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Abstract: Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor outcomes when
diagnosed at an advanced stage. Current curative treatments are most effective in early-stage HCC,
highlighting the importance of early diagnosis and intervention. However, existing diagnostic
methods, such as radiological imaging, alpha-fetoprotein (AFP) testing, and biopsy, have limitations
that hinder early diagnosis. AFP elevation is absent in a significant portion of tumors, and imaging
may have low sensitivity for smaller tumors or in the presence of cirrhosis. Additionally, as our
understanding of the molecular pathogenesis of HCC grows, there is an increasing need for molecular
information about the tumors. Biopsy, although informative, is invasive and may not always be
feasible depending on tumor location. In this context, liquid biopsy technology has emerged as a
promising approach for early diagnosis, enabling molecular characterization and genetic profiling
of tumors. This technique involves analyzing circulating tumor cells (CTCs), circulating tumor
DNA (ctDNA), or tumor-derived exosomes. CTCs are cancer cells shed from the primary tumor or
metastatic sites and circulate in the bloodstream. Their presence not only allows for early detection
but also provides insights into tumor metastasis and recurrence. By detecting CTCs in peripheral
blood, real-time tumor-related information at the DNA, RNA, and protein levels can be obtained.
This article provides an overview of CTCs and explores their clinical significance for early detection,
prognosis, treatment selection, and monitoring treatment response in HCC, citing relevant literature.
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1. Introduction

Hepatocellular carcinoma (HCC) ranks as the sixth most commonly diagnosed can-
cer globally. It is now the third leading cause of cancer-related mortality in the general
population and also the leading cause of mortality among patients with cirrhosis [1,2]. Its
increasing incidence is primarily attributed to the widespread hepatitis C epidemic and the
rising prevalence of nonalcoholic fatty liver disease (NAFLD) [3,4]. Other significant risk
factors for HCC include chronic liver disease or cirrhosis resulting from hepatitis B virus
infection, alcohol-related liver disease, and, less commonly, hemochromatosis, primary
biliary cholangitis, and α1-antitrypsin deficiency [5–7].

The definitive therapies are surgical resection and liver transplantation (LT), which
are only feasible for patients in the very early (0) and early (A) stages [8]. However,
percutaneous ablative therapies such as radiofrequency ablation (RFA) and microwave
ablation (MWA) have emerged as the preferred initial treatment options for these stages
due to their comparable survival benefits, less invasiveness, and lower costs compared to
surgical resection [9]. Despite advancements in screening and surveillance programs, a
significant majority of the cases (65–70%) are still diagnosed at the intermediate (stage B) or
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advanced (stage C) stages, making patients ineligible for curative therapies [10]. Conse-
quently, “non-curative” or “palliative” transarterial and systemic therapies are considered
and are associated with lower 5-year survival rates [11,12]. Therefore, early diagnosis is
paramount in improving survival rates.

Commonly used methods for surveillance include abdominal ultrasonography (US)
and/or elevated serum α-fetoprotein (AFP) levels (>20 ng/mL) [13]. However, AFP
is suboptimal for early detection, as it can be elevated in non-HCC conditions, and its
sensitivity for early-stage tumors is low (10–20%) [14,15]. About 40% of the HCCs do
not exhibit elevated AFP levels [16]. Combining US with AFP testing can improve the
sensitivity of early detection from 45% to 63% [17]. Although abdominal US is highly
accurate (sensitivity: 58–89%, specificity: >90%), its ability to detect small or early-stage
nodules is limited [17,18]. Advanced imaging techniques, such as computed tomography
(CT) or magnetic resonance imaging (MRI) with new contrast agents, have revolutionized
the diagnosis of early-stage HCC. However, their use for surveillance is not recommended
due to their high cost-effectiveness ratio and paucity of data [19,20].

Imaging criteria alone are sufficient for diagnosing HCC, without the need for biopsy
confirmation in cirrhotic patients, according to European and American guidelines [21,22].
However, despite the recent advancements in imaging, there are still limitations, particu-
larly in non-cirrhotic patients, those with very small nodules (<1 cm), and nodules that lack
the typical imaging features of HCC [18]. In such cases, a liver biopsy remains necessary
to confirm the diagnosis. Unfortunately, liver biopsy may not be feasible in a significant
proportion (48–55%) of indeterminate lesions due to their small size and location. The
false negative rate of liver biopsy can also range from 3% to 11% [23]. Furthermore, the
considerable spatial and temporal heterogeneity in HCC highlights the need for more
than just a single biopsy to fully comprehend the tumor biology beyond confirming the
diagnosis [24].

Therefore, there is an unmet need to discover reliable biomarkers to aid in risk strat-
ification, early detection, prognostication, and assessing response to therapy [21]. This
paved the way for the exploration of liquid biopsy as a potential tool for HCC management.
This technique involves detecting tumor-related products, such as circulating tumor cells
(CTCs), circulating tumor DNA (ctDNA), or tumor-derived exosomes, which are released
into the bloodstream or other bodily fluids, like saliva, urine, or cerebrospinal fluid [25,26].
Liquid biopsy offers potential solutions for early diagnosis, predicting prognosis, monitor-
ing disease progression, evaluating treatment outcomes, and detecting disease relapse [27].
Furthermore, it has demonstrated effectiveness in identifying mechanisms of resistance to
targeted therapies and may enable the guidance of personalized treatment and precision
medicine [28]. Compared to traditional biopsies, liquid biopsy is minimally invasive, rela-
tively faster, more cost-effective, and allows for deciphering tumor heterogeneity, which is
challenging to achieve with conventional biopsy methods [29].

2. Circulating Tumor Cells-Definition and Biology

CTCs were first observed in 1869 during an autopsy of a woman with metastatic breast
cancer [30]. These are shed from the primary or metastatic tumor into the bloodstream.
The mode of entry into the bloodstream can be via active or passive mechanisms (Figure 1).
Passive entry occurs when external forces, such as tumor growth, displace tumor cells [31].
Tumors often induce the formation of new blood vessels (angiogenesis) via the secretion of
vascular endothelial growth factor (VEGF) [32]. As the tumor grows and exerts outward
pressure, individual cancer cells or clusters of cells (micro emboli) can be forced through
these leaky vessels into the bloodstream [33]. Such cells are more likely to retain their
original phenotype and may express markers such as EpCAM (epithelial cell adhesion
molecule) [33].
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Figure 1. Mechanisms of CTC entry into the bloodstream. The two mechanisms involve EMT-me-
diated or non-EMT-mediated invasion. In EMT-mediated invasion, tumor cells undergo changes 
that facilitate the breakdown of the basement membrane (BM) and extracellular matrix (ECM). Non-
EMT-mediated invasion is centrosome amplification-triggered or passive infiltration from external 
forces. MMP: Matrix Metalloproteinases, EGF: Epidermal Growth Factor. (a) Cancer cell; (b) Cancer 
cell that had undergone EMT; (c,d) Single cancer cells that bind platelets (c) or macrophages (d); (e–
i) Cancer cells seen in a cluster with other cancer cells (e,f), platelets (g), macrophages (h) or stromal 
cells (i) [34]. 

