
Citation: Chen, Z.; Li, H.; Xie, M.;

Zhao, F.; Han, S. Label-Free

Electrochemical Aptasensor for

Sensitive Detection of Malachite

Green Based on AuNPs/

MWCNTs@TiO2 Nanocomposites.

Int. J. Mol. Sci. 2023, 24, 10594.

https://doi.org/10.3390/

ijms241310594

Academic Editor: Anna Pasternak

Received: 22 May 2023

Revised: 20 June 2023

Accepted: 21 June 2023

Published: 24 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Label-Free Electrochemical Aptasensor for Sensitive Detection
of Malachite Green Based on AuNPs/MWCNTs@TiO2
Nanocomposites
Zanlin Chen 1, Haiming Li 1, Miaojia Xie 1, Fengguang Zhao 1,2,* and Shuangyan Han 1,*

1 Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological
Engineering, South China University of Technology, Guangzhou 510006, China;
202210186526@mail.scut.edu.cn (Z.C.); 202221049169@mail.scut.edu.cn (H.L.); mjxie1111@163.com (M.X.)

2 School of Light Industry and Engineering, South China University of Technology, Guangzhou 510006, China
* Correspondence: fgzhao@scut.edu.cn (F.Z.); syhan@scut.edu.cn (S.H.); Tel./Fax: +86-020-3938-0618 (S.H.)

Abstract: This study proposes a label-free aptamer biosensor for the sensitive detection of malachite
green(MG) using gold nanoparticles/multi-walled carbon nanotubes @ titanium dioxide(AuNPs/
MWCNTs@TiO2). The nanocomposite provides a large surface area and good electrical conductivity,
improving current transfer and acting as a platform for aptamer immobilization. The aptamer and the
complementary chain(cDNA) are paired by base complementary to form the recognition element and
fixed on the AuNPs by sulfhydryl group, which was modified on the cDNA. Since DNA is negatively
charged, the redox probe in the electrolyte is less exposed to the electrode surface under the repulsion
of the negative charge, resulting in a low-electrical signal level. When MG is present, the aptamer is
detached from the cDNA and binds to MG, the DNA on the electrode surface is reduced, and the
rejection of the redox probe is weakened, which leads to an enhanced electrical signal and enables
the detection of MG concentration by measuring the change in the electrical signal. Under the best
experimental conditions, the sensor demonstrates a good linear relationship for the detection of MG
from 0.01 to 1000 ng/mL, the limit of detection (LOD)is 8.68 pg/mL. This sensor is stable, specific,
and reproducible, allowing for the detection of various small-molecule pollutants by changing the
aptamer, providing an effective method for detecting small-molecule pollutants.

Keywords: aptamer; cyclic voltammetry; potassium hexacyanoferrate; sensitive detection; differential
pulse voltammetry

1. Introduction

Malachite green is a synthetic triphenylmethane dye that has bactericidal- and parasite-
killing properties. It is usually used by fishmongers to prevent fungal infections and extend
the life of fish with damaged scales [1]. Additionally, MG is a specific treatment for
Saprolegnia fungus, a fish and fish eggs pathogen, making it widely used in commercial
aquaculture [2]. Despite its benefits, studies have shown that MG is cytotoxic, mutagenic,
and carcinogenic; even trace amounts can cause damage to the human immune and re-
productive system [3,4]. Due to health concerns, MG has been prohibited from use in fish
farming, and the European Union has set a maximum limit of 2 µg kg−1. Therefore, the
rapid and accurate detection of MG in water is critical for formulating water-quality stan-
dards and assessing environmental risk levels to protect human health. Several methods
have been developed for detecting MG, including high-performance liquid chromatog-
raphy (HPLC) [5], mass spectrometry [6], HPLC-mass spectrometry [7], immunological
assays [8], surface-enhanced Raman scattering [9], and molecularly imprinted polymer [10].
While these methods are accurate and sensitive, they often require sophisticated instru-
ments and trained staff. As a result, developing a simple method for rapidly detecting MG
in non-laboratory conditions is necessary.

