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Abstract: Paeonia ostii is a worldwide ornamental flower and an emerging oil crop. Zyotic embryo-
genesis is a critical process during seed development, and it can provide a basis for improving the
efficiency of somatic embryogenesis (SE). In this study, transcriptome sequencing of embryo develop-
ment was performed to investigate gene expression profiling in P. ostii and identified Differentially
expressed genes (DEGs) related to transcription factors, plant hormones, and antioxidant enzymes.
The results indicated that IAA (Indole-3-acetic acid), GA (Gibberellin), BR (Brassinosteroid) and ETH
(Ethylene) were beneficial to early embryonic morphogenesis, while CTK (Cytokinin) and ABA (Ab-
scisic Acid) promoted embryo morphogenesis and maturation. The antioxidant enzymes’ activity was
the highest in early embryos and an important participant in embryo formation. The high expression
of the genes encoding fatty acid desaturase was beneficial to fast oil accumulation. Representative
DEGs were selected and validated using qRT-PCR. Protein-protein interaction network (PPI) was
predicted, and six central node proteins, including AUX1, PIN1, ARF6, LAX3, ABCB19, PIF3, and
PIF4, were screened. Our results provided new insights into the formation of embryo development
and even somatic embryo development in tree peonies.
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1. Introduction

Seeds, as a unit of plant reproduction, carry genetic information to the next generation
of the plant [1]. Zyotic embryogenesis is a critical process during seed development, and
it can be roughly divided into three stages: histodifferentiation, embryo patterning and
growth, and embryo maturation, and further divided into 6 stages: proembryo, globular,
heart, torpedo, cotyledon, and maturation [2-4]. Seed development is one of the key
and complex processes for plant growth and development and is regulated by integrated
molecular regulatory networks of temporal and spatial, especially the regulation of various
types of transcription factors, plant hormones, and antioxidant enzymes [1,5].

A large number of key transcription factors play an important role in plant embryoge-
nesis, including LEAFY COTYLEDON (LEC), AGAMOUS-Like15 (AGL15), ABSCISIC ACID
INDPENDENTS3 (ABI3), BABY BOOM (BBM), FUSCA3 (FUS3), WUSCHEL (WUS), SO-
MATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK), and CUP SHAPED COTYLE-
DONS (CUC) [6,7]. LECT and had a high expression during early embryo development
in Theobroma cacao and Zea mays [8,9]. LEC1, ABI3, FUS3, and LEC2 are called LAFL fac-
tors, and they are necessary and sufficient for embryo development and regulate various
development processes [10,11]. SERKSs are active in regulating embryonic morphogenesis.
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Pineapple SERK1 Promoter was increasing during embryogenic acquisition [12], and Zm-
SERK1 and ZmSERK2 had high expression in maize embryogenic callus [13,14]. TaSERK2
and TuSERK3 were involved in auxin-specific responses, whereas TaSERK1, 4, and 5 were
more specific for BR-mediated regulation [15]. AGL15 can directly target LEAFY COTYLE-
DON2, FUSCA3, and ABA INSENSITIVE 3 to participate in embryonic development [16].
These genes form a complex regulatory network of embryogenesis.

Plant hormones play an important role in seed development [17,18]. IAA (Indole-3-
acetic acid) is a key component in seed development; the spatial-temporal distribution of
seed development is dynamically regulated by IAA biosynthesis and catabolism, transport,
and signal transduction [18-20]. CTK (Cytokinin) occurs in the phase of rapid cell division,
which is critical in establishing the final seed size. GA (Gibberellin) and IAA regulate the
transport of nutrient substances during seed development. ABA (Abscisic acid) contributes
to maintaining embryogenesis during the nutrient accumulation process [21]. Auxin
importers AUX1/LAX play an important role in embryonic root formation. Radicle devel-
opment was the disorganization of aux1, lax1, lax2, and lax3 quadruple mutants [22]. Auxin
response factor ARF16 had the highest expression in early embryos of Pinus pinaster [23].
YUCCA flavin monooxygenases play an essential role in Arabidopsis embryogenesis, RNA
in situ hybridization showed YUCI and YUC4 were mainly expressed in globular and
heart embryo stages [24]. YUC4 is a transcriptional target of LEC2 [25]. GA/ABA may
determine the pre-embryonic or post-embryonic development of embryos [16]. AGL15 can
directly target the downstream gene gibberellin 2-oxidase (GA20x6) and further regulate GA
changes during embryonic development in Arabidopsis [26]. Auxin affects the expression
level of FUS3, while FUS3 negatively regulates the expression of GA biosynthetic genes
GA30x1 and GA3o0x2 [27,28]. FUS3 is a link between hormones during embryogenesis [27].

Research shows that enzymes, including antioxidant enzymes, that respond to oxida-
tive stresses have been used effectively as efficient biochemical markers to study embryonic
development [29]. The high content of antioxidant enzymes has a stimulatory effect on
embryogenesis [30]. During embryogenesis, many enzymes (POD, SOD, CAT, and APX)
actively regulate ROS and hormones to prevent cellular damage in plants [31-36]. In con-
clusion, plant hormones and enzyme activity play an important role in seed development.