Active entry involves various mechanisms, including epithelial-to-mesenchymal 
transition (EMT) and non-EMT-mediated translocation [35]. In EMT, tumor cells undergo 
a series of changes that enable them to detach from the primary tumor and acquire char-
acteristics of mesenchymal cells, which are more migratory and invasive [36]. Hypoxia 
and paracrine signaling from stromal cells can activate transcription factors (e.g., SNAIL, 
TWIST, and ZEB), microRNAs, and other regulatory elements, leading to EMT [37–39]. 
This results in a loss of tight and adherens junctions between cells, cytoskeletal changes, 
downregulation of epithelial markers (EpCAM and E-cadherin), and upregulation of mes-
enchymal markers. Upregulation of enzymes such as matrix-metalloproteinases (MMPs) 
and cathepsins facilitates tumor cell migration through the stroma and into the blood-
stream [40]. 

Non-EMT-mediated translocation occurs independent of EMT and involves the loss 
of cell-to-cell adhesion [33]. For example, centrosome amplification can disrupt cell–cell 
adhesion via increased Arp2/3-dependent actin polymerization, as demonstrated by 
Godinho et al. [41]. 

CTCs are predominantly epithelial at the tumor efferent vessels but may switch to a 
mesenchymal phenotype via Smad2 and β-catenin-mediated signaling pathways [42]. 
They disseminate through the portal venous and systemic circulations [43]. They undergo 
a dynamic process of aggregation and disaggregation as well as changes in shape and size 
in the bloodstream [44]. The lifespan is relatively short, lasting from 1 to 2.4 h [44]. 

Figure 1. Mechanisms of CTC entry into the bloodstream. The two mechanisms involve EMT-
mediated or non-EMT-mediated invasion. In EMT-mediated invasion, tumor cells undergo changes
that facilitate the breakdown of the basement membrane (BM) and extracellular matrix (ECM). Non-
EMT-mediated invasion is centrosome amplification-triggered or passive infiltration from external
forces. MMP: Matrix Metalloproteinases, EGF: Epidermal Growth Factor. (a) Cancer cell; (b) Cancer
cell that had undergone EMT; (c,d) Single cancer cells that bind platelets (c) or macrophages (d);
(e–i) Cancer cells seen in a cluster with other cancer cells (e,f), platelets (g), macrophages (h) or
stromal cells (i) [34].

Active entry involves various mechanisms, including epithelial-to-mesenchymal tran-
sition (EMT) and non-EMT-mediated translocation [35]. In EMT, tumor cells undergo a
series of changes that enable them to detach from the primary tumor and acquire char-
acteristics of mesenchymal cells, which are more migratory and invasive [36]. Hypoxia
and paracrine signaling from stromal cells can activate transcription factors (e.g., SNAIL,
TWIST, and ZEB), microRNAs, and other regulatory elements, leading to EMT [37–39].
This results in a loss of tight and adherens junctions between cells, cytoskeletal changes,
downregulation of epithelial markers (EpCAM and E-cadherin), and upregulation of mes-
enchymal markers. Upregulation of enzymes such as matrix-metalloproteinases (MMPs)
and cathepsins facilitates tumor cell migration through the stroma and into the blood-
stream [40].

Non-EMT-mediated translocation occurs independent of EMT and involves the loss
of cell-to-cell adhesion [33]. For example, centrosome amplification can disrupt cell–
cell adhesion via increased Arp2/3-dependent actin polymerization, as demonstrated
by Godinho et al. [41].

CTCs are predominantly epithelial at the tumor efferent vessels but may switch to
a mesenchymal phenotype via Smad2 and β-catenin-mediated signaling pathways [42].
They disseminate through the portal venous and systemic circulations [43]. They undergo a
dynamic process of aggregation and disaggregation as well as changes in shape and size in
the bloodstream [44]. The lifespan is relatively short, lasting from 1 to 2.4 h [44]. However,
some can persist for longer periods due to additional functional gains, such as resistance
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to anoikis and evasion of the immune system [35]. Some can also intravasate into distant
organs and establish a supportive environment in local tissues [45].

CTCs stand out from other liquid biopsy markers because they are a definitive indica-
tion of viable tumors, even when conventional imaging methods fail to detect them [46].
Their diagnostic value in early-stage HCC remains a topic of debate [47]. However, they
have prognostic value and can serve as markers of treatment response. High numbers of
CTCs are associated with poor clinicopathological characteristics, including tumor spread,
metastasis, and recurrence. Monitoring changes in CTC counts over time can provide
valuable insights into treatment efficacy and disease progression [48,49]. Furthermore,
CTCs offer a wealth of information about the molecular characteristics of tumors, including
abnormal protein expression, genomic mutations, and mRNA variations. This molecular
profiling can shed light on the mechanisms of tumorigenesis, metastasis, and drug resis-
tance, providing valuable insights for personalized treatment strategies [17]. The analysis of
molecular alterations through CTCs has the potential to become a non-invasive diagnostic
approach, especially for combined hepatocellular-cholangiocarcinoma (cHCC-CCA), and
may even replace the need for traditional tissue biopsies [50].

3. Techniques of Isolation

CTCs possess unique physicochemical properties, genotype profiles, and cell surface
antigens that distinguish them from normal cells. Thus, various immunoaffinity-based,
biophysics-based, and enrichment-free techniques can be employed for their isolation
(Table 1) [51].

Table 1. Techniques for the Isolation of Circulating Tumor Cells [51].

Immunoaffinity Biophysical Enrichment-Free Techniques

Immunomagnetic
based techniques Microfiltration based techniques ImageStream

CellSearch Isolation by Size of Tumor
cells (ISET)

Photoacoustic flow
cytometry (PAFC)

Magnetic-activated cell
separation (MACS) ScreenCell ELISPOT assay

Surface-enhanced Raman
scattering (SERS) CellSieve

Subtraction enrichment and
immunostaining-fluorescence

in situ hybridization
(SE-iFISH)

Flexible micro spring
array (FMSA)

CanPatrol (Microfiltration
followed RNA in situ

hybridization)

Microfluid based techniques Density gradient
centrifugation-based techniques

CTC-Chip Ficoll-Paque

NanoVelcro OncoQuick

RosetteSep CTC
Enrichment Cocktail

Immunomagnetic as well as
Microfluid based techniques

Dielectrophoresis based
techniques

CTC-iChip DEPArray

The immunoaffinity technique employs antibodies to target proteins with differential
expressions on cells [51]. It can be based on positive or negative enrichment strategies. Neg-
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ative enrichment involves targeting and removal of background cells, such as leukocytes,
to obtain a CTC-enriched sample [52]. For example, the CTC-iChip method depletes white
blood cells by targeting CD45, CD16, and CD66b, resulting in a purer CTC population [53].
Negative enrichment approaches offer the advantage of minimal manipulation of CTCs,
leading to improved viability, higher recovery rates, and reduced interference [54]. Positive
enrichment methods capture CTCs by targeting cell surface markers, such as EpCAM [51].

Immunoaffinity techniques can be further classified into magnetic-based and microfluidic-
based devices. The CellSearch assay, which utilizes ferrofluid nanoparticles functionalized
with an EpCAM antibody, is the most commonly used and the only FDA-approved im-
munomagnetic platform for CTC capture [55]. However, one limitation of EpCAM-based
capture is the loss of this surface marker in specific CTC subpopulations, such as those un-
dergoing EMT or representing poorly differentiated and stem-cell-like cells [34]. This has
prompted the search for new surface markers. For example, Li et al. utilized a synthetic
anti-asialoglycoprotein receptor (ASGPR) antibody for the immunomagnetic separation of
HCC CTCs [56]. Microfluidic-based devices rely on nano substrates that provide a larger
contact area and allow precise control of fluid flow [52,57]. One example is the CTC-Chip
developed by Nagrath et al., which consists of micro-posts functionalized with anti-EpCAM
antibodies [58]. Another technology, the CTC-iChip, combines microfluidic and immunomag-
netic methods and has demonstrated higher sensitivity for CTC detection compared to the
CellSearch assay [59].