Int. J. Mol. Sci. 2023, 24, 10594. https://doi.org/10.3390/ijms241310594 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241310594
https://doi.org/10.3390/ijms241310594
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms241310594
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241310594?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 10594 2 of 13

Aptamer is an artificial, single-stranded oligomer probe of DNA and RNA composed
of 10–100 bases obtained by the systematic evolution of ligands by exponential enrichment
(SELEX) [11]. This can fold into distinct secondary structures and bind to target substances
such as bacteria, heavy metal ions, proteins, small molecules, etc. [12–14]. Due to the
high chemical stability and simple operation of aptamers, aptamer-based biosensors have
received much attention from researchers. Generally, the signal label is modified on the
aptamer, and the signal strength transmitted by the label changes according to the confor-
mation of the aptamer, thus converting the conformation change into visible information.
Based on the different types of visual signals, sensors can be divided into colorimetric
sensors, fluorescence sensors, and electrochemical sensors. The electrochemical aptamer
sensor (E-apt sensor) is an important type of aptamer sensor that combines the sensitivity of
electrochemical detection with the specificity of aptamer [15]. Over the years, E-apt sensors
have rapidly developed and been applied to detect a variety of substances, including
mercury ions [16], Bisphenol A [17], tumor cells [18], etc.

E-apt sensors possess a higher sensitivity, which allow them to detect targets at 10−6

nM levels. In addition to the binding activity of the aptamer, the high sensitivity of E-apt
sensor is due to the intelligent use of nanomaterials. Electroactive nanomaterials usu-
ally have high-electrical conductivity and a large specific surface area, allowing them to
transform and amplify signals [19]. The use of immobilized aptamers on the surface of
nanomaterials through intermolecular forces has been observed to significantly improve
the specificity and sensitivity of sensors [20]. Among carbon nanomaterials, MWCNTs
stand out due to their unique electrical transport properties, large specific surface area,
and excellent chemical, mechanical, and thermal stability. Pinar Kara et al. [21]. devel-
oped an aptamer-based MWCNT biosensor in 2010; MWCNTs were used as modifiers of
screen-printed carbon electro transducers (SPCEs), demonstrating improved characteristics
compared to the bare SPCEs. Samira Yazdanparast et al. [22] directed research toward
the application of a nanocomposite containing PGA and MWCNT to modify the surface
of glassy carbon electrode (GCE). They observed that a carbon nanotube-PGA composite
provides durability and activity with a large surface area, which can facilitate the electron-
transfer reaction. Since then, various sensors based on multi-walled carbon nanotubes have
been developed, like Multiwalled carbon nanotubes with graphene oxide [23], core-shell
nanofibers [24], conducted polymer poly-3,4 ethylenedioxythiophene [25], etc.

For the past few years, many semiconductor materials have been used to enhance
electrochemical sensing signals. Andrei Pligovka et al. [26,27] determined that random-
izing two-level 3D column-like nanofilms hexagonally through porous anodic alumina
can effectively enhance the current signal. TiO2 is a semiconductor material with strong
adhesion and stable properties. Its combination with MWCNTs can enhance the electro-
chemical performance of MWCNTs and demonstrate a high sensitivity to target substances
in detection [28]. Meanwhile, nanomaterial AuNPs have also been proven to effectively
enhance the electrochemical signal and further improve the detection ability of the sensor.
Moreover, AuNPs can firmly bind to the thiol aptamer through the Au–S bond and play
the role of fixing the aptamer [29]. Three aptamers with excellent performance in detecting
MG were identified in our previous work. They constructed a fluorescence sensor based
on those aptamers, with the LOD being 1.82 ng/mL [30]. However, this sensor requires
the fluorescent modification of the aptamer, which had a relatively low recovery rate for
samples with lower concentrations.

