systemic
disorder, which is not unexpected considering its association with insulin resistance (IR)
and metabolic syndrome (MetS) [26,27].

NAFLD is closely and bidirectionally associated with MetS and especially with T2DM,
whose pathophysiological components are key modifiers of NAFLD development and
progression [28]. A recent study published by Ajmera et al. [29] has shown that the
prevalence of NAFLD rises to 65% in T2DM patients. Moreover, the global prevalence of
NASH rises to 30–40% and significant fibrosis (F2–F4) to 12–20% [30]. Additionally, current
clinical evidence highlights that NAFLD could be a precursor to the future development of
MetS components and thus linked to an increased cardiovascular risk (CVR) independently
of MetS risk factors [31]. Therefore, the association between NAFLD and T2DM brings
an additional risk of both hepatic and cardiovascular adverse clinical outcomes; thus,
hepatologists should routinely screen for T2DM and perform cardiovascular risk work-ups
periodically [32].

We should note that the link between T2DM and NAFLD is complex [33]. These
pathologies share many risk factors, such as impairment of glucose and lipid metabolism,
and NAFLD is also predictive of T2DM (see review by Muzica et al. [34]). In contrast to
other T2DM complications, screening and assessment of NAFLD are not usually routinely
done [32]. However, as T2DM may promote progression to NASH and liver fibrosis in up
to 20% of the patients [35–37], which can eventually turn into liver cirrhosis and/or HCC,
screening for NAFLD should be done in these patients. The latest American Association of
Clinical Endocrinology recommendation is that patients with T2DM or prediabetes and
elevated liver enzymes or fatty liver disease on ultrasound should be evaluated for the
presence of NAFLD [37]. These individuals should be screened for liver fibrosis using
non-invasive methods, such as FIB-4 and NFS, followed by VCTE or analysis of patented
serum biomarkers [34].

2.3. Weight
2.3.1. Obese Patients

NAFLD is the most frequent cause of chronic liver disease, with a global prevalence
around 25% [38,39]. However, this percentage is increased in obese patients for whom the
prevalence rises to 58% [39]. In obese children and adolescents, the prevalence is also high
(44%), being greater in developed countries. Moreover, the prevalence increases as does
the Body Mass Index (BMI): being 20.23% in overweight and 38.47% in obese patients [40].

The underlying pathophysiology is based on the presence of IR and adipocyte dysfunc-
tion, which lead to lipolysis, with an increase in circulating FFAs and leptin and a decrease
in adiponectin, which favors intrahepatic fat accumulation. This fact is worsened with de
novo lipogenesis because of fat and carbohydrates in the diet. Moreover, immune cells
can infiltrate the liver, further producing a chronic low-grade intrahepatic inflammation.
Lipotoxicity and glucotoxicity along with mitochondrial damage and oxidative stress lead
to NASH progression and ultimately to the development of fibrosis [41].

Thus, obese patients have greater liver impairment with higher aspartate aminotrans-
ferase (AST) and alanine aminotransferase (ALT) levels and more liver fibrosis [42]. The
presence of obesity in NAFLD is associated with the occurrence of hypertriglyceridemia
(OR 1.51), MetS (OR 2.66), hypertension and T2DM (OR 1.35) [42]. That is, it is associated
with a higher prevalence of other CVR factors [43].

As discussed later, diet and exercise are the main treatment of patients with NAFLD
and obesity [44]. Weight loss of ≥10% induces high rates of improvement (>80%) not only
of the comorbidities but also of all the histological lesions of NAFLD [25].

2.3.2. Lean Patients

Although NAFLD has a strong association with obesity, there is a proportion of cases
with a normal BMI, which is usually called “non-obese NAFLD” or “lean NAFLD”. These
two terms are not exactly synonyms and vary between studies: the first includes both
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overweight and normal weight patients and the second, normally, only those with normal
BMI [45].

In a recent meta-analysis, the global prevalence of non-obese NAFLD was 40.8% within
the NAFLD population and 12.1% within the general population. However, the prevalence
varied by BMI, being more frequent in overweight than in normal weight people. Thus,
the prevalence of lean NAFLD turned out to be 19.2% in the NAFLD population and 5.1%
within the general population [46].

It is important to mention that a normal BMI is not a synonym for a metabolically
healthy condition. People with lean MAFLD have lower waist circumference, diastolic
blood pressure and serum triglycerides (TG) compared to overweight/obese MAFLD
patients. Moreover, they have a different body composition, with significantly lower fatty
tissue index, lean tissue index and total body water. However, compared to lean healthy
controls, lean MAFLD had a worse metabolic profile, characterized by a higher percentage
of hypertension, BMI, TG, low-density lipoprotein (LDL), glucose, HbA1C and lower
HDL [47].

It has been stated that lean NAFLD patients have a less severe disease than obese
NAFLD ones. In a prospective study, non-obese NAFLD patients seem to have lower
NAFLD activity scores (NAS) than obese NAFLD ones, mainly attributable to lesser steato-
sis and a smaller proportion of ballooning. Moreover, non-obese NAFLD patients had less
fibrosis. When analyzing the different parameters of MetS, it was observed that only TG
levels were an independent predictor of disease severity [48]. In a retrospective Italian
study, similar results were found, with significantly lower proportions of NASH (17% vs.
40%) patients and significant fibrosis (i.e., >F2) (17 vs. 42%) among lean NAFLD patients in
comparison to overweight or obese NAFLD patients [49]. However, the presence of MetS
seems to be associated with the progression to NASH and significant fibrosis in patients
with NAFLD regardless of BMI [50]. In a large retrospective cross-sectional study in Asia, it
was also found that MetS in non-obese NAFLD was associated with NASH (OR 1.59) and
advanced fibrosis (OR 1.88) [51].