Biophysical assays rely on the physical properties of CTCs, including their size, density,
electric charge, migratory capacity, and deformability [60]. Microfiltration methods such
as the CanPatrol utilize the size difference between CTCs and white blood cells [54,61].
The ISET (Isolation by Size of Tumor cells), a 2D microfiltration system, was employed
by Vona et al. to detect CTCs in HCC patients undergoing liver resection [62]. However,
these techniques may result in the loss of CTCs that are similar in size or smaller than
the pore diameter of the capturing device. Additionally, larger molecules and leukocytes
can be inadvertently captured. Despite these limitations, the ease of use, high-throughput
nature, and good recovery efficacy of microfiltration methods contribute to their continued
use [34]. Other biophysics-based platforms, such as those utilizing differential inertial
focusing, dielectrophoresis, or photoacoustic resonance effects, have also been developed,
although less commonly used [63,64].

Enrichment-free platforms isolate CTCs with a little manipulation of cells. Flow
cytometry, as demonstrated by Liu et al., is one such platform that utilizes the higher
karyoplasmic ratio (HKR) characteristic of CTCs [65]. However, these methods may have
lower CTC purity, and the presence of immune cells with similar characteristics may limit
its specificity [65]. Additionally, changes in CTC properties, such as EMT, can further
complicate the use of these platforms [54,66].

4. Clinical Application of Circulating Tumor Cells

As discussed earlier, CTCs have shown promise in various aspects of HCC man-
agement, including early diagnosis, prognostication, and monitoring treatment response
(Figure 2). These applications are further discussed below.

4.1. Circulating Tumor Cells for Early Detection

The use of CTCs as diagnostic markers for HCC has been the subject of several studies.
However, the results have been inconsistent, possibly due to the limited expression of
certain markers and the varying sensitivity of the isolation method used. For instance,
the widely used surface marker, EpCAM positivity, may be present in only 35% of CTCs.
Furthermore, there is a low expression in early-stage tumors and loss of expression during
EMT [67,68]. To address these issues, researchers have explored the use of liver or HCC-
specific markers [such as Glypican-3 (GPC3), ASGPR], mesenchymal markers (Vimentin,
Twist, and E-cadherin), and stem cell markers (such as EpCAM, CD133, CD44, CD90, or
ICAM-1) [46,69–71].
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Xu et al. developed a magnetic bead-based system to capture ASGPR+ CTCs, which
were then identified using anti-HepPar 1 or anti-CK antibodies via ICC. They discovered
CTCs in 81% of HCC patients but later modified the methodology using a new anti-ASGPR
monoclonal antibody, resulting in an even higher sensitivity of 89% [56,71]. Chu et al.
developed a GPC3-based immunomagnetic fluorescent system (C6/MMSN-GPC3), which
improved the capture efficiency by 83.3–350% and isolated CTCs from one early-stage HCC
patient, indicating its potential for early diagnosis [72]. Using assays that target multiple
surface markers may enhance the detection and isolation of CTCs. For instance, Zhu et al.
developed a microfluidic Synergetic-Chip with double antibodies (anti-ASGPR and anti-
EpCAM) and achieved a sensitivity of 97.8% and a specificity of 100% at ≥1.5 CTCs/2 mL
cutoff [73]. The NanoVelcro assay, which combines EpCAM, ASGPR, and GPC3 antibodies,
detected CTCs in 97.6% of patients [74].

The CanPatrolTM system, which employs a positive-enrichment filter-based method
and RNA-In Situ Hybridization (RNA-ISH), stratified CTCs into three types: epithelial,
mesenchymal, and mixed/hybrid phenotype [48]. Chen et al. used CanPatrol in a cohort
of 113 HCC patients and found the total CTC number to be a better diagnostic marker than
AFP for HCC detection [75]. Yin et al. also used the CanPatrol technique and found that
CTCs positive for Twist were present in 67.5% of HCC patients [76]. Furthermore, Bahsanny
et al., by measuring CTCs positive for CK19 and/or CD90 using flow cytometry, could
differentiate between chronic hepatitis and HCC with high sensitivity and specificity [77].
Bahn et al. used iChip and IF to isolate liver-specific circulating epithelial cells (CECs) and
developed a 25-gene classifier to distinguish between CLD and HCC samples with high
sensitivity and specificity [78].

To improve the sensitivity, CTCs can be combined with other biological markers. For
example, combining total CTCs and AFP was shown to have even higher sensitivity in
diagnosing HCC [75]. Liang et al. found that CTC counts, together with guanine nucleotide-
binding protein subunit beta-4 (GNB4) and Riplet gene methylation, can improve early
diagnosis with a sensitivity of 88.2% and specificity of 100% [79]. El-Mezayen et al. utilized
flow cytometry to identify CTCs (CK18 and CK19) and developed a novel score based on
five biochemical blood markers (CK18, CK19, AFP, Albumin, Platelets) to predict HCC
among HCV-high-risk patients [80]. Below is a summary of the studies highlighting the
utilization of CTCs for HCC detection (Table 2).
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Table 2. Diagnostic Role of Circulating Tumor Cells for Hepatocellular Carcinoma.

Scheme Region Year of Study Type of Study Patients with HCC Controls Sensitivity Technique of Isolation

Armakolas et al. [81] Greece 2022 Prospective study 89 28 cirrhotic patients Sensitivity: 46% qRT-PCR and IF (EPCAM, vimentin,
AFP and sMVP)

Bahsanny et al. [77] Egypt 2014 Prospective study 120
30 with chronic

hepatitis C,
33 healthy controls

CK19(+) CTCs: 87.1%/82.5%
Flow cytometry (CK19, CD133 and

CD90) and RT-PCRCD90(+) CTCs: 82.5%/89.6%

CD133(+) CTCs: 40.0%/6.3%

Bahn et al. [78] USA 2018 Prospective study 54
39 with chronic liver

disease,
10 healthy controls

81% (CTC ≥ 5/10 mL) CTC-iChip followed by IF staining
for glypican-3

Cheng et al. [75] China 2015–2017 Prospective study 113 57 with chronic
liver disease

Total CTCs ≥ 3: sensitivity 62%,
specificity 90%, Epithelial CTCs ≥ 1:

sensitivity: 45 %, specificity: 79%
CanPatrolMixed CTCs ≥ 2: sensitivity: 53.1%,

specificity: 82.5%, Mesenchymal
CTCs ≥ 1: sensitivity: 49.6%,

specificity: 87.7%

Chu et al. [72] China 2021 Prospective study 20 3 healthy volunteers Cell recovery increased from 42% to
80.3% compared with MACS® Beads

Glypican-3 (GPC3)-based
immunomagnetic fluorescent system

Fan et al. [82] China 2005–2009 Prospective study 82 - Sensitivity: 68.3% Multicolor flow cytometry—CSCs
(CD45 − CD90 + CD44+)

Fang et al. [83] China 2012–2013 Prospective study 42 - CTCs (≥1/5 mL): 74%/100% CellSearch

Guo et al. [84] China 2006 Prospective study 44 7 healthy controls
AFP mRNA (sensitivity, specificity,

diagnostic accuracy): 50%,
76.5%, 86.7%

RT-PCR followed by CD45 and
Ber-EP4 immunomagnetic beads

Guo et al. [85] China 2012–2013 Prospective study 299

71 healthy donors, 24
with benign tumor, and

25 with chronic
hepatitis B and/or

liver cirrhosis

EpCAM-mRNA (+) CTCs
(sensitivity, specificity):

42.6%/96.7%
CellSearch and qRT-PCR

Guo et al. [86] China 2012–2015 Multicenter
Clinical Trial 395

201 with chronic
hepatitis B and/or liver

cirrhosis, 100 with
benign liver lesions,
210 healthy controls

Sensitivity/specificity: 72.5%/95% Multimarker qRT-RNA
detection platform
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Table 2. Cont.