To address these limitations and improve the sensitivity, convenience, and preci-
sion of MG detection, an E-apt sensor based on a gold electrode (AuE) modified by
AuNPs/MWCNTs@TiO2 was constructed. The MWCNTs@TiO2 exhibited good charge-
transfer properties, and the AuNPs with strong conductivity are deposited on the MWCNTs
to obtain better electrochemical performance. This composite nanomaterial can significantly
improve the conductivity of the sensor, which is also the key factor for the sensor to detect
MG with high sensitivity. The aptamer forms a recognition element with its cDNA, and
the sulfhydryl group on the cDNA forms an Au–S bond with theAuNPs, which is fixed
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on the electrode surface. Since the DNA itself is negatively charged, it repels the redox
probes, resulting in fewer redox probes contact with the electrode surface, resulting in a
decrease in the current signal. When MG was added, the aptamer binds to MG, changes its
conformation, and falls off cDNA, allowing for more redox probes to reach the electrode
surface. Resulting in a significant increase in the current signal. The rise of the current
has an obvious linear relationship with the concentration of MG, so the concentration of
MG can be judged according to the rise degree of the current. The specific sensor works as
shown in Scheme 1. The sensor has a low detection limit and a large detection range, and
the nanomaterial used to modify the electrode is simple to produce. Therefore, this sensor
has great potential for detecting malachite green in aquatic products. The current signal
changes on the gold electrode were detected by the differential pulse voltammetry (DPV)
method to determine the presence of MG.
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Scheme 1. Schematic diagram of E-apt sensor assembly process and detection principle.

2. Results
2.1. The Characterization of MWCNTs@TiO2

TiO2, MWCNTs and MWCNTs@TiO2 were dissolved in anhydrous ethanol, respec-
tively (Figure 1A). The above solutions were titrated on the surface of the gold electrode
with 2 µL separately and dried at room temperature for 30 min. The morphology and struc-
ture of the prepared nanomaterials were characterized by scanning electron microscopy
(SEM). Figure 1B shows the microscopic morphology of the bare gold electrode under
SEM. The plotting scale of observed TiO2 and MWCNTs was adjusted to 100 nm. TiO2
could be observed to be stacked together in a uniform spherical shape (Figure 1C). Ac-
cording to Figure 1D, it was observed that MWCNTs showed tubular structures and were
intertwined with each other, indicating that the microstructure of MWCNTs and TiO2 was
completely different. As shown in Figure 1E, plenty of spheres attached to tubes of carbon
nanoparticles can be observed by enlarging the scale to 500 nm. This indicates that TiO2
was successfully mixed with MWCNTs to form MWCNTs@TiO2. The EDS scanning region
of the MWCNTs@TiO2 and the scanning results of titanium (Ti), carbon (C), and oxygen(O)
elements were displayed in Figure 1F. All of the elements were evenly distributed on the
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surface, without an obvious element enrichment phenomenon. Oxygen atoms accounted
for the highest proportion of 42.23% in the mixture, carbon atoms accounted for a slightly
lower proportion of 38.37%, and titanium atoms accounted for less than 20%. These results
indicate that MWCNTs@TiO2 nanomaterials were successfully fabricated.
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2.2. The Characterization of E-Apt Sensor Fabrication

Cyclic voltammetry (CV) is a conventional electrochemical method for detecting
changes in current signal that is easy to operate and analyze. As shown in Figure 2, a pair
of good reversible redox peaks can be observed in the unmodified gold electrode (Curve A),
demonstrating that [Fe (CN)6]3−/4− has good redox properties in this system. Subsequently
applying MWCNTs@TiO2 drops to the surface of the gold electrode (Curve B). Since the
composite material can enhance the electrical conduction efficiency, the modified electrode
was significantly enhanced compared with the bare gold electrode. After the addition
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of AuNPs, the peak current was further increased due to the high electrical conductivity
of AuNPs. The thiolate cDNA1 and cDNA2 were firmly bound to AuNPs via an Au–S
bond [31], and aptamers were immobilized to cDNA via base complementary pairing,
resulting in the formation of a dense molecular layer. The molecular layer forms a barrier
on the surface of the modified electrode, preventing the [Fe (CN)6]3−/4− in the electrolyte
from reaching the electrode surface, resulting in a significant decrease in the current (Curve
C). Then, 6-mercapto-1-hexanol (MCH) was added to block non-specific binding sites and
prevent non-specific binding of MG on the surface of the modified electrode (Curve D).
This results in further reduction of the active sites on the electrode surface that can contact
the redox probe, and a further decline in the current signal Aptamer was detached from
cDNAs and formed a complex with MG in the presence of MG. The barrier blocking [Fe
(CN)6]3−/4− was broken, and [Fe (CN)6]3−/4− could freely contact the electrode surface,
while the current intensity increased significantly (Curve E). In addition, the degree of
increase was positively correlated with MG concentration. Use the DPV method to verify
the current changes in the above experimental steps. The current reaction was simply
divided into three stages: “increase–decrease–increase.” The trend was exactly parallel
to what CV had observed (Figure 3). Especially in the current rebound stage after the
appearance of malachite green, the results of DPV detection also show that the rising
current intensity is proportional to the malachite green concentration. As a result, an E-apt
sensor for sensitive detection of MG was successfully established.
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2.3. Optimization of Experimental Conditions