On the other hand, it was classically considered that lean NAFLD patients had a more
benign course of illness, with a lower incidence of new onset CVD. However, it has been
observed that all-cause cardiovascular and hepatic mortality are not negligible in these
patients (incidence per 1000 person–years of 12.1%, 4% and 4.1%, respectively). Although
it should be noted that non-obese NAFLD (i.e, patients with normal weight but also
overweight) were included in this meta-analysis [46]. In a population-based cross-sectional
study carried out in Korea, lean NAFLD patients seemed to have a significantly higher
atherosclerotic cardiovascular disease (ASCVD) score and prevalence of a high ASCVD
risk compared to obese NAFLD patients. However, this study had some limitations: first,
being a cross-sectional study, longitudinal follow-up is not possible; second, the severity of
the disease was measured by indirect methods, without biopsy; and third, cardiovascular
events were not evaluated [52]. In a retrospective study, one-third of the lean NAFLD
patients had carotid atherosclerosis [49].

The pathophysiology of lean NAFLD is not fully understood yet, with multiple factors
that can have influence having been described [53]. It may be set by the genetic background
and early alterations in bile acid (BA) and gut microbiota profile. Thus, lean NAFLD
had a higher chance of carrying at least one PNPLA3 risk allele compared to lean healthy
controls [42,54]. Lean NAFLD patients had higher total, primary and secondary BA levels
than overweight–obese NAFLD ones, although it was only significant for secondary BAs.
Moreover, the composition was different as lean NAFLD patients had lower deoxycholic
acid, glycochenodeoxycholic acid and chenodeoxycholic acid but more glycocholic acid [55].
On the other hand, a lower level of various lysophosphatidylcholines, which is linked to
obesity and hypertriglyceridemia, has been described in lean NAFLD patients [54].

All in all, the latest guidelines recommend that even with a normal weight, lean
NAFLD patients should undergo lifestyle intervention, including exercise, diet modifica-
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tion, and avoidance of fructose- and sugar-sweetened drinks, to target a modest weight
loss of 3–5% [56].

2.4. Cardiovascular Diseases

NAFLD patients are at risk of cardiovascular and cardiac diseases. They have more
subclinical atherosclerosis, arrhythmias, cardiovascular events, conduction defects, aortic-
valve sclerosis and heart failure, which increase disease-related morbimortality [57].

It seems that the metabolic dysfunction that defines MAFLD is associated with higher
risks of all-cause mortality and cardiovascular mortality in MAFLD patients compared to
patients with NAFLD [58].

In a recent study, three subtypes of NAFLD patients were identified. Subtype A,
which phenocopied the metabolome of mice with impaired VLDL-TG secretion, had the
lowest CVR measured by Framingham risk score. Moreover, it had lower serum TG,
cholesterol, VLDL, small dense LDL and remnant lipoprotein cholesterol compared to
type B (intermediate) and C (normal VLDL-TG) [59]. Thus, CVR assessment is a priority.
ASCVD can be an easy tool as an ASCVD score ≥ 7.5% was associated with a higher risk of
overall and cardiac-specific mortality [60].

In a large cohort study with more than 10,000 NAFLD patients, it was described that
NAFLD subjects tended to meet a lower number of ideal health metrics (BMI, smoking,
physical activity, diet, blood pressure, cholesterol and glycemia). If these modifiable risk
factors were addressed, 66% of all-cause deaths and 83% of cardiovascular deaths were
preventable [61].

2.5. Inflammatory Dysfunction

Growing evidence has pointed towards a disproportionately high prevalence of
NAFLD and advanced fibrosis in patients with immune-mediated inflammatory diseases
(IMID) such as psoriasis [62], inflammatory bowel disease (IBD) [63] and hidradenitis
suppurativa [64]. Although this may be explained by an interplay between the distinctive
chronic inflammation of IMIDs and the co-existence of metabolic risk factors, the IMID
diagnosis acts as an independent risk factor for NAFLD. For instance, in IBD patients,
advanced fibrosis was particularly prevalent, regardless of the influence of metabolic risk
factors [63]. Therefore, while advanced fibrosis was found to be three times more common
in NAFLD–IBD individuals than in the general population with NAFLD, the disparities
were even greater when obesity was not present, with a four-fold higher prevalence. Fur-
thermore, in the absence of T2DM, the prevalence of advanced fibrosis was nearly five
times higher in the IBD population, and in individuals without both obesity and T2DM,
the difference was almost seven times as great [63].

Thus, NAFLD has a disproportionately high tendency to develop in IMID popula-
tions, which may be explained by the distinctive chronic inflammatory burden of these
conditions [63]. Interestingly, NASH and most IMIDs share some molecular characteristics
such the activation of the tumor pathways depending on tumor necrosis factor (TNF)-α
or the imbalance in T-cell subtypes such as Th17/Treg. This common pathogenesis may
explain, at least in a subset of patients, the development of NASH in the absence of classic
metabolic risk factors [64]. Spanish guidelines are moving towards the inclusion of these
patients in NAFLD screening strategies [65]. However, international guidelines have not
yet recognized the need for NAFLD evaluation in IMID patients [66] and studies regarding
the link between NAFLD and IMID pathogenesis are still pending.

2.6. Genetic Factors

Genetic and epidemiological studies indicate strong heritability of hepatic fat content
and the key role of genes in the development and progression of liver diseases [67]. In
particular, genome-wide association studies (GWAS) have shown a significant relation
between several single nucleotide polymorphisms (SNPs) and an increased risk of chronic
liver disease [68]. In fact, there are several polymorphisms in different genes associated
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with NAFLD development and progression. The five more strongly related with disease
severity are: patatin-like phospholipase domain (PNPLA3), transmembrane 6 superfamily
member 2 (TM6SF2), glucokinase regulator (GCKR), membrane bound O-acyltransferase
domain-containing 7 (MBOAT7) and hydroxysteroid 17β-dehydrogenase (HSD17B13) [69]
(Table 1).