Transcriptome sequencing can comprehensively and quickly obtain transcripts of
specific organs or tissues at a certain state, and it is an important technical way to reveal
the gene expression profiling of cells and tissues [37-40]. Research showed that auxin
was crucial for early embryo patterning and pre-cotyledon embryonic formation, while
ABA was a major regulator of embryonic maturation by transcriptome, the key genes
related to embryo development were obtained and used to improve the efficiency of the
somatic embryo (SE) in Picea mongolica [41,42]. Transcription factors, hormone signals, and
transduction-related and sugar-metabolism-related genes play a crucial role in barley grain
development [3,43]. In recent years, many studies have focused on the fatty acid synthesis
and metabolism in tree peonies; however, there are few studies on the gene regulation of
embryo development [44—47].

Tree peony, belonging to the genus Paeonia L. and the family Paeoniaceae, is a world-
renowned perennial deciduous shrub with ornamental and medicinal values [48,49]. How-
ever, tree peony has a long generation cycle, a single reproduction method and a small
reproduction coefficient, which hinders the large-scale production of their seedlings [50].
The somatic embryo regeneration pathway is an important part of the plant tissue culture
and one of the most effective ways to achieve rapid reproduction of tree peonies [7,40,51].
Nevertheless, the transformation efficiency of non-embryogenic callus to embryonic callus
in somatic embryogenesis is still low [52], which may be due to superficial abnormalities in
the gene expression of hormones, antioxidant enzymes, and transcription factors during
the transformation process in tree peony. Studies have shown that somatic embryos and
zygotic embryos were similar in morphological characteristics, even at the biochemical
level, especially the similarity of gene expression products and protein components [53,54].
Therefore, it is an effective way to break through the technical difficulties of tissue culture by
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clarifying the normal development process of seedling embryos and exploring the expres-
sion profiles of key genes such as hormones, antioxidant enzymes, and transcription factors.
The molecular mechanism of zygotic embryo development can provide a theoretical and
technical basis for the development of somatic embryos of tree peonies.

In this study, paraffin sections were made to observe the critical period of the embryo
development of P. ostii. Furthermore, we divided the process into 7 stages: proembryo
(PE), globular embryo (GE), heart embryo (HE), torpedo embryo (TE), cotyledon embryo
(CE), not fully mature embryo (NE), and mature embryo (ME). Then we analyzed the
gene expression profile during the seed development of P. ostii using RNA-seq, especially
hormones, enzyme activity-related genes, and various transcription factors. Protein-protein
interaction network (PPI) related to early embryogenesis was constructed. The spatiotem-
poral gene expression profile of embryo development and PPI of early embryogenesis
provided an important resource for the development of zygotic embryos and even somatic
embryos in the plants.

2. Results
2.1. Morphological Observation of Tree Peony Pod Development after Pollination

After the pollination (0 days) of P. ostii (Figure 1), the stigma was pink, and the seed
pods were gathered together; the inside of the seed pods was milky white, there was no
mucus in the pods, and the seeds were not visible to the naked eye. At 3-5 days, the stigma
was red, with mucus and a shiny surface, and smaller seeds can be observed after peeling
off; the stigma became dry and yellow-black at 15 days, and the five green pods were
separated; At 25 days, the pods had a small amount of red in the slits, while whole pods
became enlarged, and a lot of mucus in the pods, and the seeds were small and milky white;
At 35 days, the pods turned dark green, and part of the sutures was red inside the pods.
There was a large amount of mucus in the pods, the milky white seeds were obviously
enlarged, and some aborted seeds turned yellow-black; for 45-85 days, the seed pods were
completely dark green and became full and swollen, there was a large amount of mucus
in the pods, and the seeds changed from milky white to yellow. At 90 days, the yellow
pods had brown spots, and a small portion of the pods had dried out. At 110 days, the
pods turned blackish-yellow, dehydrated with partial dehiscence and no mucilage in the
pods, and the seeds exposed after the pods had cracked began to turn black and hard; At
130 days, the pods were dry and completely cracked, and the black seeds were exposed.

Figure 1. Pods and seed development state of P. ostii. 0 d (days),5d,15d,25d,35d,45d,55d,65d,
70d,75d,85d,90d,100d, 110 d, and 130 d represent the observation time after pollination.
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2.2. Anatomical Observation of Embryo Development of Tree Peony

The paraffin section method was used to anatomically observe the development
process of the embryo of P. ostii. After pollination, the sperm cells and oocytes combine
to form a zygotic embryo, and the embryo initially develops and polarizes into a mature
embryo sac (Figure 2A). Globular embryos can be observed in the ovules about 60 days after
pollination (Figure 2B); when the globular embryo developed to a certain stage, two bulges
were produced on both sides near the chalazal end at the same time, namely, the cotyledon
primordium. The cotyledon primordium gradually increased and developed into a heart-
shaped embryo (Figure 2C), and embryogenesis was a sign that organ differentiation had
begun. The conversion of heart-shaped embryos into torpedo embryos can be observed in
the ovules 75 days after pollination (Figure 2D). The two cotyledons of the torpedo embryo
elongated rapidly, and at the same time, the embryo growth point began to differentiate
and form and entered the cotyledon embryo stage (Figure 2E); the cotyledon embryo
mostly appeared in the ovule about 90 days after pollination. After the cotyledon embryo
was formed, the embryo body had no obvious changes in shape, but the embryo body
would continue to grow. From 90 days to 130 days after pollination, the embryo increased,
while the radicle, hypocotyl, and embryo growth points became increasingly obvious
(Figure 2EG). As the main location for accumulating nutrients, the cotyledons no longer
showed significant changes by 130 days after pollination. At this time, the embryo matures
and enters a dormant state.