This chapter explores the appropriate conditions to prepare aptamer sensors to achieve
optimal detection results. All experiments were carried out at room temperature with K3[Fe
(CN)6] electrolyte, and CHI660E was used to detect changes in electrical signals. The
fixation of the aptamer is a key step to affect the detection effect of the E-apt sensor. This is
because the nature of the sensor is to express the conformational change of the aptamer with
visible information, so the fixation of the aptamer as a recognition element is particularly
important. The fixation effect is determined by the vitality, concentration, and incubation
time of aptamer. Aptamers are essentially nucleic acid molecules, and the pH of the
environment has a great influence on their activity. To obtain high-activity aptamers, the
pH of the buffer solution is very important. In addition to vitality, concentration also plays
an important role. When the concentration is too low, the number of aptamers fixed on
the electrode surface is insufficient to bind with trace MG, and the detection effect is poor.
When the concentration is too high, even if MG binds to the aptamer, there will still be
a large amount of double-stranded structure on the electrode surface, unable to react to
[Fe (CN)6]3−/4− probe and detect trace MG. Except for concentration, incubation time is
a key factor. If the incubation time is too short, the aptamer cannot be well-combined on
the electrode surface. If it is too long, the assembly efficiency will be affected. The same
principle applies to the optimization of incubation time for MCH.

The optimal vitality, concentration, and incubation time of aptamer were investigated.
The influence of MCH incubation time was also investigated. The difference between
the current after incubation (IA) and the current before incubation (IB) was used as a
determiner (∆I, IB

− IA). As shown in Figure 4A, with the increase of pH, ∆I rose rapidly
originally, reached a peak when pH reached 7.5, and then began declining on a smaller
scale. This indicates that the aptamer activity is highest in the buffer with a pH of 7.5.
DNA repels [Fe (CN)6]3−/4−-probes because it contains negatively charged phosphoric
acid residues. As a result, ∆I increases with the increase of aptamer concentration to
reach the maximum at 2 µM and does not change with the concentration. Furthermore,
the 2-µM aptamer can completely cover the electrode surface, and there is no need to
incubate with higher concentrations of aptamers (Figure 4B). Therefore, 2 µM was selected
as the optimal aptamer incubation concentration, and a time of 10 min was selected as
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the time optimization interval in the optimization process. As shown in Figure 4C, the
current change value is small when the incubation time is only 10 min, but when the
incubation time reaches 30 min or longer, the current change reaches its maximum and
remains constant. As a result, the best incubation time was determined to be 30 min. The
optimization of MCH incubation time was in the same situation (Figure 4D).
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2.4. Analytical Performance of E-Apt Sensor
2.4.1. Linear Response and LOD for MG

The detection of MG was performed in optimized experimental conditions following
the fabrication of the E-apt sensor. Then, 2 µL of different concentrations of MG (0, 0.01,
0.1, 1, 10, 100, 1000 and 10,000 ng/mL) were titrated on the surface of the electrode and
detected electrical signal after natural drying. The high affinity of MG and aptamer coupled
them into a complex, destroying the double-stranded structure of aptamer and cDNA.
The redox probe could make contact with the electrode; as a result, the current response
increased. It was evident from Figure 5A that the degree of current increase is proportional
to the concentration of MG, and that the relationship is linear in the concentration range of
0.01 ng/mL to 1 µg/mL. In addition, LOD is 8.68 pg/mL. The linear regression equation
was calculated as y = 51.0585 + 3.8892x, R2 = 0.98313 (Figure 5B). In addition, the perfor-
mance of the proposed sensor is compared to other MG sensors published in recent years
(Table 1). The results demonstrate that the proposed sensor has a broad detection range
and a good limit of detection.
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Table 1. Comparison with other MG detection methods.