Table 1. Genetic variants associated with NAFLD.

Gene SNPs Function References

PNPLA3
rs738409 Lipid metabolism and inflammatory response [70,71]rs6006460

MBOAT7 rs641738 Lipid metabolism [72]
HSD17B13 rs72613567 Lipid metabolism [73]

FTO rs1421085 Lipid metabolism and adipogenesis [74]
LPIN1 rs13412852 Lipid metabolism and adipogenesis [75]

TM6SF2 rs58542926 VLDL secretion [76]
LYPLAL1 rs12137855 Glucose homeostasis [77]

GCKR rs780094 Regulation of de novo lipogenesis and insulin resistance [78,79]
ENPP1 rs1044498 Insulin signaling inhibitor [80]

PPP1R3B rs4240624 Glycogen metabolism [81]
SOD2 rs4880 Fibrosis and oxidative stress [82]

MERTK rs4374383 Immune response [83]
FNDC5 rs3480 Liver fibrogenesis [84]

KLF6 rs3750861 Liver fibrogenesis [85]
CDKN1A rs762623 Cell senescence [86]

IL28B rs12979860 Inflammatory response [87]

One of the most described and robustly validated associations is a missense variant in
PNPLA3. The substitution of cytosine by guanine in codon 148 results in an amino acid
change from isoleucine to methionine in PNPLA3 (rs738409; p.Ile148Met), which is strongly
associated with hepatic fat content and inflammation as described by Romeo, S. et al. [70].
PNPLA3 protein is implicated in lipid regulation in hepatocytes and stellate cells. In
hepatocytes, PNPLA3 acts as a triacylglycerol lipase and acylglycerol O-acyltransferase
which involves catalyzing the transfer of polyunsaturated fatty acids (PUFA) from di- and
tri-acylglycerols to phosphocholines [88].

PNPLA3 is degraded through ubiquitination of lysine and subsequent proteosome
degradation. The lack of function in PNPLA3 rs738409 and its loss of accessibility to be
ubiquitinated leads to a retention of TG and PUFA in the liver [89]. In NAFLD patients, the
phenotypic manifestations of this polymorphism are higher TG levels, elevated ALT and
AST ratio, severity of steatohepatitis and increased fibrosis [68].

A missense variant in TM6SF2, encoding transmembrane 6 superfamily member 2,
is associated with NAFLD. TM6SF2 is mainly expressed in the liver and small intestine,
although its exact function is not well known; TM6SF2 regulates fat metabolism, specifically
cholesterol synthesis and lipoprotein secretion [90]. The rs58542926 polymorphism encodes
a substitution of glutamic acid to lysine at position 167 (p.Glu167Lys). This amino acid
change results in a loss-of-function, inducing higher liver TG levels and lower circulating
lipoproteins [69].

In vitro studies revealed that TM6SF2 siRNA inhibition was associated with the re-
duced secretion of very-low density lipoproteins (VLDLs) and increased cellular TG con-
centrations and lipid droplet levels, whereas TM6SF2 overexpression reduced liver cell
steatosis [76]. Apparently, TM6SF2 rs58542926 polymorphism elevates the risk of liver
disease but reduces cardiovascular event risk [91].

GCKR controls de novo lipogenesis by regulating the influx of glucose into hepa-
tocytes [78]. Loss-of-function in GCKR (rs1260326; p.Pro446Leu) regulates glucokinase
in response to fructose-6-phosphate, activating hepatic glucose uptake. This leads to
decreased circulating fasting glucose and insulin levels but increases the production of
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malonyl-CoA. In fact, a higher concentration of malonyl-CoA favors hepatic fat accumula-
tion by serving as a substrate for lipogenesis and by blocking fatty-acid β-oxidation in the
mitochondria [68,92]. Thus, rs1260326 has been related to NAFLD [78].

Under the hypothesis that alcoholic liver disease (ALD) and NAFLD share common
genetic determinants, Mancina et al. [93] identified a significant locus for both pathologies
using GWAS. MBOAT7 is highly expressed in inflammatory and immune cells. It encodes
lysophosphatidylinositol acyltransferase 1 (LPIAT1), which is involved in remodeling
arachidonic acid to phosphatidynositol in the Lands cycle [72]. A study in a European de-
scent cohort demonstrated the association between MBOAT7 rs641738 and the development
and severity of NAFLD [93].

The latest addition to the list of genes that are involved in NAFLD, based on GWAS
studies, was HSD17B13, a liver-specific enzyme that regulates lipid homeostasis. Its
aberrant expression and high enzyme activity have been confirmed to promote the de-
velopment of NAFLD [73]. In contrast, the polymorphism HSD17B13 rs72613567 results
in a loss-of-function truncated protein, thus attenuating the progression of NAFLD. Fur-
thermore, HSD17B13 rs72613567 has been associated with reduced serum AST and ALT
levels, lower inflammation and NAS including ballooning and fibrosis [94]. These results
allow researchers to conclude that the truncated protein has a protective role against liver
diseases [95].

2.7. Microbiome

The research carried out in recent years points to the fundamental role of the gut
microbiome (GM) in the development of NAFLD as well as in multiple physiological
processes such as energy metabolism and immune functions [96].

The human GM is dominated by four bacterial phyla: Bacteroidetes, Firmicutes,
Proteobacteria and Actinobacteria [97]. Recent studies show that lean and obese individuals
differ in gut bacterial composition [98]. In fact, obesity has been associated with phylum-
level changes in the GM, reduced bacterial diversity and altered representation of bacterial
genes and metabolic pathways [99]. In NAFLD, it has been demonstrated that alterations
in the GM go through an increase in Gram negatives and a decrease in Gram positives,
which translates to an increase in Proteobacteria and a decrease in Bacteroidetes-Firmicutes
ratio at the phylum level [100].