60 d ' lod 130 d

lem lem
[ —— — [

—_

Figure 2. The Seed characteristics and the microscopy images of paraffin-embedded tissues of the
embryo. (A-G) The seed characteristics at 5, 60, 65, 75, 90, 110, and 130 days after pollination;
(a—g) The development status of the embryo at 5, 60, 65, 75, 90, 110, and 130 days after pollination
was PE, GE, HE, TE, CE, NE, ME, respectively. PE, GE, HE, TE, CE, NE, and ME represent proembryo,
globular embryo, heart embryo, torpedo embryo, cotyledon embryo, not fully mature embryo, and
mature embryo. The scale bar is shown in the lower right corner, (A-G) Scale bar = 1 cm; (a) Scale
bar = 250 um; (b—g) Scale bar = 500 pum.

On the basis of the paraffin analysis results, we divided the development into the
proembryo (PE), the globular embryo (GE), the heart embryo (HE), the torpedo embryo
(TE), the cotyledon embryo (CE), the not fully mature embryo (NE), and the mature embryo
(ME) periods. It takes a long time to progress from PE to GE, about 55 days, which is related
to the dramatic changes in the biological processes during this period. The process changes
of GE-HE-TE-CE were faster and only required 30 days. After the embryo matures, the size
of the embryo and seed is basically unchanged.
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2.3. Antioxidant Enzymes Activities during the Seed Embryo Development of P. ostii

Antioxidant enzymes have been used effectively as efficient biochemical markers
to study embryonic development [29]. To explore the antioxidant enzyme activities of
embryo development in P. ostii, we examined the changes of POD, SOD, APX, and CAT
activity during seed development, and the results showed that their enzyme activity was
particularly active in the early stage and then downregulated (Figure 3). POD activity was
high at 5 days, rapidly decreasing at 60 days and maintaining a relatively low level until
embryo maturity. The activity of SOD, CAT, and APX was the highest at 5 days, decreased
at 60 days, decreased to a lower level at 65 days, and maintained until embryo maturation.
As shown in Figure 2, the embryo was in the proembryo period 5 days after pollination,
and sperm cells and egg cells combined to form fertilized eggs and continued to divide to
complete morphogenesis. It can be seen that antioxidant enzyme activity is closely related
to embryo morphogenesis.
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Figure 3. The POD (A), SOD (B), CAT (C), and APX (D) enzyme activities during the development
of peony seed embryos. The letters above the bars indicates the significance among different samples.
Bars represent means + standard error (n = 3). p < 0.05, one-way ANOVA.

2.4. Global Analysis of the Time-Course Transcriptome Data in Embryo Development

To explore the molecular mechanism of embryo development of P. ostii, a total of
21 cDNA libraries constituting three biological repeats were constructed from seven stages
of developing seeds (Figure 2). In total, approximately 79.8-91.35 M clean reads were ob-
tained from the PE, GE, HE, TE, CE, NE, and ME samples. The average Q20 contents among
the 21 samples ranged from 96.85% to 97.28%. These data indicate that the sequencing
results were acceptable (Table S2).

The annotation results of GO and KOG showed that genes mined from the transcrip-
tome were involved in a variety of biological processes (Figure S1). The species with the
best match for each gene showed a 26.06% match with Vitis vinifera (Figure S2A). The
statistical results showed that a large number of genes were highly expressed in the PE
period, and various genes were up-regulated or down-regulated in each period of P. ostii
embryo development (Figure S2B; Table S3).
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2.5. Gene Expression during Different Embryo Development Stages

To assess the repeatability and similarity among our datasets, principal component
analysis (PCA) was performed. The results showed that the three replicates of each sample
were located near each other, except NE2, and NE2 was similar to the CE stage (Figure S3A).
The samples were similar from the beginning of embryo development to the early stage of
embryo maturity. The PE stage clustered independently, which was obviously different
from other developmental stages. NM was the mature stage of seed embryo development,
which was different from other stages.

Since embryo development in different stages showed distinct expression profiles, we
defined the genes with FPKM < 1 in all samples and FPKM > 3 in any of the PE samples
as embryo-specific genes, and so on. Using this filter condition, we obtained 3578 specific
expression unigenes and identified 2733 (76.3%), 88 (2.5%), 121 (3.4%), 38 (1.1%), 43 (1.2%),
173 (4.8%), and 381 (10.6%) specific expressing genes in PE, GE, HE, TE, CE, NE, and ME,
respectively (Figure S4B; Table S4). The PCA and specific genes analyses showed that the
PE stage of proembryo morphogenesis was unique.