Method Linear Range
(ng/mL) LOD (ng/mL) Real Sample Ref.

Colorimetric 21.9–868.7 16.7 Fishery water [32]
Colorimetric 7.3–109.5 5.82 Fish [12]
Fluorescence 4–1.2 × 103 1.82 Fishery water [30]
Fluorescence 10–50 6.205 River water [33]
Fluorescence 7.3–365 0.67 Fish [34]

ECL 3.7 × 10−2–37 0.012 Fish [35]
DPV 3.65–51.1 0.803 Fish [36]

DPV 0.292–146 0.049 Tap water and
serum [37]

DPV 3.65–3.65 × 103 1.233 Fish [38]
DPV 0.1–1 × 104 0.016 Fishery water [39]
DPV 0.01–1 × 103 0.008 Fishery water This work

2.4.2. Specificity, Reproducibility, and Stability of Proposed E-Apt Sensor

In the process of preparing an accurate and reliable E-apt sensor, the importance of
specificity is the same as sensitivity. The specificity of the sensor is detected by adding
different kinds of small molecular agricultural and veterinary drugs under the same condi-
tion. Acephate (ACE), tricyclazole (TRI), thiamethoxam (THI), and glyphosate (GLY) were
compared with MG by 50-fold concentrations, respectively. As shown in Figure 6A, even at
a 50-fold concentration (5 µg/mL), the sensor’s response to other drugs was only about
half that of MG, which currently contrasts with blank. This phenomenon demonstrates that
the sensor has high specificity.



Int. J. Mol. Sci. 2023, 24, 10594 9 of 13

Int. J. Mol. Sci. 2023, 24, 10594 10 of 15 
 

 

samples from different sources, and whether they will affect the detection effect of the 
sensor, are verified. The results show that the sensor can still possess good stability in 
different water samples (Figure 6D). This indicates that the sensor has a high specificity, 
reproducibility, and stability. The recovery rate of the E-apt sensor for MG at different 
concentrations in the two water samples was listed in Table 2. In Fishery water, the 
recoveries were 94.8–102.4%, with RSD less than 1.79%. In tap water, the recovery rate was 
92.8–100.7%, and the RSD value was no more than 3.19%. Even the concentration of MG 
was only 0.01 ng/mL; the sensor had a recovery rate of more than 90%. The appearance of 
E-apt sensor was shown in Figure 7. 

  

  

Figure 6. E-apt sensor performance characterization (A). Specificity of the E-apt sensor to MG and 
other substances with fifty-fold concentration; (B) Reproducibility of the E-apt sensor with different 
AuE; (C) Stability of the E-apt sensor with different storage days; (D) Stability of the E-apt sensor 
with different test sample. 

 
Figure 7. Appearance of E-apt sensor (A). Gold electrodes modified with nanomaterials; (B). The 
appearance of gold electrodes. 

Figure 6. E-apt sensor performance characterization (A). Specificity of the E-apt sensor to MG and
other substances with fifty-fold concentration; (B) Reproducibility of the E-apt sensor with different
AuE; (C) Stability of the E-apt sensor with different storage days; (D) Stability of the E-apt sensor
with different test sample.

In addition to specificity, reproducibility is also a very important indicator for evaluat-
ing whether the sensor is stable and reliable. The experiment was repeated three times on
four different AuEs. The largest RSD value of the three time experiments was only 2.2%
(Figure 6B). Meanwhile, the prepared sensor was stored at 4 ◦C for 1, 3, 5, and 7 days,
respectively, to test its stability. The detection ability of MG was compared to that of the
newly prepared sensor, as shown in Figure 6C. When the storage time is less than five days,
the recovery rate for MG remains stable at about 97%. The recovery rate of the sensors
stored for seven days could also reach 90%. In addition, the experimental water samples
from different sources, and whether they will affect the detection effect of the sensor, are
verified. The results show that the sensor can still possess good stability in different water
samples (Figure 6D). This indicates that the sensor has a high specificity, reproducibility,
and stability. The recovery rate of the E-apt sensor for MG at different concentrations in the
two water samples was listed in Table 2. In Fishery water, the recoveries were 94.8–102.4%,
with RSD less than 1.79%. In tap water, the recovery rate was 92.8–100.7%, and the RSD
value was no more than 3.19%. Even the concentration of MG was only 0.01 ng/mL; the
sensor had a recovery rate of more than 90%. The appearance of E-apt sensor was shown
in Figure 7.