Dysbiosis has been described as an imbalance in the microbiota composition and
function, resulting in a negative effect on the physiology of the host. It could be caused by
several environmental factors, such as diet, physical activity, medication and geographical
localization [101,102].

The GM interaction with the liver via the “gut–liver axis”, established by the portal
vein, enables the transport of GM-derived products directly to the liver and bile and anti-
body secretion in the opposite way [103]. Alterations in the gut–liver axis caused by GM
imbalance and mucosa permeability changes may allow metabolic bacterial products and
components to cross the intestinal barrier and reach the liver, causing inflammatory and
oxidative responses and exacerbating NAFLD pathology [104]. Some bacterial metabolites
could interfere with glucose and lipid metabolism, triggering liver disease; whereas mi-
crobial components, pathogen-associated molecular patterns such as lipopolysaccharide
and peptidoglycan, can activate pattern recognition receptors (PRRs) in Kupffer cells and
hepatic stellate cells, inducing inflammatory responses and contributing to liver injury
and fibrosis [103,105,106]. All these conditions are involved in NAFLD progression [102].
Murine models have given further support to the role of microbiota in liver fibrosis as
high-fat diet microbiota transplantation to control mice resulted in an increase in liver
injury [107].

Focusing on the role of metabolites in alcohol fermentative pathways, acetaldehyde
and acetate have been involved in the degradation of intestinal tight junctions [108,109]. In
fact, the genes that encode for these enzymes in the gut microbiome are overexpressed in
NAFLD, which suggests that alcohol metabolism could be a trigger in this pathology [110].
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The GM is also involved in the fermentation of other compounds such as complex
carbohydrates to produce short-chain fatty acids including acetate, propionate and bu-
tyrate [111]. It has been described that butyrate contributes to the maintenance of the
intestinal barrier and its reduction is related to the weakening of tight junctions and an
increase in permeability [112,113].

Intestinal metabolic dysregulation has been associated with the metabolism of aromatic
amino acids (AAA). In healthy conditions, the AAA tryptophan can be metabolized by
the GM, producing indole. Further studies have demonstrated the beneficial effect of
indole and its derivatives in upregulating endothelial tight junctions, downregulating
pro-inflammatory cytokines production and modulating the secretion of glucagon-like
peptide-1 (GLP-1) [114,115].

Thus, accumulated evidence supports the significant role of microbiome dysbiosis
in NAFLD onset and progression and it constitutes an important factor to consider for
patient management. Furthermore, therapies targeting dysbiosis are under investigation
and NAFLD patients showing this condition are expected to be most benefited by its
treatment [116].

2.8. Toxics Consumption
2.8.1. Alcohol

NAFLD diagnosis is based on the exclusion of harmful alcohol intake, which has been
set as daily ingestion below 20 g (women) and 30 g (men) of pure ethanol by European and
American guidelines [117,118]. However, the World Health Organization reported that the
average pure ethanol use exceeds those limits (it rises to 32.8 g ethanol/day among women,
and more than 40 g ethanol/day among men) [119] and is associated with significant
health risks. In fact, moderate (20–40 g ethanol/ day) or heavy (>40 g ethanol/day) alcohol
use causes additional liver damage and hepatic steatosis in more than 25% of patients
with presumed NAFLD [120,121]. In contrast, there is conflicting evidence of a slightly
protective effect of low and moderate alcohol consumption in NAFLD (see review by
Petroni et al., 2019 [122]).

The main challenge limiting an accurate diagnosis relies on the fact that NAFLD and
ALD have not been reliably distinguished by well-established diagnostic means. Using
non-invasive biomarkers, such as ethyl glucuronide (EtG, a metabolite of alcohol), in hair
and urine can accurately detect potentially harmful alcohol consumption in patients with
NAFLD [120,123]. Hence, according to hair EtG levels, presumed NAFLD patients can
be reclassified with regard to their risk of alcohol-related liver damage due to repeated
moderate–excessive alcohol consumption [120]. Lifestyle intervention in NAFLD patients
with low alcohol consumption should include the recommendation of total abstinence.

2.8.2. Drugs

Drug-induced steatosis (DIS) is usually associated with the prolonged intake of a
medication at a specific dose, and it is relatively rare as just 2% of NAFLD cases are
estimated to be drug-induced [124]. This phenomenon involves an acute energy crisis
through inhibited fatty acids β-oxidation and other impaired mitochondrial and peroxiso-
mal functions, initially resulting in microvesicular steatosis that can usually be reversed
(reviewed by Dash et al. [125]). Table 2 summarizes the most commonly used drugs known
to cause steatosis.

Table 2. Steatogenic drugs.

Therapeutic Class Drug/Group References

Antiarrhythmics Amiodarone [126]
Antibiotics Tetracyclines [127,128]

Antidiabetics Troglitazone [129–131]

Antiepileptics Carbamazepine [132]
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Table 2. Cont.

Therapeutic Class Drug/Group References

Valproic acid [132–134]
Anti-inflammatories Dexamethasone [135]

Antitumor drugs

5-Fluorouracil [136,137]
Irinotecan [137–140]

Leuprorelin acetate [141]
Methotrexate [142]

Tamoxifen [143,144]

Antiretrovirals
Nucleoside Reverse Transcriptase

Inhibitors [145,146]

Protease Inhibitors [147]
Hormones Estrogens [148]

Vasodilator agents Perhexiline maleate [149,150]

Imaging methods can estimate hepatic fat content, but these techniques are unreli-
able when distinguishing steatosis from steatohepatitis [151,152]. Furthermore, serum
transaminases’ usefulness as noninvasive indicators of DIS is limited since these proteins
are within the reference range in most individuals with hepatic steatosis [153–155]. Hence,
finding sensitive and specific serum biomarkers is key to assessing the contribution of
drugs to NAFLD. Cytokeratin 18 (CK18), fibroblast growth factor 21 (FGF21), insulin-like
growth factor binding protein 1 (IGFBP1), several microRNAs and forkhead box protein
A1 (FOXA1) have been identified as potential biomarkers for DIS detection and prognosis,
as reviewed by Pavlik et al. [156].