Scheme Region Year of Study Type of Study Patients with HCC Controls Sensitivity Technique of Isolation

Kalinch et al. [52] USA 2017 Prospective study 63
26 with chronic liver

disease,
34 healthy donors

Out of 15 patients who were tested
for both AFP and CTC scores, 33%
were detected by both assays, 27%
were detected by CTC score alone,

and 7% were detected by AFP alone.
Either the AFP or CTC score was

positive in 67%

CTC-iChip RNA-based digital
qRT-PCR

Kelley et al. [87] USA 2011–2012 Prospective study 20 10 with non-malignant
liver disease

1 CTC/7.5 mL

CellSearchAFP ≥ 400 ng/mL: sensitivity 70%,
AFP < 400 ng/mL:

Sensitivity: 10%

Li et al. [56] China 2013 Prospective study 27

34 with benign liver dis-
ease/hepatitis/cirrhosis

and 15 healthy
volunteers.

Sensitivity: 89% anti-ASGPR, CPS1 and P-CK
antibodies

Liang et al. [79] China 2020–2022 Prospective study 17
11 cases of HBV-related

decompensated
cirrhosis

70.6%/90.9% CTCBIOPSY device

Liu et al. [88] China 2013 Prospective study 60 -- High CD45-ICAM-1+ cell frequency
(>0.157%)–50% CD45-ICAM-1+

Schulze et al. [89] Germany 2013 Prospective study 59 19 with cirrhosis or
benign hepatic tumor Sensitivity: 30.5% CellSearch

Sun et al. [90] China 2010–2011 Prospective study 123 20 healthy volunteers CTC ≥ 2: 71%/80% CellSearch

Xu et al. [71] China 2009 Prospective study 85 37 with benign
liver diseases CTC positivity: 81% ASGPR (+)

Xue et al. [91] China 2014–2015 Prospective study 30 10 healthy volunteers Cellsearch-CTCs: 27%/100%;
iFISH-CTCs: 70%/100%

CellSearch and iFISH
(CK+/DAPI+/CD45−)

Yao et al. [92] China 2003–2004 Prospective study 49
18 healthy donors, 16
with cirrhosis, 20 with

hepatitis
Sensitivity: 72.1%

CD45 and Ber-EP4 immunomagnetic
beads followed by AFP
mRNA-nested RT-PCR
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Table 2. Cont.

Scheme Region Year of Study Type of Study Patients with HCC Controls Sensitivity Technique of Isolation

Yin et al. [76] China 2015–2017 Prospective study 80 10 healthy volunteers Sensitivity: 77.5% CanPatrol

Zhou et al. [93] China 2012 Prospective study 49 - CTC ≥ 2: 34.6%/100% EpCAM mRNA+ CTC detection and
qRT-PCR

Zhu et al. [73] China 2019 Prospective study 45 Six healthy donors and
six with benign tumors ≥1.5 CTCs/2 mL: 97.8%/100% Microfluidic synergetic-chip

(anti-ASGPR and anti-EpCAM)

AFP: Alpha-Fetoprotein; EPCAM: Epithelial Cellular Adhesion Molecule; RT-PCR: Reverse Transcription-Polymerase Chain Reaction; IF: Immunofluorescence; sMVP: Surface Major Vault
Protein; ASGPR: Asialoglycoprotein Receptor; CPS1: Carbamoyl Phosphate Synthetase 1; P-CK: Pan-cytokeratin; ICAM-1: Intercellular Adhesion Molecule 1; iFISH: Immunofluorescence
in Situ Hybridization.
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Although there have been advances in the utilization of CTCs for diagnosing HCC,
a recent meta-analysis of 20 studies found that CTCs have a high probability of error
rate, despite their high accuracy [94]. In the early stages of HCC, there are only low
levels of CTCs, and the survival rate for those that do enter the bloodstream is even
lower [44,95]. Additionally, it is challenging to isolate CTCs from a large number of
background cells [95]. The heterogeneity of phenotype and genotype further makes it
difficult to develop standardized detection methods [95]. Due to these limitations, CTCs
are currently not recommended for HCC surveillance [94].

4.2. Circulating Tumor Cells for Prognostication

The presence of CTCs in the peripheral blood is an important indicator of tumor
progression, metastasis, and a poor prognosis. Several studies have established a correla-
tion between CTC positivity and/or count with various aspects related to HCC, such as
tumor size, portal vein tumor thrombus, AFP levels, degree of differentiation, and disease
stage [74,96,97]. Additionally, the presence of CTCs is associated with reduced survival
rates. For example, Kelley et al. found that patients with CTCs ≥ 1/7.5 mL were more likely
to have AFP ≥ 400 ng/mL (p = 0.008) and vascular invasion [87]. Similarly, Sun et al. found
that patients with EpCAM-positive CTC counts ≥ 2 had a higher prevalence of satellite
foci, vascular invasion, poorly differentiated tumors, and elevated AFP [90]. Schulze et al.
demonstrated that EpCAM-positive CTC count (≥1) was associated with vascular invasion,
advanced Barcelona Clinic Liver Cancer (BCLC) stage, and elevated AFP [89]. In addition,
Liu et al. found that increased numbers of CD45(−) ICAM-1(+) CTCs correlated with
reduced disease-free survival (DFS) [88].

Lee et al. established an HCC-CTC mRNA scoring system and found that the HCC-
CTC risk score remained an independent predictor of survival after adjustment for MELD
(Model for End-Stage Liver Disease) stage, BCLC stage, and CTC count [98]. Chen et al.
demonstrated that the presence of clusters of CTCs with immune cells (CTC-WBC) in the
bloodstream is an independent predictor of DFS and overall survival (OS) [99].

The mesenchymal phenotype of CTCs (M-CTCs) is more closely associated with tumor
aggressiveness [100]. Yang et al. observed a significant association between the presence of
M-CTCs and tumor characteristics such as AFP levels ≥ 400 ng/mL, tumor size ≥ 5 cm,
multiple tumors, poorly differentiated tumors, incomplete tumor capsule, BCLC stage B or
C, microvascular invasion (MVI), and portal vein tumor thrombosis. M-CTC levels were
also found to be positively correlated with Ki67 and shorter OS [101]. Table 3 provides an
overview of studies investigating the prognostic role of CTCs.