Int. J. Mol. Sci. 2023, 24, 10594 10 of 13

Table 2. Recovery of the proposed E-apt sensor in real samples.

Sample Addition of MG
(ng/mL)

Detection of
MG (ng/mL)

Recovery Rate
(%) RSD (%) (n = 3)

Fishery water 0 0 - -
0.01 9.48 × 10−3 94.8% 1.73

1 0.971 97.1% 1.78
100 102.4 102.4% 1.04

Tap water 0 0 - -
0.01 9.28 × 10−3 92.8% 3.19

1 1.007 100.7% 2.74
100 99.90 99.9% 1.14
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3. Discussion

Malachite green is prohibited for use in fish feed due to its toxicity and oncogenicity.
However, illegal traders still use it as a drug to treat saprolegniasis, posing serious threats
to water environment quality and consumer safety. In this study, we developed a label-free
E-apt sensor based on AuNPs/MWCNTs@TiO2 for ultrasensitive detection of MG in fishery
water. The sensor is simple to manufacture, easy to operate, and has excellent sensitivity,
specificity, stability, and reproducibility. It provides an effective method for the detection of
other small molecular pollutants by changing the aptamer to achieve the efficient detection
of the corresponding target. Although this sensor shows promising prospects for wide
applications in food safety and environmental monitoring, the detection equipment is
inconvenient to carry around, making on-site monitoring challenging. Therefore, future
research should focus on the development of miniaturized, intelligent, detection devices
that can be combined with mobile phones and other electronic devices to achieve portable,
on-site detection.

4. Materials and Methods

Materials and chemicals: Malachite green oxalate (MG, 98%, CAS: 2437-29-8) was
purchased from the China National Institute of Metrology Co., Ltd. (Beijing, China).
6-mercapto-1-hexanol (MCH, 98%, CAS: 1633-78-9), multi-walled carbon nanotubes (MWC-
NTs, ≥98%, CAS: 308068-56-6), titanium dioxide (TiO2, 99%, CAS: 13463-67-7), Gold (III)
chloride hydrate (Au ≥ 47.5%, CAS: 27988-77-8) was obtained from Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). Potassium hexacyanoferrate (III) (K3[Fe (CN)6],
99.5%, CAS: 13746-66-2) was purchased from Macklin Biochemical Co., Ltd. (Shanghai,
China). Potassium chloride (KCl, 99%, CAS: 7447-40-7) was purchased from Damao Chemi-
cal Reagent Factory (Tianjin, China). Anti-MG aptamer (Apt) with the sequence of 5′-CCA
TGC GAC GGA CAG CAC GTG TCA CCG CGA TCA GCC-3′, the corresponding cDNA1
sequence of 5′-SHC6-TTT TTG GCT GAT C-3′, and the corresponding cDNA2 sequence
of 5′-TCG CAT GGT TTT T-SHC6-3′ were synthesized and purified by Sangon Biotech.
Co., Ltd. (Shanghai, China). DPBS buffer was prepared with sterilization ultrapure water
(137 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 8 mM Na2HPO4, 1 mM CaCl2, 0.5 mM
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MgCl2, and 1 L, pH = 7.4) was used for assembling the aptasensor. All analytical pure
chemical reagents were purchased from Damao Chemical Reagent Factory (Tianjin, China).
Ultrapure water was applied throughout the experiments.