We further analyzed the dynamic transcriptomes at seven different developmental
stages (Figure S4; Table S5). Those genes were functionally annotated by GO enrichment
analysis (Figure S4A). Cluster 12 contained genes that showed high expression at the PE
stage specifically and then declined rapidly. Genes in this cluster were predominantly
enriched in translation, nucleosome assembly, and photosynthesis based on GO analy-
sis (Figure S4B). Genes in cluster 7 were expressed mainly in the GE stage and enriched
in the regulation of translation and response to hormones (Figure S4C). Genes in clus-
ter 3 maintained a high expression level in the HE stage, which enriched the regulation
of cell shape, the oxylipin biosynthetic process, and the cellular amino acid metabolic
process (Figure S4D). Genes in cluster 4 were expressed mainly in the TE stage, which
enriched in cellular phosphate ion homeostasis and the glycerophospholipid catabolic
process (Figure S4E). Cluster 11 contained genes highly expressed in the CE stage, which
enriched in nutrient reservoir activity (Figure S4F). During the HE-TE-CE stage, the seeds
began to accumulate nutrients and expanded rapidly, and the pods were fuller than be-
fore. Cluster 8 contained genes highly expressed in the NE stage, which enriched in
autophagy and carbohydrate transport (Figure S4G). Cluster 6 contained genes that had a
high expression level in the ME stage, which enriched in regulation of the cell cycle and
gluconeogenesis (Figure S4H).

2.6. Spatial and Temporal Expression Pattern of Transcription Factors

Studies have shown that transcription factors (TFs) play a vital role in regulating gene
expression and participate in various important cellular processes, including hormone
response, enzyme activity, development, and environmental adaptability. In this study,
176 TFs had differential expression levels during seed development, which appeared to be
candidate genes for embryo-specific and mainly occurred in early embryo development
(Figure 4A; Table S6).

Further, 176 TFs specifically expressed during embryo development were analyzed.
129 TFs belonging to 62 families were expressed only in the PE stage, and 4, 6, 1, 7, and
29 TFs showed specificity during the embryo developmental stages in GE, HE, CE, NE,
and ME stages, respectively (Table S6). The significantly enriched TFs mainly belonged to
the MYB (20%), bHLH (9%), AP2-EREBP (8%), and ABISVPI (7%) families (Figure 4B).

GO analysis showed that these differentially expressed TFs were enriched in tran-
scription, DNA template, cell differentiation of cellular processes, regulation of the tran-
scription of biological regulation, and the response of salicylic acid and jasmonic acid to
stimuli (Figure 4C).
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Figure 4. Identification of differentially expressed transcription factors (TFs). (A) Heatmap expression
profile of the identified TFs. (B) Pie charts of the TFs during embryo development. (C) GO term
analysis of TFs.

2.7. Expression Profiles of Key TFs Associated with Somatic Embryogenesis during Embryo
Development of P. ostii

Many TFs play a vital role in the development of embryos. We identified many decisive
TFs that were annotated to somatic embryogenesis. These TFs showed different expression
patterns during embryo development (Table S7; Figure 5). AGL11, AGL15, CLV1, CLV2,
GN, SERK2, SERK3, WOX4, WOX8, WOX13, YUC3, YUC6, ABF2, and PYL4 were highly
expressed in the PE stage, and they might be involved in the induction and morphogenesis
of proembryo. PYLS, ABI3, ABI5, FUS3, WOX4, WOX8, YUC10, and YUC6 had high
expression during GE-HE-TE-CE and might involve in the division and differentiation
of embryos in P. ostii. ABI3, ABI5, BAK1, BBM1, BBM2, FUS3, PYL3, PYL4, PYLS, PYL11,
WOX5, WOXS8, and WOX11 had significant expression level in NE and ME stages, which
might involve in the maturation of P. ostii embryo.

2.8. Analysis of Antioxidant Enzyme-Related Genes in Embryo Development

Antioxidant enzymes have been used effectively as efficient biochemical markers to
study embryonic development. In total, 163 DEGs related to antioxidant enzymes were
detected (Table S8). Among these genes, 117 DEGs, including PER42, PER55, and PNC1
related to POD, were observed. More than half of the genes were highly expressed in the PE
stage; meanwhile, POD enzyme activity is highest in the early stages (Figure 6A). 28 DEGs,
including SODCC, SODA, FSD3, and SOD1 of SOD, were screened out, and almost all of
these genes were highly expressed in the PE stage, the SOD activity was consistent with
gene expression trend (Figure 6B). Nineteen DEGs, including APX1, APX3, APX4, and
APX6, related to APX were identified, and the expression trends of these genes were in
good agreement with the APX activity (Figure 6C). In short, the enzymatic activity and
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the expression of antioxidant enzyme-related genes both had high levels in the PE stage
of P. ostii.
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Figure 6. Heatmap analysis of antioxidant enzyme genes involved in embryonic develop-
ment. (A—C): Heatmap of the expression of genes related to POD, SOD and APX during peony
embryo development.