Table 3. Prognostic Role of Circulating Tumor Cells for Hepatocellular Carcinoma.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

Chen et al. [99] China 2014–2020 Retrospective
analysis 136

CanPatrol,
filtration and

multiple
mRNA ISH

CTC-WBC cluster ≥ 1/5 mL was associated with
distant metastasis, tumor relapse and a shorter RFS

Kelly et al. [87] USA 2011–2012 Prospective
study 20 CellSearch CTCs ≥ 1 per 7.5 mL was associated with

AFP ≥ 400 ng/mL and vascular invasion

Liu et al. [88] China 2013 Prospective
study 60 CD45-ICAM-1+

High frequency of CD45-ICAM-1+ cells (≥0.157%)
was associated with a shorter DFS and OS. It is an

independent risk factor for poor outcomes, including
portal vein tumor thrombus and the presence

of ascites

Sun et al. [90] China 2010–2011 Prospective
study 123 CellSearch CTCs ≥ 2 per 7.5 mL was found to be significantly

associated with aggressive HCC phenotypes

Schulze et al. [89] Germany 2013 Prospective
study 59 CellSearch

The presence of CTCs was associated with shorter
OS advanced BCLC stage (stage C), microscopic

vascular invasion, and elevated AFP ≥ 400 ng/mL
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Table 3. Cont.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

Vona et al. [60] France 2004 Prospective
study 44 ISET method The presence of CTCs was associated with diffuse

tumors and portal tumor thrombosis.

Yang et al. [101] China 2014–2017 Prospective
study 105 CanPatrol

M-CTC positivity was associated with
AFP ≥ 400 ng/mL, tumor size ≥ 5 cm, the presence

of multiple tumors, poorly differentiated tumors,
incomplete tumor capsule, BCLC stage B or C,

microvascular invasion and portal vein
tumor thrombosis

ISH: In Situ Hybridization; RFS: Relapse-Free Survival; TNM: Tumor (T), Nodes (N), and Metastases (M);
OS: Overall Survival; DFS: Disease-Free Survival; BCLC: Barcelona Clinic Liver Cancer; ISET: Isolation by Size of
Tumor cells.

4.3. Circulating Tumor Cells in Setting of Treatment

The BCLC staging system is utilized to guide HCC therapy [102]. Treatment options
include curative and non-curative interventions. Curative therapies comprise surgical
liver resection (LR), orthotopic liver transplantation (OLT), and ablative methods such
as thermal ablation. Non-curative treatments include transarterial chemoembolization
(TACE), transarterial radioembolization (TARE), and systemic chemotherapy [22].

In early-stage HCC (BCLC stage 0/A), curative therapies are considered. Resection
is the preferred treatment for a single tumor < 5 cm without cirrhosis or with cirrhosis
but preserved liver function and no significant portal hypertension [103]. Ablation is a
cost-effective alternative for early multifocal HCC (two or three nodules smaller than 3 cm)
and single small HCCs (<2 cm) without perfectly preserved liver function [9]. OLT is the
treatment of choice for early-stage tumors that meet the Milan criteria (single tumor smaller
than 5 cm or less than three tumors, each smaller than 3 cm) in the presence of clinically
significant portal hypertension and/or decompensated cirrhosis [104].

For BCLC stage B HCC, locoregional TACE therapy is preferred, although TARE has
emerged as an alternative [22]. Patients who are ineligible for or experience progression
after TACE/TARE should be considered for systemic therapy [22]. For advanced HCC
with vascular invasion and/or extrahepatic metastasis (BCLC stage C), the combination
of atezolizumab and bevacizumab is now the standard first-line treatment for Child–
Pugh A cirrhosis or selected patients with Child–Pugh B cirrhosis [105]. Palliative care
is recommended for patients with advanced HCC and Child–Pugh C cirrhosis (BCLC
stage D) [106].

CTCs serve as valuable adjuncts to imaging for HCC staging [48]. Measuring CTC
counts before and/or after treatment can help predict therapeutic effectiveness and the
likelihood of tumor recurrence [107]. Additionally, CTCs can aid in identifying potential
resistance to systemic therapies, enabling adjustments in treatment approaches if neces-
sary [46].

4.3.1. In the Setting of Liver Resection

Evidence has shown minimal impact on the CTC count in the immediate postoperative
period following surgical resection [108,109]. The decrease in count becomes more apparent
within 7–10 days and can persist for up to a month [46]. An increase or persistently high
level may be associated with tumor recurrence, extrahepatic metastases, and shorter OS [46].

Several studies have also focused on the predictive value of preoperative CTCs in
the setting of curative LR. For instance, the presence of preoperative EpCAM-positive
CTCs has been identified as a predictor of recurrence and shorter relapse-free survival
(RFS) following LR [110]. Another study discovered that ≥2 preoperative EpCAM-positive
CTCs (per 7.5 mL) were associated with an increased likelihood of recurrence, particularly
in patients with low AFP levels [90]. Similarly, Hamaoka et al. found that the presence
of ≥5 GPC3-positive CTCs was associated with lower DFS and OS rates after LR [70].
Furthermore, Fan et al. found that ≥0.01% levels of cancer stem cells (CSCs) [CD45(−)
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CD90(+) CD44(+)] in preoperative blood samples can predict intrahepatic recurrence and
extrahepatic metastasis [82].

The predictive value of comparing changes in CTC counts pre- and post-surgery
for treatment response is still debated [86,111]. While Yu et al. found that patients with
increased postoperative CTC counts (from preoperative CTC < 2 to postoperative CTC ≥ 2)
had significantly shorter DFS and OS compared to patients with persistent CTC < 2 [109],
Xie et al. reported that changes in the CTC number before and after LR did not correlate
significantly with postoperative tumor recurrence or metastasis [112].

Interestingly, postoperative CTC counts may have a stronger predictive value than
preoperative counts. Zhou et al. found that persistently high numbers of postoperative
CTCs (≥5) were associated with an increased risk of early recurrence [108]. Similarly, Sun
et al. proposed that a postoperative CTC count of ≥3 could serve as a surrogate marker for
predicting extrahepatic metastasis and shorter OS [113].

The mesenchymal phenotype is considered a more robust prognostic indicator, given
its enhanced metastatic, invasive, and anti-apoptotic capabilities [112]. Their presence
before or after LR is shown to be associated with a higher recurrence rate and worse
prognosis [112]. Wang et al. found that having CTCs ≥ 4, mesenchymal CTCs ≥ 1, or
mixed CTCs ≥ 3 was positively associated with recurrence [114]. Another study by Qi et al.
demonstrated that a preoperative CTC count ≥ 16 and an M-CTC ≥ 2% were significantly
associated with early recurrence, multi-intrahepatic recurrence, and lung metastasis [100].
In a separate study by Qi et al., which included 136 HCC patients who underwent complete
resection (R0 resection), it was observed that patients with a low CTC count and negative
mesenchymal and epithelial/mesenchymal phenotypes had significantly higher tumor-free
survival (TFS) rates [115]. Refer to Table 4 for a summary of these studies.

Table 4. Role of Circulating Tumor Cells in the Setting of Liver Resection for Hepatocellular Carcinoma.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

Court et al. [74] USA 2015–2016 Prospective
study 61

NanoVelcro assay
(ASGPR,

Glypican-3,
EpCAM)

Vimentin (+) CTCs associated with OS, PFS and
portended faster time to recurrence

Fan et al. [82] China 2005–2009 Prospective
study 82

Multicolor flow
cytometry—CSCs
(CD45 − CD90 +

CD44+)

Circulating CSCs > 0.01% predicted:
intrahepatic recurrence, extrahepatic recurrence,

lower 2-year RFS and OS

Guo et al. [86] China 2012–2015 Multicenter
clinical trial 395

Multimarker
qRT-RNA
detection
platform

Persistently positive CTCs after resection were
associated with a higher recurrence rate. CTC

load/5 mL > 0.80 was associated with a
significantly shorter TTR

Ha et al. [111] South
Korea 2014–2016 Prospective

study 105 Tapered slit flter
(TSF) platform

Increased CTCs after surgery were associated
with a higher level of recurrence. Positive ∆CTC

was associated with shorter OS and higher
recurrence among patients with low AFP levels

and cirrhosis

Hamaoka et al. [70] Japan 2015–2016 Prospective
study 85 Glypican-3(+) CTCs ≥ 5 was an independent predictor of

mPVI and poor prognosis.