2.9. Concomitant Infections

Since the improvement of antiretroviral regimens, NAFLD has emerged as a growing
concern in the long-term management of patients with HIV mono-infection. HIV infection
itself induces various metabolic alterations that can lead to steatosis by disrupting fatty acid
β-oxidation in the liver and adipose tissue [157,158]. Nevertheless, and as mentioned above,
it should also be noted that antiretroviral therapy may be partially responsible for this
steatogenic effect. Moreover, HIV invasion of hepatic stellate cells triggers fibrosis [159,160],
favoring liver damage progression to NASH.

Several studies have attempted to determine the prevalence of NAFLD or NASH
in HIV-infected patients, and those have been reviewed in detail by authors such as
Verna [161], Squillace et al. [162], and Morrison et al. [163]. However, the definition of
NAFLD, study populations, group matching criteria, and methods for fatty liver assess-
ment are heterogeneous, making the outcomes difficult to interpret or even contradictory
among different studies. Previous results suggest that NAFLD prevalence in HIV-infected
individuals is higher (30–50%) and progresses at an increased rate compared to the gen-
eral population, with antiretroviral exposure being an additional risk factor [164,165].
Lipodystrophy syndrome, which includes abnormal fat distribution and increased visceral
adiposity, is usually present in HIV-positive patients [166,167] and it directly contributes to
NAFLD development [164,165].

HIV-induced steatosis and/or fibrosis can be detected through imaging techniques [168,169]
and ultrasound/transient elastography [170–172]. Regarding blood tests, HIV-positive pa-
tients at risk of NASH may show increased levels of serum transaminases [173–175] and,
more precisely, higher scores for non-invasive markers of fibrosis (FIB-4, APRI) [169,176–180]
compared to HIV-negative patients. However, these tests might not be accurate enough, so
there is an urgent need to develop and validate new non-invasive biomarkers and imaging
assessments for liver disease in HIV-positive patients. Recently, several proteins have
aroused interest as biomarkers for detecting steatosis (FGF21 [181], IL-18 [182]) and fibrosis
(CK18 [183]), as well as other proteins involved in tissue repair and immune response path-
ways [184] in these individuals. In addition, some polymorphisms may predict NAFLD
development in HIV-infected patients [185], and there is an increasing focus on circulating
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miRNAs as a non-invasive reflection of liver disease progression in people living with HIV
(thoroughly reviewed by Martinez et al. [186]).

3. NAFLD Treatment
3.1. Treatments to Rule Them All

Lifestyle intervention, with modifications in diet and physical activity, has become
the first line treatment for patients with NAFLD. A greater extent of weight loss, induced
by lifestyle changes, is associated with the level of improvement in histologic features
of NASH. The highest rates of NAS reduction, NASH resolution and fibrosis regression
occurred in patients with weight losses of 10% or more [25]. Furthermore, age, sex, T2DM
and genes impact on the effect of diet in weight loss and NASH resolution [187]. These
factors are integrated in the so called ‘nutritional geometry’, which considers the relevance
of nutrition, science and the environment to understand how food components interact
to regulate the properties of diets [188]. Stratifying patients according to the geometry of
nutrition could improve the rate of response [187].

Regarding weight loss, therapies such as bariatric surgery and metabolic endoscopic
techniques can be useful alternatives as only 10% of participants achieved enough body
weight reduction through lifestyle interventions [189]. Bariatric surgery has also been
shown to improve obesity, its metabolic consequences and NASH [190,191]. However,
given the surgical risk, it cannot be considered a first-line therapy, especially in those
patients with decompensated cirrhosis or portal hypertension. In this context, endoscopic
bariatric techniques have emerged as a potential treatment option as they can reproduce
those benefits in a minimally invasive manner [192]. However, this kind of intervention
might be eligible only in obese patients.

On the other hand, a recent expert meeting has gathered strong evidence that regular
physical activity plays an important role in preventing NAFLD and improving intermediate
clinical outcomes [193]. Various studies have demonstrated an improvement in NAFLD
with personalized physical exercise programs [194], even in the absence of significant
weight loss [195,196], and a reduction of the hepatic venous pressure gradient in cirrhotic
patients [197].

The prescription of an appropriate diet and the indication of physical exercise in
proportion to the disease and the characteristics of the patients is the main curative option
for all NAFLD patients, including lean NAFLD [55,198]. A randomized controlled trial
from Asia demonstrates using MR spectroscopy that almost half of non-obese individuals
achieved NAFLD remission with 3–5% weight loss [198].

Thus, an innovative therapeutic strategy in this setting would be the constitution of
multidisciplinary units integrating clinicians (hepatologists, endocrinologists, cardiologists,
internists), physiotherapists, nutritionists, nurses, social educators and, of course, patients,
where a health-promoting diet, avoidance of tobacco, alcohol and other toxins, and sus-
tainable, inclusive and adapted physical activity is prescribed considering the needs of
each patient. Furthermore, such multidisciplinary units allow the integration of adequate
assessments for the risk of both significant liver and vascular disease, macro and/or mi-
crovascular complications of T2DM, the risk of hepatic and extrahepatic neoplasms and
other potential comorbidities.

3.2. Targeted Therapy

Thanks to the continuous research on NAFLD pathogenesis, several druggable targets
have been identified and thus targeted therapies for NAFLD treatment have entered clinical
trials, which have been recently and extensively reviewed by Santos-Laso et al. [199].
However, limited impact has been achieved for now, probably due to the extensive placebo
effect in NAFLD [200], the complexity of the pathological pathways involved [189], the short
follow-up time for the expected outcomes to be evaluated and the limited characterization
of NAFLD patients before inclusion in clinical trials [201].
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Table 3 summarizes the main targeted therapies for NAFLD which are currently under
evaluation in Phase III clinical trials.