2.9. DEGs Analysis Involved in Plant Hormones Signal Transduction and Biosynthesis during
Embryo Development

Previous results indicated that plant hormones, especially IAA, GA, CTK and ABA,
played essential roles in the different embryo development stages. The expression pattern
of these plant hormones-related genes was determined in P. ostii (Figure 7; Table S9).
The proembryo is the period of morphological construction of the embryo and is crucial
for subsequent embryo formation. Therefore, we focused on the expression of various
hormone-related genes during this period (Figure 5; Table S9). In total, 61 unigenes related
to IAA signaling were observed; among them, 38 unigenes, including IAA8, IAA13, ARF7,
and SAUR50, had a high level of expression in the PE stage and were the key to proembryo
formation (Figure 7A,G). Twenty-seven DEGs related to ETH were observed, in which
13 unigenes, including ERF096, LSH6, LSH10, and PHO1, had high levels of expression
in the PE stage (Figure 7B,G). Thirty-two DEGs related to CTK were observed; among
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them, 14 unigenes, including APRR2, GLK1, CLK2, AHP4, ARR22, and SRS1, were highly
expressed in the PE stages (Figure 7C,G). Forthy-three DEGs related to BR were observed;
among them, 22 unigenes, including CYCD3-1, MAKP4, SPL3, SPL5, and SPL13A, were
highly expressed in the PE stage (Figure 7D,G). Thirty-four DEGs related to GA were
observed, and 23 unigenes, including GAI, PIF4, and SHRi, were highly expressed in
the PE stage (Figure 7E,G). The ABA genes mainly played a role in the mature period;
thus, 32 DEGs related to ABA were observed. Thirteen unigenes, including ABI5, PYLS,
and SRK2A, had high expression levels in the ME stage (Figure 7F,G). It can be seen that
various hormones played an important role in embryo development, especially IAA was
particularly prominent during the PE stage. This result provided a basis for the study of
gene regulatory networks in early embryo development in P. ostii.
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Figure 7. Heatmap expression profile of differentially expressed genes involved in plant hormone
signaling during each embryogenesis phase. Plant-related genes of IAA (A), ETH (B), CTK (C),
BR (D), GA (E), and ABA (F). (G), Pie charts of the DEGs involved in plant hormone signaling during
embryo development.
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2.10. Expression Patterns of Endosperm-Related Genes during Different Embryo
Development Stages

The tree peony is an emerging oil crop, and the synthesis of unsaturated fatty acids
is an important process of seed development. In this study, 328 unigenes were identified
that might involve in fatty acid and triacylglycerol biosynthesis (Table S10; Figure 8). Most
of these genes had high transcript levels in the GE, HE, and TE stages at 60-75 days; at
this time, the morphological observation results showed that the pod expanded rapidly
at this stage (Figure S1). SAD2, FAD7, FAD6, and FADS were highly expressed in the PE
stage. Among the 328 unigenes, 18 unigenes encoding oil-body oleosins showed high
expression levels, specifically in the mature period. Thirty-nine unigenes encoding fatty
acid desaturase were detected, including four unigenes for SAD, eight unigenes for oleate
desaturase (seven for FAD2 and one for FAD6), and 23 unigenes for omega-3 fatty acid
desaturase (one for FAD3, 18 for FAD7 and four for FADS). In particular, SAD2, FAD2,
FAD3, FAD?7, and FADS, which encoded fatty acid desaturase with high expression levels in
the fast oil accumulation stage, were identified in P. ostii.
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Figure 8. The heatmap of endosperm-related genes to lipid accumulation during P. ostii embryo
development. 1. The genes including ACP1, DGAT1, DGAT1—-1, DGAT1—-A, DGAT1-B, DGAT2,
DGAT2D, DGAT3, FAD2, FAD3, FAD6, FAD7, FAD7A—1, FADS, FATA, FATB, FATB1, GPAT, GPAT1,
GPAT4, GPAT5, GPAT6, GPAT7, GPAT8, GPDH, GPDHC1, PLC2, and PLC4; 2. The genes including
PLC6, PLD1, KAS, KAS1, KAS2, KAS3B, LACS1, LACS2, LACS4, LACS6, LACS7, LACS8, LACS9,
OBAP1A, OBAP1B, OBAP2A, OBAP2C, PLDBETA1, PLDDELTA, and PLDZETA1; 3. The genes in-
cluding PAP, PAP10, PAP11, PAP12, PAP13, PAP14, PAP15, PAP16, PAP18, PAP2, PAP20, PAP21, PAP22,
PAP23, PAP24, PAP26, PAP27, PAP2S, PAP29, PAP3, PAP5, PAP6, PAP7, PAPS, PDAT1, PLA2—ALPHA,
PLA2—1, and SAD.
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2.11. Prediction of the Protein-Protein Interaction Network in the Proembryo Development of
Tree Peony

The morphogenesis of early embryos was crucial for embryo development. This study
showed that numerous genes related to IAA, GA, BR, CTK, ABA, and enzyme were actively
expressed in the PE stage and participated in the early morphogenesis of the embryos in
P. ostii. We tried to construct a protein interaction network (PPI) with IAA as the center
and multiple hormones and enzyme activities involved in early embryo development
(Figure 9A). A more refined PPI for 19 key proteins including GLK1, GLK2, PIF3, PIF4,
AUX1, PIN1, LAX3, SHR, BAK1, SERK1, SERK2, IAA14, AGL15, ABI3, ABCB19, YUC3,
YUC6, ARF6, and FUS3 were predicted (Figure 9B). Six central node proteins, including
AUX1, PIN1, ARF6, LAX3, ABCB19, PIF3, and PIF4, were screened, which could be of great
value in early embryo development.
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Figure 9. Network interaction prediction map of some key genes involved in the early embryo
development of P. ostii. (A) The primary PPI network in the early embryo development of P. ostii;
(B) The core PPI network with 19 key proteins in the early embryo development of P. ostii.