Apparatus: The scanning electron microscopy (SEM) and the energy dispersive spec-
troscopy (EDS) images were collected with Merlin (Zeiss, Oberkochen, Germany). The
electrochemical measurements were performed by CHI 660E electrochemical workstation
(Shanghai Chenhua Instrument Corporation, Shanghai, China). The three-electrode sys-
tem consisted of working AuE (diameter 3 mm), an Ag/AgCl electrode as a reference
electrode, and platinum wire as an auxiliary electrode (Tianjin Incole Union Technology,
Tianjin, China). Vortex mixer uses Vortex-Genie 2 (Scientific Industries, Bohemia, NY, USA).
All electrochemical measurements were carried out at room temperature. All aqueous
solutions were prepared with ultrapure water by a water purification system (PALL, Port
Washington, NY, USA, 18.2 MΩ·cm at 25 ◦C).

Preparation of MWCNTs@TiO2 compound: MWCNTs (100 mg) and TiO2 (50 mg) were
dissolved in 25 mL of absolute ethanol and placed on a vortex mixer with strong shaking
for 3 min, followed by 60 min of ultrasonic treatment until obtaining a highly dispersed
grey-black solution, indicating that the MWCNTs@TiO2 compound was obtained.

Fabrication of E-apt sensor: Before being modified, AuE was immersed in piranha
solution (concentrated sulfuric acid: hydrogen peroxide = 7:3) for 10 min, rinsed with
ultrapure water, and polished with 1.0 µm of alumina powder to mirror the surface. The
AuE was then ultrasonically treated in ethanol and ultrapure water for 1 min and dried
with a nitrogen stream. First, 2 µL of MWCNTs@TiO2 was dripped onto the surface of
the AuE and dried naturally at room temperature. Then, under the same conditions, 2 µL
of AuNPs droplets were applied to the preliminarily modified AuE. After that, 2 µL of
Aptmix, which was obtained by mixing 1 mL of 8 µM cDNA1, 1 mL of 8 µM cDNA2,
and 2 mL of 4 µM Apt overnight incubation, was titrated on the surface of the modified
coating and naturally dried. A compact DNA monolayer is formed on the surface of the
coating by the Au–S bond and π–π bond. Finally, 2 µL of 1 mM MCH were used to block
non-specific binding. The modified electrode was incubated with different concentrations
of MG solution, and the change of the current was detected by the DPV method. The
assembly process and the detection principle of the proposed E-apt sensor were shown in
Scheme 1.

Sample preparation: The actual water samples were purchased from local aquatic
products markets (Guangzhou, China) and used for the detection of MG. The actual water
samples were subjected to simple pretreatments, such as standing, filtration with 0.22-µm
film, and 5-fold dilution with DPBS to remove solid impurities before spiking with different
concentrations of MG standard samples (0, 0.01, 0.1, 1, 10, 100, 1000, and 10,000 ng/mL).

Electrochemical detection: The gold electrode modified with nanomaterials was used
as the working electrode, an Ag/AgCl electrode as a reference electrode, and a platinum
wire as an auxiliary electrode. CV and DPV measurements were performed in 0.1 M KCl
solution containing 5.0 mM [Fe (CN)6]3−/4−. The scan rate of CV was set to 100 mV s−1,
while the potential range was set between −0.4 V and 0.8 V to detect signal changes. Ten
cycles were scanned to obtain a stable CV curve. The DPV data were taken in the same
solution from −0.1 to 0.4 V, pulse time of 50 ms, and amplitude of 0.05 V.

5. Conclusions

In this study, we developed a label-free E-apt sensor based on AuNPs/MWCNTs@TiO2
for ultrasensitive detection of MG. The signal of the electrode modified by nanomaterials
can be amplified by as much as four times, which is convenient for sensitive detection of
MG and achieve ultra-micro measurement. The nanomaterial has the advantages of simple
preparation, low cost, and wide application potential. The sensor demonstrates a good
linear relationship for the detection of MG from 0.01 to 1000 ng/mL, and the detection of
MG can be completed within 30 min, satisfying the requirements for rapid monitoring. In
addition to sensitivity, stability and reproducibility are equally guaranteed. The sensors
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were prepared with different gold electrodes and applied to MG detection in different water
samples. Results showed that the stability and reproducibility of the sensor are excellent.
Relative to other properties, the specificity of this sensor may not be so good. It is believed
that this is due to the limitations of the aptamer itself, but the sensor can be well-used in the
detection of other agricultural and veterinary drugs by changing the recognition element,
provide some references for the construction of other sensors.
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