3.2.1. Targeting Lipid Metabolism

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription
factors which include PPARα, PPARγ and PPARβ/δ. The pan-PPAR agonist lanifibranor
acts through the activation of all PPAR isoforms, reducing TG levels and increasing insulin
sensitization, glucose metabolism and fatty acid metabolism. Lanifibranor has successfully
completed a 24-week phase IIb trial, meeting its primary endpoint of a reduction of two
points or more in the SAF (steatosis, activity and fibrosis) score, with no increase in fibrosis,
and the secondary endpoint of reducing fibrosis by at least one stage without worsening
NASH. Lanifibranor is well tolerated, although side effects include mild weight gain. Thus,
a phase III study is underway [20].

Statins have been demonstrated to reduce steatosis in those with NASH and it prevents
liver events in patients with metabolic syndrome with advanced NASH. Furthermore, a
possible protective role of statin treatment against NAFLD progression to HCC was also
demonstrated in observational studies. Interestingly, it has been shown that statins reduce
CVR more in NAFLD vs. non-NAFLD high-risk individuals [32]. Thus, evaluation in a
phase III clinical trial of rosuvastatin treatment for NAFLD is about to start recruitment
(Table 3).

Oltipraz is a synthetic dithiolethione that functions as an anti-steatogenic agent against
NAFLD by inhibiting LXR-α activity, which decreases the expression of SREBP-1c within
the liver, reducing the synthesis of fatty acids but enhancing lipid oxidation [202]. Although
two phase III clinical trials have been completed, no data are available yet (Table 3).
However, the results from the phase II trial showed that oltipraz decreased liver fat content
and BMI while absolute changes in insulin resistance, liver enzymes, lipids and cytokines
were not significant [202].

Resmetirom is a liver-directed, orally active, selective thyroid hormone receptor-β
agonist designed to improve NASH by increasing hepatic fat metabolism and reducing
lipotoxicity. In phase II clinical trials, Resmetirom treatment resulted in significant reduc-
tions in hepatic fat after 12 weeks and 36 weeks of treatment in patients with NASH, while
the adverse events were transient mild diarrhea and nausea [203]. Two phase III trials are
currently recruiting participants (Table 3).

It could be hypothesized that obese patients, those with genetic predisposition to
lipid accumulation or increased circulating levels of TG due to metabolic syndrome, might
benefit from therapies targeting lipid metabolism.

3.2.2. Targeting Glucose Metabolism

Pioglitazone is a PPARγ agonist used in the treatment of T2DM due to its properties as
an insulin sensitizer [204]. Moreover, results have been published regarding pioglitazone
evaluation in non-diabetic NAFLD patients in comparison to vitamin E supplementa-
tion [205]. There was no benefit of pioglitazone compared to placebo for the primary
outcome; however, significant benefits of pioglitazone were observed for some of the sec-
ondary outcomes such as steatohepatitis resolution, decrease in mean AST and ALT levels
and improvement in insulin resistance [205].

GLP-1 receptor agonists (GLP-1RA) are widely used in the treatment of T2DM. Stud-
ies have found that GLP-1R has multiple biological effects, such as neuroinflammation
reduction, nerve growth promotion, heart function improvement, appetite suppression,
gastric emptying delay, blood lipid metabolism regulation and fat deposition reduction.
Thus, effects of GLP-1RA include neuroprotection, cardiovascular protection and metabolic
regulation [206]. Semaglutide has completed a phase II trial showing resolution of NASH
with no worsening of fibrosis. Although it was unable to achieve its secondary outcome
of improvement of fibrosis with no worsening of NASH, the drug induces a significant
weight loss and most common adverse events were gastrointestinal [20]. Encouraging pilot
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results of the evaluation of exenatide, another GLP-1RA, for the treatment of NAFLD have
been released [207]. Moreover, cotadutide, a dual GLP-1RA and glucagon receptor agonist,
has been evaluated in a phase IIb clinical trial showing improved glycemic control and
weight loss, along with improvements in hepatic parameters such as reduction in ALT, AST
and gamma-glutamyltransferase (GGT) levels, as well as improvements in NFS and FIB-4
index [208].

Dipeptidyl peptidase 4 (DPP-4) inhibitors work by blocking the enzymatic inactivation
of endogenous incretin hormones, resulting in glucose-dependent insulin release and a
decrease in glucagon secretion [32]. Early results evaluating DPP-4 inhibitor vildagliptin
in NAFLD patients with T2DM have shown significant improvement in blood sugar
regulation, BMI, ALT, liver fibrosis and steatosis indices [209].

SGLT-2 inhibitors promote urinary excretion of glucose by inhibiting its renal proximal
tubular reabsorption [32]. Dapagliflozin and empagliflozin are SGLT-2 inhibitors undergo-
ing phase III clinical trials for the treatment of NASH. To date, it has been demonstrated
that dapagliflozin can markedly reduce hepatic enzymes and metabolic indicators and
improve body composition [210].

These drugs are prescribed in the treatment of T2DM. Thus, clinical guidelines have
already included the preferential use of drugs with effects on the liver in the management
of T2DM patients with NAFLD [211].
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Table 3. Targeted drugs for the treatment of adult NAFLD being evaluated in phase III clinical trials [212].