2.12. The Validation of RNA-Seq Data by gRT-PCR

To verify the accuracy of the gene expression patterns, we selected several genes
for gRT-PCR validation. The results showed that the IAA-related genes of IAA3, IAA8
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and ABA-related ABF2 expressed at the highest level during the PE stage; they were
involved in the morphogenesis of the embryo. The IAA-associated ILR1-like4 gene was
highly expressed during embryonic differentiation. The gibberellin-associated GID1C
and ABA-associated PYL6 maintained high levels of expression during middle and late
embryonic development, and they may be involved in the maturation of the embryo. The
expression patterns determined by qRT-PCR were consistent with the overall trend results
of the transcriptome (Figure 10A,B), which indicates that the gene expression profiles of
the transcriptome were convincing.
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Figure 10. The validation of RNA-Seq data. (A) Heatmap expression profile of the embryo
development-related genes based on RNA-seq. (B) Validation of transcriptome data by qRT-PCR.
The letters above the bars indicates the significance among different samples. Bars represent
means + standard error (n = 3). p < 0.05, one-way ANOVA.

3. Discussion

It is of great significance to clarify the key period of embryo development and the
spatiotemporal expression profile of genes for embryonic development and even somatic
embryo development research. In this study, the morphological and anatomical obser-
vations of the process of embryo development from pollination to embryo maturation
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were detailed, and the gene expression profile of plant hormones, enzyme activity-related
genes, and transcription factors during embryo development was detected by RNA-seq
technology in P. ostii. Finally, we proposed a working model to illustrate the gene expres-
sion modules and possible molecular mechanisms underlying embryo development in
P. ostii (Figure 11).
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Figure 11. Working model of embryo development in P. ostii.

3.1. Growth and Development of P. ostii Seed

For species of sexually reproducing plants, embryonic development is a crucial re-
productive stage; the fertilized egg is a totipotent cell that establishes the main cell and
tissue lineages of adult plants through cell division and cell identity specification during
early embryogenesis [55]. The fertilized egg continued to divide into two cells, four cells,
eight cells, and 16 cells and became a globular embryo when it was divided into 32 cells.
Maturation stages include heart, torpedo, cotyledon, mature green, and dry seed [55].
Similar to Arabidopsis, the morphological transition state of peony embryo also experienced
proembryo, globular, heart, torpedo, cotyledon, and maturation, which was consistent with
the classical embryonic development process of dicotyledonous plants. The zygotic embryo
takes 40 days to maturity from fertilization and is a globular-heart embryo at 5 days post-
pollination in Capsicum chinense Jacq [56]. The zygotic embryo became mature at 28 days
after pollination, while it formed into a globular embryo at 5 days post-pollination in
Medicago truncatula [57]. We observed that the zygotic embryo took 130 days to mature, but
it was still a globular embryo at 60 days post-pollination; the morphological establishment
of the embryo takes a long time, while a large number of genes were significantly expressed
during this time (Figure S3B). This shows that embryo morphogenesis is an extraordinarily
complex process in P. ostii; it is recommended that researchers carry out more detailed
time-point gene expression studies in the future.

In this study, the development of seeds was divided into seven stages according to the
developmental state of the seed embryo in P. ostii. The researchers collected P. ostii seeds in
Yangzhou (China) and found that globular, heart, and torpedo embryos were formed 45,
55, and 60 days after pollination [58], while we collected materials in Zhengzhou (China)
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and found that globular, heart, and torpedo embryos formed 60, 65, and 75 days after
pollination, respectively; this difference may be related to the planting location of P. ostii and
the environmental temperature. However, it has been reported that 55-85 days is a period
of rapid fatty acid biosynthesis, which may provide sufficient nutrient reserves for the
transition from torpedo embryos to cotyledon embryos [46,59]. We found that at 60-75 days
(GE-HE-TE), related genes of FAD and SAD were highly expressed, and the pods rapidly
expanded (Figures 1 and 8). It can be seen that the endosperm developed rapidly during this
period, which provided sufficient nutritional support for the morphological transformation
of the embryos.

3.2. Genes Related to Plant Hormones and Enzymes Were Important for the Embryo Development
of Tree Peony

Auxin plays an important and decisive role in early embryonic morphogenesis [60].
In this study, we found that numerous auxin-related genes were highly expressed in
the early stage of P. ostii embryo development (Figure 7). A previous study showed
that auxin synthesized by YUC flavin monooxygenase was a key source of auxin for
embryogenesis, and YUCI1, YUC4, YUC10, and YUC11, involving in IAA biosynthesis
redundantly regulate embryogenesis and post-embryonic organ formation [24]. Our study
also found the expressions of IAA synthesis genes YUCC3, YUCC6, YUCCI0, and AAO2
were specifically up-regulated in the proembryo of P. ostii, and it can be seen that those
genes involved in the synthesis of IAA in early embryogenesis (Figure 7). AUX1, LAX1,
and LAX2, which regulate IAA transport, were highly expressed in the early embryo
development of Arabidopsis [22,61]. In P. mongolica, AUX1 and PIN3 were also highly
expressed in early embryogenesis [41]. Our study found LAX3 and LAX5 specifically highly
expressed and regulated IAA transport at the proembryo of P. ostii. In addition, SAUR20,
SAUR?1, SAUR50, SAUR67, GH3.5, GH3.10, GH3.11, ARF2A, ARF3, ARF5, and ARFb,
related to IAA signal transduction, actively expressed in the early embryo development of
P. ostii. In summary, the genes related to auxin synthesis, transport, and signal transduction,
jointly regulated auxin content and further regulated the formation and development of
proembryos in P. ostii.