Ni et al. [116] China 2014–2017 Retrospective
study 97 CanPatrol,

filtration

CTC < 20 and NLR < 2.15 were associated with
longer OS. Patients were classified into

CTC-NLR (0), CTC-NLR (1), and into CTC-NLR
(2). CTC-NLR (0) was associated with the best
OS, whereas CTC-NLR (2) had the worst OS

Ogle et al. [117] UK 2012–2015 Prospective
study 69

IF (EpCAM, CK,
AFP and GPC3)

and size

CTC > 1 per 4 mL blood post treatment was
significantly associated with a poorer survival:
7.5 months for >1 CTC versus > 34 months for

patients with <1 CTC

Ou et al. [49] China 2013–2016 Prospective
study 165 CanPatrol

Mesenchymal CTCs were associated with high
levels of AFP, multiple tumors, advanced TNM
and BCLC stage, presence of embolus or micro
embolus and the shortest relapse-free survival

Qi et al. [115] China 2014–2017 Retrospective
study 136 CanPatrol

TFS was higher with low CTCs count and M-
and E/M-negative phenotypes. High
pre-resection CTC count and M- and

E/M-positivity associated with extrahepatic and
multi-intrahepatic recurrence.
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Table 4. Cont.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

Qi et al. [100] China 2014–2016 Prospective
trial 112 CanPatrol

Post operative CTC count ≥ 16 and
M-CTC ≥ 2% were associated with early

recurrence, multi-intrahepatic recurrence, and
lung metastasis. Postoperative CTC monitoring
showed an increase in CTC count and M-CTC %
before clinically detectable recurrence nodules

appeared.

Sun et al. [90] China 2010–2011 Prospective
study 123 CellSearch

Preoperative CTC (7.5 mL) of ≥2 was an
independent prognostic factor for tumor

recurrence

Sun et al. [42] China 2013–2015 Prospective
study 73 CellSearch

The presence of CTCs in the hepatic vein, along
with the presence of CTM, was an independent

prognostic factor for the development of
lung metastasis.

Von Felden et al. [110] Germany 2011–2015 Prospective
study 61 CellSearch CTC-positivity was associated with a higher risk

of recurrence and a shorter RFS

Wang et al. [114] China 2014–2016 Prospective
study 62 CanPatrol

Mesenchymal CTC positivity was associated
with ER and shortened postoperative

disease-free survival

Xie et al. [112] China 2016–2019 Retrospective
study 66 CanPatrol

Recurrence rates of postoperative interstitial
CTC-positive and CTC-negative groups: 1-year

recurrence: 21.7% vs. 10.8%
2-year recurrence: 37.5% vs. 10.8%
3-year recurrence: 55.5% vs. 10.8%,

1 -, 2- and 3-year recurrence rates of interstitial
CTC in the increasing group were 25.2%, 36.9%
and 66.9% 1-year recurrence: 21.7% vs. 10.8%

Ye et al. [118] China 2014–2017 Prospective
study 42 CanPatrol

Postoperative CTC counts (≥2 and ≥5) and
pre/postoperative change in CTC counts were

significantly associated with PFS

Yu et al. [109] China 2013–2015 Prospective
study 139 CellSearch

Increase in postoperative CTC counts (from
preoperative CTC < 2 to postoperative

CTC ≥ 2) is associated with shorter DFS and OS

Zhou et al. [93] China 2012 Prospective
study 49 EpCAM mRNA

(+)
Post-operative CTC ≥ 2.22 was an independent

prognostic biomarker for early recurrence

CTM: Circulating Tumor Microemboli; mPVI: macroscopic Portal Vein Invasion; TTR: Time-To-Recurrence;
∆CTC: Change in CTC count; DFS: Disease Free Survival; ER: Early Recurrence; TFS: Tumor-Free Survival;
NLR: Neutrophil-Lymphocyte Ratio; CSC: Cancer Stem Cells; M-CTC: Mesenchymal CTC; PFS: Progression-
Free Survival.

4.3.2. Determining Surgical Margins Prior to Liver Resection

Zhou et al. investigated the relationship between preoperative CTC status and the
optimal surgical margin size in HCC patients. They observed that surgical margins > 1 cm
were associated with reduced early recurrence rates in the CTC-positive group. Thus, a
more extensive surgical margin may be necessary for patients with detectable CTCs to
eradicate the disease and minimize the risk of early recurrence. Therefore, with the CTC
status before surgery, clinicians are guided about the extent of resection and may achieve
better oncological outcomes while preserving liver function [119].

4.3.3. In the Setting of Liver-Directed Therapies

Locoregional liver-directed therapies (LDTs) control the progression of the intrahepatic
disease and play a significant role in managing patients who are not surgical candidates.
LDTs can also serve as a bridge to LT by maintaining the patient’s eligibility for transplan-
tation. Such therapies include percutaneous ablations and transarterial catheter-directed
therapies [120].

MWA has been shown to reduce CTC numbers, whereas RFA and TACE may lead
to the release of CTCs [120]. Data have shown that patients who experienced recurrence
after MWA had higher levels of serum AFP, AFP-L3 (a specific form of AFP), and CTCs
post-treatment compared to their pre-ablation levels. The combination of these markers
was found to improve the prediction of recurrence and OS [119].

Wu et al. conducted a retrospective study involving 155 HCC patients who underwent
TACE treatment and found that elevated levels of CTCs before surgery were associated
with decreased OS, DFS, and 5-year survival rates—a decrease in CTC levels after treatment
was associated with positive treatment response [121]. In patients with unresectable HCC
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who received TACE, Shen et al. demonstrated that the number of EpCAM-positive CTCs
was an independent predictor of OS and progression-free survival (PFS) [122].

Thus, monitoring CTC levels before and after LDTs may have prognostic value and
provide insights into treatment response and patient outcomes (Table 5).

Table 5. Role of Circulating Tumor Cells in the Setting of Liver Directed Therapies for
Hepatocellular Carcinoma.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

Trans arterial Chemoembolization (TACE)

Chen et al. [123] China 2017–2018 Retrospective
analysis

107; treated
with TACE
and MWA

Cyttel method

Pretreatment CTC count and EMT phenotypes
were not predictive of short-term efficacy.

Comprehensive therapy reduced the total CTC
and mesenchymal CTC count

Guo et al. [85] China 2012–2013 Prospective
study

299 HCC;
157-curative

resection,
76-TACE, and

66-radio
therapy

EpCAM
(mRNA+)

Pretreatment CTC level showed prognostic
significance in patients treated with resection,

TACE, and radiotherapy. Preoperative
detectable EpCAM mRNA+ CTCs had

significantly shorter TTR and higher recurrence
rates. A decrease in CTC levels after treatment
reflected tumor response. Persistent positive
CTCs (preoperative and postoperative) was

associated with higher recurrence rates.

Shen et al. [122] China 2014–2015 Prospective
study 89 CellSearch Pretreatment CTC counts were independent

predictors of OS and PFS.