Mechanism Drug Identifier Intervention Title Status

Li
pi

d
m

et
ab

ol
is

m

Lanifibranor NCT04849728 Drug: Lanifibranor|Drug: Placebo
A Phase 3 Study Evaluating Efficacy and Safety of Lanifibranor

Followed by an Active Treatment Extension in Adult Patients With
(NASH) and Fibrosis Stages F2 and F3 (NATiV3)

Recruiting

Rosuvastatin NCT05731596
Drug: Rosuvastatin 20 mg Oral

Tablet|Drug: Coenzyme Q10 100 mg
Oral Capsule

Comparative Clinical Study to Evaluate the Efficacy and Safety of
Rosuvastatin vs. CoQ10 on Non-alcoholic Steatohepatitis Not yet recruiting

Oltipraz NCT04142749 Drug: Oltipraz|Drug: Placebos Oltipraz for Liver Fat Reduction in Patients with Non-alcoholic Fatty
Liver Disease Except for Liver Cirrhosis Completed

NCT02068339 Drug: Oltipraz 1 (90 mg)|Drug:
Placebo|Drug: Oltipraz 2 (120 mg)

Efficacy and Safety of Oltipraz for Liver Fat Reduction in Patients with
Non-alcoholic Fatty Liver Disease Except for Liver Cirrhosis Completed

Resmetirom
NCT03900429 Drug: Resmetirom|Drug: Placebo A Phase 3 Study to Evaluate the Efficacy and Safety of MGL-3196

(Resmetirom) in Patients with NASH and Fibrosis Recruiting

NCT04197479 Drug: Placebo|Drug: Resmetirom A Phase 3 Study to Evaluate the Safety and Biomarkers of Resmetirom
(MGL-3196) in Non-Alcoholic Fatty Liver Disease (NAFLD) Patients Active, not recruiting

G
lu

co
se

m
et

ab
ol

is
m

Pioglitazone
NCT05521633 Drug: Metformin and Pioglitazone

Comparison of the Effects of Metformin and Pioglitazone on Liver
Enzymes and Ultrasound Changes in Non-Diabetic Non-alcoholic

Fatty Liver
Completed

NCT05605158 Drug: Pioglitazone 30 mg|Drug:
Empagliflozin 10 mg

Comparative Clinical Study Between Empagliflozin Versus
Pioglitazone in Non-diabetic Patients with Non-alcoholic

Steatohepatitis
Not yet recruiting

NCT00063622
Drug: Pioglitazone|Dietary

Supplement: Vitamin E|Drug:
Matching placebo

Pioglitazone vs. Vitamin E vs. Placebo for Treatment of Non-Diabetic
Patients with Non-alcoholic Steatohepatitis (PIVENS) Completed

Semaglutide
NCT05067621 Drug: Semaglutide Pen Injector|Drug:

Placebo
Semaglutide Effects in Obese Youth with Prediabetes/New Onset Type

2 Diabetes and Non-alcoholic Fatty Liver Disease Not yet recruiting

NCT03919929 Drug: Semaglutide 3 mg and 7 mg
[Rybelsus]|Other: Weight loss diet Treating PCOS With Semaglutide vs. Active Lifestyle Intervention Recruiting

NCT04822181 Drug: Semaglutide|Drug: Placebo Research Study on Whether Semaglutide Works in People with
Non-alcoholic Steatohepatitis (NASH) Recruiting

Exenatide NCT00650546 Drug: Exenatide Role of Exenatide in NASH-a Pilot Study Completed

Cotadutide NCT05364931 Drug: Cotadutide|Drug: Placebo
A Study to Evaluate the Safety and Efficacy of Cotadutide Given by

Subcutaneous Injection in Adult Participants with Non-cirrhotic
Non-alcoholic Steatohepatitis With Fibrosis.

Active, not recruiting

Vildagliptin NCT03925701 Drug: Vildagliptin|Drug:
vildagliptin\metformin

Clinical Study Evaluating Vildagliptin Versus Vildagliptin/Metformin
on NAFLD With DM Recruiting

Dapagliflozin NCT05308160 Drug: Dapagliflozin 10 mg Tab|Drug:
Placebo

A Single Center, Randomized, Open Label, Parallel Group, Phase 3
Study to Evaluate the Efficacy of Dapagliflozin in Subjects with

Non-alcoholic Fatty Liver Disease
Recruiting

NCT03723252 Drug: Dapagliflozin|Drug: Placebo Dapagliflozin Efficacy and Action in NASH Recruiting

Empagliflozin NCT05605158 Drug: Pioglitazone 30 mg|Drug:
Empagliflozin 10 mg

Comparative Clinical Study Between Empagliflozin Versus
Pioglitazone in Non-diabetic Patients with Non-alcoholic

Steatohepatitis
Not yet recruiting
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Table 3. Cont.

Mechanism Drug Identifier Intervention Title Status

Bi
le

ac
id

m
et

ab
ol

is
m Obeticholic acid

NCT02548351 Drug: Obeticholic Acid|Drug: Placebo Randomized Global Phase 3 Study to Evaluate the Impact on NASH
With Fibrosis of Obeticholic Acid Treatment Active, not recruiting

NCT03439254
Drug: Obeticholic acid (10 mg)|Drug:

Obeticholic acid (10 mg to
25 mg)|Drug: Placebo

Study Evaluating the Efficacy and Safety of Obeticholic Acid in
Subjects with Compensated Cirrhosis Due to Non-alcoholic

Steatohepatitis
Completed

Aramchol NCT04104321 Drug: Aramchol|Drug: Placebo A Clinical Study to Evaluate the Efficacy and Safety of Aramchol in
Subjects with NASH (ARMOR) (ARMOR) Suspended

O
xi

da
ti

ve
st

re
ss

,
in

fla
m

m
at

io
n

an
d

fib
ro

si
s N-acetylcysteine NCT05589584 Drug: N acetyl cysteine with weight

reduction N-acetyl Cysteine and Patients with Non-alcoholic Fatty Liver Disease Recruiting

Pentoxifylline NCT05284448 Drug: pentoxifylline (Trental SRÂ®)
Pentoxifylline in Treatment of Patients with Non-alcoholic