3.3. The Molecular Study on Embryo Development Provided the Basis for Somatic Embryo Culture
Technology in Tree Peony

The somatic embryo regeneration pathway was an important part of the plant tissue
culture and rapid propagation system. The somatic embryogenesis pathway has problems
such as asynchronous differentiation and further development of somatic embryos, malfor-
mations, disturbed polarity, precocious germination, early loss of embryogenic potential,
and strong genotypic differences in regeneration efficiency [62]. The above-mentioned
problems also existed in the somatic embryonic development of tree peonies. Many studies
have shown that somatic embryos and zygotic embryos were similar in morphological
characteristics, even at the biochemical level, especially the similarity of gene expression
products and protein components [53,54,62]. Therefore, the molecular mechanism of seed
embryo development can provide a theoretical and technical basis for the development of
somatic embryos of tree peonies.

WOX homeodomain transcription factors regulate early embryo patterns. WOX8 was
involved in the regulation of zygote polarization in Arabidopsis [63], while WOX2, WOXS,
and WOX9 were important early pre-embryonic cell fate regulators [64,65]. VoWOX2 and
VoWOX9 were early expression markers of SE development in Vitis vinifera [66]. In P. ostii
SE, WRKY2, WOX9, and WOX11 were highly expressed in zygotic embryo explants [6].
In this study, WOX4, WOXS, and WOX13 were all highly expressed in PE, and they
promoted embryonic morphogenesis in the zygotic embryo. WOX4 and WOX8 also had
high expression levels in GE, HE, and TE, while WOX5 and WOX11 were highly expressed
in ME. SERK was reported to be positively regulated during zygotic embryogenesis and
somatic embryogenesis, and it was a key factor regulating embryogenesis [67-69]. In this
study, SERK2 and SERK3 genes were detected during zygotic embryo development and had
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high expression in the PE stage, while SERK2 was also highly expressed in the ME period.
SERK2 was involved in the morphogenesis of the early stage and the embryonic maturation
of the late stage in P. ostii. LEC1, ABI3, FUS3, and LEC2 are called LAFL factors, and they
are necessary and sufficient for embryo development and regulate various development
processes [10,11]. In this study, FUS3 was highly expressed during GE-HE-TE-CE, and
ABI3 had significant expression levels in CE and ME stages. However, we didn’t find LEC1
and LEC2 genes, which may play a specific role in earlier embryo development.

In this study, we predicted the complex network of protein interactions formed in
early embryos based on gene expression profiles (Figure 9). Studies in Arabidopsis showed
that ARF6 has protein interactions with IAA14, PIN1 has protein interactions with ABCB19,
SERK1 have protein interactions with AGL15, and BAK1 [70-72]. Genes, including SERK?2,
FUS3, and AGL15, played an important role in the development of somatic embryos in
tree peonies [6], but the interaction among these proteins has not been fully verified in tree
peonies. In order to better study somatic embryos, the PPI network could be used as the
basis for further exploration in tree peonies.

In summary, we successfully constructed the gene expression profile of seed develop-
ment and predicted the PPI of early embryo development. Therefore, the research on the
molecular regulation mechanism of P. ostii embryo development may solve the problem of
somatic embryo regeneration and provide a new approach and molecular biology theory
and technical support for tree peonies.

4. Materials and Methods
4.1. Plant Material

Seeds of P. ostii were collected from Henan Agricultural University, China. The plants
had been grown under the same environmental and cultivation conditions for 10 years.
When the male parent flower bud was in the loose bud stage, it was transported to the
laboratory. Sterile tweezers were used to remove the anthers and place them in a sterile
petri dish and then in a dry, ventilated location without direct sunlight for 24 h, after which
they were stored in a refrigerator at 4 °C for later use. When the female parent flower bud
was in the loose bud stage, tweezers were used to remove the stamens and place them in a
paper bag with sulfuric acid. Then, 2-3 days after emasculation, pollination was performed
when the mucus secreted by the stigma of the pistil was bright in color. Pollination was
carried out before 10 a.m. as follows: the dried pollen was dipped onto the stigma of the
female parent with a brush, and the paper bag was covered immediately after pollination.
When the stigma wilted after 10 days, and there was no possibility of fertilization, the bag
was removed to avoid hindering the growth of the fruit.

We observed the seed development process from pollination until maturation from
1 April to 15 August 2018. Pods were hand-collected at intervals of 5 days, from the
beginning of podding until full maturity, covering a total of 130 d. The pods are collected,
and removed the seed coat and endosperm as much as possible, retaining the embryonic
part. Paraffin-embedded samples were fixed in FAA (3.7% formaldehyde, 5% glacial acetic
acid and 50% ethanol) and stored at room temperature to observe the developmental stages.
For transcriptome and qRT-PCR sampling, the sample was quickly cooled in liquid nitrogen
and stored in a refrigerator at —80 °C for later use.