Wu et al. [121] China 2012–2014 Retrospective
analysis 155

Immunomagnetic
beads and FISH
(chromosome

8 amplification)

Positive preoperative CTCs were associated
with lower OS, DFS, and 5-year survival rates

Microwave ablation (MWA)

Zhou et al. [119] China 2014–2017 Prospective
study 105 CellSearch

Combined detection of serum AFP, AFP-L3,
CTCs improves the prediction of recurrence

after MWA

CTM: Circulating Tumor Microemboli; mPVI: macroscopic Portal Vein Invasion; TTR: Time-To-Recurrence; ∆CTC:
Change in CTC count; OS: Overall Survival; DFS: Disease Free Survival; ER: Early Recurrence; TFS: Tumor-
Free Survival; NLR: Neutrophil-Lymphocyte Ratio; CSC: Cancer Stem Cells; M-CTC: Mesenchymal CTC; PFS:
Progression-Free Survival.

4.3.4. In the Setting of Liver Transplantation

The Milan criteria are widely utilized to select candidates for LT in the setting of
HCC [104]. Various radiological factors and biomarkers have been identified to predict the
risk of HCC recurrence after LT; the role of CTCs in predicting such outcomes has been
explored in several studies (Table 6) [124].

Table 6. Role of Circulating Tumor Cells in the Setting of Liver Transplantation (LT) for
Hepatocellular Carcinoma.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

Chen et al. [125] China 2016–2019 Retrospective
study 50 Negative enrichment

(anti-CD45) and iFISH

CTCs positivity correlated with tumor size, AFP
level, tumor grade and recurrence.

CTC-negative vs. CTC-positive: 1-year DFS:
91.6% vs. 61.5% (p = 0.02), 1-year OS: 88.5% s.

91.7% (p = 0.75)

Court et al. [74] USA 2015–2016 Prospective
study 61

NanoVelcro assay
(ASGPR, Glypican-3,

EpCAM)

Vimentin (+) CTCs accurately discriminated
early-stage, LT eligible patients from locally
advanced/metastatic, LT ineligible patients

Wang et al. [126] China 2017–2019 Prospective
study 193

ChimeraX-i120,
anti-EpCAM,
anti-pan-CK

Post-operative CTC count ≥ 1 per 5 mL predicts
recurrence after LT

Xue et al. [91] China 2014–2015 Prospective
study 30 iFISH and CellSearch iFISH-CTCs < 5/7.5 mL associated with

increased RFS

OS: Overall Survival; DFS: Disease Free Survival; RFS: Relapse-Free Survival; iFISH: Immunofluorescence in Situ
Hybridization; ASGPR: Asialoglycoprotein Receptor; EpCAM: Epithelial Cell Adhesion Molecule.

Chen et al. studied 50 HCC patients and found that pretransplant CTC positivity was
associated with early recurrence and poorer prognosis after LT [125]. Similarly, Xue et al.
reported that high levels of iFISH-CTCs (>5/7.5 mL) before LT were associated with shorter
RFS [91].



Int. J. Mol. Sci. 2023, 24, 10644 15 of 25

The changes in CTC numbers can be erratic after an LT, potentially influenced by
immunosuppressive medications. Even a lower count of CTCs in the bloodstream can still
pose a risk of tumor recurrence in highly immunosuppressed patients [46]. Postoperative
CTC count of ≥1 per 5 mL of blood has been suggested as a useful biomarker to predict
post-transplantation recurrence, even in patients who do not meet the traditional Milan,
University of California San Francisco (UCSF), or Fudan criteria [126]. Serial CTC detec-
tion in the postoperative period may also assist in surveillance for HCC recurrence after
surgery [126].

Furthermore, CTCs can help determine eligibility for LT. A prospective study by
Court et al. involving 80 HCC patients demonstrated that the presence of vimentin-positive
CTCs indicates aggressive underlying disease and occult metastases. These CTCs accurately
differentiate early-stage, transplant-eligible patients from transplant-ineligible patients and
can predict OS and faster recurrence after curative therapy in early-stage HCC [74].

Thus, the assessment of CTCs before and after LT shows promise in predicting post-
transplant outcomes and recurrence risk and guiding patient selection for LT.

4.3.5. In the Setting of Systemic Therapy

Immunotherapy has transformed the treatment landscape for HCC, and liquid biopsy
utilizing CTCs has emerged as a potential method for identifying patients likely to benefit
from immunotherapy. This has the potential to not only personalize treatment decisions,
leading to improved patient outcomes but also reduce healthcare costs by avoiding ineffec-
tive treatments and minimizing the risk of adverse events in patients who are unlikely to
respond [127].

Nel et al. found variability in the distribution of CTC phenotypes among different
patient groups, which can be leveraged to anticipate the effectiveness of therapeutic in-
terventions and identify the most appropriate treatment options. [128]. Li et al. found
that a specific CTC phenotype, characterized by ≥40% pERK+/pAkt− CTCs, can serve
as a predictive factor for response to sorafenib, a tyrosine kinase inhibitor and was asso-
ciated with improved PFS [129]. Winograd et al. suggested that the presence of PD-L1+
CTCs may help guide the selection of patients likely to benefit from immune checkpoint
inhibitors [130]. Su et al. found that the presence of <2 PD-L1+ CTCs is a positive inde-
pendent prognostic factor for OS and is associated with a higher objective response rate
(ORR) in HCC patients receiving triple therapy [131]. Similarly, Zhang et al. demonstrated
the use of a ligand-receptor binding assay on a CTC chip, and Hsieh developed ex vivo
culture-based drug sensitivity tests to predict response to chemotherapy [132,133]. These
studies are summarized in Table 7.

Table 7. Role of Circulating Tumor Cells in the Setting of Systemic Therapies for Hepatocellular
Carcinoma.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

Li et al. [129] China 2017 Prospective
study 63

CD45- and
pAkt1/2/3 or

pERK1/2+

≥40% pERK+/pAkt− CTCs showed longer PFS
and response to Sorafenib treatment

Su et al. [131] China 2022 Prospective
study 47 CytoSorter

Patients with <2 PD-L1+ CTCs exhibited a
higher ORR and longer OS compared to those
with ≥2 PD-L1+ CTCs. PD-L1-positive CTCs
were an independent predictive biomarker for

OS in patients receiving triple therapy.

Winograd et al. [130] USA 2014–2017 Prospective
study 102 NanoVelcro Chip

PD-L1+ CTCs are primarily detected in
advanced-stage HCC and independently

predict OS when controlling for the MELD
score, AFP levels, and tumor stage.

PFS: Progression-Free Survival; OS: Overall Survival; ORR: Objective Response Rate; MELD: Model for End-Stage
Liver Disease.
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4.4. Clinical Trials Investigating the Use of Circulating Tumor Cells in the Context of
Hepatocellular Carcinoma

Various clinical trials (summarized in Table 8) are being conducted in countries,
including China, India, Italy, Denmark, and Taiwan, to investigate the role of CTCs in
HCC research. Objectives of these trials include evaluating the clinical significance of
CTCs in HCC screening and assessing their correlation with OS and DFS in patients
undergoing resection. Some aim to explore the association between CTC numbers and
tumor characteristics, such as size, number, and BCLC stage. Others focus on analyzing the
impact of operative therapies on CTC levels and patient outcomes [134–142].

Table 8. Ongoing Clinical Trials Involving Circulating Tumor Cells in Setting of
Hepatocellular Carcinoma.