Steatohepatitis Active, not recruiting

NCT00267670 Drug: Pentoxifylline|Drug: Placebo Pentoxifylline/Non-alcoholic Steatohepatitis (NASH) Study: The
Effect of Pentoxifylline on NASH Completed

Secukinumab NCT04237116
Biological: Investigational

Arm—secukinumab|Biological:
Control Arm—placebo

A Study of Secukinumab Treatment in Patients with Plaque Psoriasis
and Coexisting Non-alcoholic Fatty Liver Disease (NAFLD) Completed

Lubiprostone NCT05768334 Drug: Lubiprostone 24 Mcg Oral Cap Efficacy and Tolerability of Lubiprostone in Patients with
Non-alcoholic Fatty Liver Disease Recruiting
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3.2.3. Targeting Bile Acid Metabolism

Obeticholic acid (OCA) is a potent FXR agonist evaluated for the treatment of NASH-
mediated fibrosis thanks to its ability to reduce liver fat and fibrosis in animal models of
NAFLD. Currently being tested in phase III clinical trials [213], phase II studies demon-
strated that OCA treatment improved multiple histological NASH features [214].

Aramchol is a fatty acid–BA conjugate that has demonstrated an ability to reduce liver
fat and inflammation in NAFLD patients. Results from the phase IIb trial showed that
aramchol was safe and well tolerated [215]. Although the primary end point of a reduction
in liver fat did not meet the pre-specified significance level, the observed safety and changes
in liver histology and enzymes encouraged the initiation of phase III trials [215], whose
interim analysis revealed that the open-label part met its objectives (Table 3).

These treatments may be especially useful in the management of lean NAFLD as these
patients have shown specific alterations of BA metabolism [55].

3.2.4. Targeting Oxidative Stress, Inflammation and Fibrosis

N-acetylcysteine is frequently used where intracellular oxidant–antioxidant balance
is concerned and it has protective effects against liver injury [216]. Its potential as antiox-
idant treatment in NAFLD has been demonstrated in animal models [217,218], whereas
information in NAFLD patients is scarce but promising [216]. Thus, a phase III clinical
trial evaluating the effect of N-acetylcysteine on markers of oxidative stress and insulin
resistance in patients with NAFLD is currently recruiting participants (Table 3).

Pentoxifylline is a methylxanthine derivative with a variety of physiological effects at
the cellular level, which include decreases in TNF-α gene transcription, affecting multiple
steps in the cytokine/chemokine pathway that has been implicated in NAFLD patho-
genesis. Thus, it has been evaluated in several clinical trials mostly showing beneficial
effects in weight loss, improved liver function and histological changes in patients with
NAFLD/NASH [219]. However, other studies have failed in demonstrating pentoxifylline’s
effectiveness in reducing transaminases compared to placebos, and it did not positively
affect any of the metabolic markers postulated to contribute to NASH [220].

Secukinumab is a monoclonal antibody against IL-17 used in the treatment of psoria-
sis. It has been shown to have neutral effects on fasting plasma glucose, lipid parameters
and liver enzymes, while reducing levels of CRP, a marker for systemic inflammation,
and markers of oxidative stress. Secukinumab produced improvements in arterial elastic-
ity, coronary artery function and myocardial deformation indices, thus protecting from
CVR [221]. However, publication of phase III clinical trial results evaluating liver function
is pending (Table 3).

Finally, lubiprostone is a laxative drug that improves intestinal permeability. It was
reported to ameliorate increases in intestinal permeability induced by a high-fat and high-
cholesterol diet in an atherosclerosis mouse model, while in humans it improved the
increased intestinal permeability induced by non-steroidal anti-inflammatory drugs. Thus,
lubiprostone might prevent the excessive inflammation and fibrosis induced by gut-derived
endotoxin in NAFLD patients [222]. Results from the phase IIa study have shown that
lubiprostone was well tolerated and reduced the levels of liver enzymes in patients with
NAFLD and constipation [222]. Therefore, recruitment for the phase III clinical trial is
already open.

Treatments targeting inflammation and fibrosis might be eligible for patients with
more advanced disease or those with enhanced inflammation due to co-morbidities such as
IMIDs, whereas targeting intestinal permeability could be indicated for those with dysbiosis
or IBD.

4. Concluding Remarks

The hallmark of NAFLD is the accumulation of lipids in the liver that results from
deranged lipid metabolism. Consequently, NAFLD is strongly associated with obesity,
insulin resistance and dyslipidemia. However, inflammation may precede steatosis as
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inflammatory events may lead to lipid accumulation. Therefore, there are many factors
influencing NAFLD initiation and progression, such as environmental exposure, lifestyle,
genetic susceptibility, metabolic status and the microbiome. The phenotypic manifestation
of fatty liver diseases likely reflects the sum of the dynamic and complex systems-level
interactions of these drivers; it follows that effective treatment requires that they be targeted
with precision and based on a person’s phenotype [223]. Importantly, morbimortality in pa-
tients with NAFLD involves extra-hepatic organs as it is considered a mediator of systemic
diseases including CVD. This further contributes to NAFLD’s heterogeneity, representing
a major challenge in discovering highly effective therapies. Obtaining a comprehensive
landscape of the main NAFLD drivers and patient outcome determinants should facilitate
patient stratification and identification of disease subtypes with different natural history
and liver disease courses. Therefore, a multi-omic and clinical data integration approach of
NAFLD patients could help us to properly subphenotype and stratify patients, paving the
way for precision medicine in NAFLD. On the other hand, implementing optimal strategies
to promote physical activity, prescribing an appropriate diet and changing the model of
care through the use of digital tools such as telemedicine are crucial elements that will help
in maintaining healthy habits in patients with NAFLD, as well as being the current curative
and preventive options. Prioritizing research in these areas and developing innovative
strategies to address this growing public health concern is essential.
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