4.2. Histology Observation

According to the previously described method of Zhang et al.’s study [73], the fixed
samples were stained with safranin O for 12-15 h and dehydrated in a graded series of
ethanol (70%, 85%, 95% and 100%), followed by a xylene/ethanol series (xylene/ethanol
1:3, 1:1, 3:1 and 100% xylene). Xylene was replaced gradually with paraffin (Paraplast Plus,
Sigma, Chemical Co. St. Louis, MO, USA, P3683) at 60 °C for 2 days with four replacement
events of paraffin; then, 20-um sections were made using a microtome and were stained
with Fast Green Stain for 20 s. Safranin O stains the cell nucleus, while fast green stains the
cell wall.
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4.3. Measurement of Physiological Data

The pods were collected, and the seed coat was removed on days 5, 60, 65, 75, 90, 110,
and 130 of seed development, removing most of the endosperm as possible and retaining
the embryo part. The antioxidant enzyme activity of SOD, POD, APX, and CAT was
measured [74,75]. Three biological replicates were included for each treatment, and three
technical replicates were included for each biological replicate.

4.4. Total RNA Extraction and RNA-Seq Library Preparation

For transcriptome sampling, seven key stages of embryo development (5, 60, 65, 75,
90, 110 and 130) were determined based on the results of the paraffin section analysis. Total
RNA was extracted from the embryos using a Quick RNA extraction Kit (Huayueyang,
Beijing, China), and RNA was converted to cDNA using a kit with gDNA Clean (AG,
Changsha, China) according to the manufacturer’s instructions. Subsequently, total RNA
was qualified and quantified using a NanoDrop and Agilent 2100 bioanalyzer (Thermo
Fisher Scientific, Waltham, MA, USA).

Purified mRNA was obtained by enrichment of the oligo-dT magnetic bead method;
then reverse transcribed to synthesize cDNA. Data filtering using SOAPnukel.4.0 software
and alignment of clean reads to reference gene sequences by Trinity. Transcript abundance
was determined by FPKM values. Principal component analysis (PCA) was performed
using the prcomp function in R software (accessed on 14 March 2019) [76].

4.5. Transcriptome Analysis and Genes Expression Patterns Analysis

The unigenes were annotated by functional databases (NT (ftp://ftp.ncbi.nlm.nih.
gov/blast/db/, accessed on 14 March 2019), NR (ftp:/ /ftp.ncbi.nlm.nih.gov/blast/db/,
accessed on 14 March 2019), SwissProt (https://www.uniprot.org/, accessed on 14 March
2019), KEGG (http://www.genome.jp/kegg/, accessed on 14 March 2019), GO (http:
/ /geneontology.org/, accessed on 14 March 2019), Pfam (http:/ /pfam.xfam.org/, accessed
on 14 March 2019), and KOG (https://www.ncbi.nlm.nih.gov/COG/, accessed on 14
March 2019)).

GO enrichment analysis and KEGG enrichment analysis were performed using Phyper,
a function of R packages (accessed on 14 March 2019) [77]. The significance levels of terms
and pathways were corrected by the Q value with a rigorous threshold (Q value < 0.05).

DEGs were screened using Ilog 2 FC| > 1 and p < 0.05 by applying DEseq2. The
PE-specific genes with FPKM < 1 in all embryo samples and FPKM > 3 in any of the PE
samples, and so on.

4.6. The Prediction of Protein-Protein Interaction Network

The DEGs related to hormone, enzyme, and transcription factors that related to SE that
were highly expressed in the proembryo stage were screened to construct a comprehensive
primary interaction network, and these DEGs were compared with STRING v11.5 (https://
string-db.org/, accessed on 4 November 2022) [78] database to obtain the primary protein-
protein interaction network of them, Cytoscape3.3.0 software was used for visualization.
In addition, in order to explore the interaction network between the key genes of somatic
embryogenesis and the related genes of hormones and antioxidant enzymes in the early
embryonic period, 19 key proteins, including 14 proteins with strong interactions ability
from the primary PPI network and five key somatic embryogenesis proteins were screened
to construct a secondary protein-protein interaction network.

4.7. Validation of Transcriptome Data by gRT-PCR

The material for gqRT-PCR and transcriptome sequencing was consistent. Extraction
of total RNA and reverse transcription of cDNA were performed, and gene expression
levels were calculated using the 2~A2Ct method, with PsActin as the endogenous reference
gene [79]. The primer list is shown in Table S1.
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5. Conclusions

Tree peony integrates ornamental, medicinal, and oil values and has become an emerg-
ing oil crop. The detailed analysis of its embryo development process has important
economic and scientific value. This study found that the process from proembryo to heart
embryo lasted for 60 days, followed by rapid embryo division and differentiation, while the
pod became full. SAD2, FAD2, FAD3, FAD7, and FADS, which encoded fatty acid desaturase
had high expression levels in the fast oil accumulation stage in P. ostii. The antioxidant
enzyme activity of seeds was particularly active in the early stages but decreased and
remained stable in the later stages; the expression of enzyme-related genes also showed
a similar trend. Various related genes of IAA, GA, BR and ETH were specifically overex-
pressed during proembryo formation, while CTK and ABA may be the main regulators
of embryo morphogenesis and maturation. We predicted a protein-protein interaction
network of key proteins during early embryo development, which is centered on AUX1-
PIN1-ARF6-LAX3-ABCB19-PIF3-PIF4. This study provides new insights into the formation
of embryo development and even somatic embryo development of P. ostii.
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