Study Region Year of
Study Type of Study HCC Patient

Number
Technique of

Isolation Key Findings

NCT04688606 [134] China 2020–2021 Retrospective
study 300

CTCBIOPSY to
detect CTC number

(including
interventional
therapy, tumor
resection, or LT)
1–3 days before,

1 month after
surgery, and

6 months after
surgery

To evaluate the clinical significance of CTCs in
HCC screening and postoperative

recurrence monitoring

NCT05297955 [135] China 2013–2022 Retrospective
study 458

CellSearch to detect
CTC number in

patients undergoing
liver cancer surgery

during
perioperative

period

CTC levels before and after surgery were
significantly correlated with OS and DFS.

Preoperative CTC correlated with
disease-related clinical parameters, while
postoperative CTC was an independent

prognostic indicator

NCT03162198 [136] India 2017–2018 Cross sectional
study 53 Unclear

To detect CTC number in cirrhotic HCC patients
and to correlate CTC number with tumor size,

number, and BCLC stage

NCT04521491 [137] China 2020–
2023?

Randomized
Controlled

Study
184 Unclear

To analyze the effect of postoperative FOLFOX4
therapy after HCC resection based on folate

receptor-positive CTCs. Patients were
randomized to postoperative FOLFOX4 group

and no FOLFOX4 group. The time to recurrence,
the OS as well as the incidence of complications

after therapy was observed

NCT01930383 [138] Taiwan 2013–2015 Prospective
study 150 Microfluidic disk

platform

To explore the correlation between CTC number
and clinical characteristics; to compare the

patterns of molecular aberrations between CTC
and HCC tumor tissue; and to measure the
changes in CTCs numbers and molecular

aberrations before and after targeted therapy

NCT04800497 [139] Italy 2019–2024 Prospective
study 200

FACSymphony™
and subsequently

by EpCAM,
N-cadherin and

CD90

To evaluate the association between CTCs and
DFS/OS

NCT05242237 [140] China 2021–2024 Prospective
study 300

Microfluidic
Platform: Cellomics
CTC-100 cell sorter

To determine the relationship between the CTC
number and prognosis/treatment response,
detect mutation, copy number variation and
mutation load in CTC cells using single-cell

whole genome sequencing technology, and use
bioinformatics analysis of CTC heterogeneity

and its relationship with clinical outcome

NCT02973204 [141] Denmark 2016–2020 Prospective
study 30 Flow cytometry

Treatment response; To correlate between the
CTC number and survival in HCC patients

treated with Sorafenib

NCT02727673 [142] China 2012–2014
Prospective

Randomized
Trial

500 Unclear To investigate the relationship between CSCs
and postoperative recurrence/metastasis

ISH: In Situ Hybridization; RFS: Relapse-Free Survival; TNM: Tumor (T), Nodes (N), and Metastases (M);
OS: Overall Survival; DFS: Disease-Free Survival; BCLC: Barcelona Clinic Liver Cancer; ISET: Isolation by Size of
Tumor cells; CSCs: Cancer Stem Cells.

5. Challenges and Future Directions

In conclusion, the detection and characterization of CTCs hold great promise for the
diagnosis, treatment, and prognosis of HCC. The use of CTCs has the potential to enable
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personalized treatment strategies. However, several challenges must be addressed before
CTCs can be effectively implemented in clinical practice.

The isolation of CTCs is costly, labor-intensive, and time-consuming, requiring large
blood sample volumes and sensitive technologies to distinguish these rare cells from
millions of other blood cells [143,144]. The multiple steps involved in their isolation can
lead to cell apoptosis and reduce cell count, so techniques that improve cell viability and
minimize shearing pressures are needed [145]. Furthermore, isolation remains a significant
challenge due to their low abundance, even in patients with advanced metastatic disease.
Thus, employing CTCs may not be feasible for detecting early-stage HCC [145]. Inconsistent
results are also reported due to variations in assay methods and the heterogeneity of
CTCs [146]. Standardized protocols are essential to minimize these inconsistencies and
ensure reliable results [147]. To increase the effectiveness of testing, CTCs may be combined
with other liquid biopsy methods, such as ctDNA and exosomes [148]. Moreover, the
current data supporting the utility of CTCs in HCC management mainly comes from proof-
of-concept studies, often retrospective and requiring validation via multicenter, prospective
trials [149].

These limitations pose challenges in integrating CTC techniques into clinical practice.
Replacing existing tools utilized in HCC management with liquid biopsy biomarkers may
not be feasible at present. However, there is promising potential for their future integration,
which could lead to enhanced predictive capabilities and therapeutic decision-making
processes [149,150].
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Glossary

AFP alpha-fetoprotein
Anoikis programmed cell death upon detachment of cells from the

extracellular matrix and neighboring cells
ASGPR asialoglycoprotein receptor
BCLC Barcelona clinic liver cancer
C6/MMSN-GPC3 CTC capturing system that utilizes immunomagnetic

fluorescent nanodevices targeting GPC3
CECs circulating epithelial cells
cHCC-CCA combined hepatocellular-cholangiocarcinoma
CPS1 carbamoyl phosphate synthetase 1
CSCs cancer stem cells
CT computed tomography
CTCs circulating tumor cells - tumor cells that have detached from the

primary tumor and circulate in the bloodstream
CTC-WBC clusters composed of CTCs and white blood cells circulating in

the bloodstream
ctDNA circulating tumor DNA - tumor-derived fragmented DNA

originating from primary or metastatic cancer sites.
DFS disease-free survival
EHM extrahepatic metastasis
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epithelial-to-mesenchymal transition – a cellular process in
EMT which epithelial cells acquire mesenchymal phenotypes

and behavior
EpCAM epithelial cell adhesion molecule
ER early recurrence
FISH fluorescence in situ hybridization
FMSA flexible micro spring array
GNB4 guanine nucleotide-binding protein subunit beta-4
GPC3 glypican-3
HCC hepatocellular carcinoma
HKR higher karyoplasmic ratio
ICAM intercellular adhesion molecule
ISET isolation by size of tumor cells
ISH in situ hybridization
LDT liver-directed therapy

A laboratory test conducted on a blood, urine, or other body
Liquid biopsy fluid sample to detect cancer cells derived from a tumor or

small fragments of DNA, RNA, or other molecules released
by tumor cells

LR liver resection
LT liver transplantation
MACS magnetic-activated cell separation
M-CTCs mesenchymal phenotype of CTCs
MELD model for end-stage liver disease
MMP matrix-metalloproteinase
MVI microvascular invasion
MWA microwave ablation
MRI magnetic resonance imaging
mPVI macroscopic portal vein invasion
NAFLD nonalcoholic fatty liver disease
NLR neutrophil-lymphocyte ratio
OLT orthotopic liver transplantation
ORR objective response rate
OS overall survival
PAFC photoacoustic flow cytometry
P-CK pan-cytokeratin
PFS progression-free survival
R0 resection surgical margin microscopically-negative for

residual tumor
RFA radiofrequency ablation
RFS relapse-free survival
RT-PCR reverse transcription-polymerase chain reaction
SE-iFISH subtraction enrichment and immunostaining-fluorescence

in situ hybridization
SERS surface-enhanced Raman scattering
sMVP surface major vault protein
TACE transarterial chemoembolization
TARE transarterial radioembolization
TFS tumor-free survival
TTR time-to-recurrence
Tumor-derived exosomes small extracellular vesicles secreted by cancer cells
TNM tumor (T), nodes (N), and metastases
UCSF University of California San Francisco
US ultrasonography
VEGF vascular endothelial growth factor
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