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Abstract: The binding of calcium and magnesium ions to proteins is crucial for regulating heart con-
traction. However, other divalent cations, including xenobiotics, can accumulate in the myocardium
and enter cardiomyocytes, where they can bind to proteins. In this article, we summarized the
impact of these cations on myosin ATPase activity and EF-hand proteins, with special attention
given to toxic cations. Optimal binding to EF-hand proteins occurs at an ionic radius close to that
of Mg2+ and Ca2+. In skeletal Troponin C, Cd2+, Sr2+, Pb2+, Mn2+, Co2+, Ni2+, Ba2+, Mg2+, Zn2+,
and trivalent lanthanides can substitute for Ca2+. As myosin ATPase is not a specific MgATPase,
Ca2+, Fe2+, Mn2+, Ni2+, and Sr2+ could support myosin ATPase activity. On the other hand, Zn2+

and Cu2 significantly inhibit ATPase activity. The affinity to various divalent cations depends on
certain proteins or their isoforms and can alter with amino acid substitution and post-translational
modification. Cardiac EF-hand proteins and the myosin ATP-binding pocket are potential molecular
targets for toxic cations, which could significantly alter the mechanical characteristics of the heart
muscle at the molecular level.

Keywords: cardiotoxicity; toxic ions; divalent cations; heart muscle; EF-hand proteins; myosin;
regulatory light chain; troponin C; ATPase activity

1. Introduction

Heart contraction is a highly coordinated and complex process that involves the
interplay of thin and thick filaments, which slide one past another with no alteration in
their length [1]. The thick filament primarily consists of myosin molecules, which contain
two heavy and four light chains, including two calcium-binding regulatory and two non-
calcium-binding essential light chains [2]. The thin filament comprises actin, tropomyosin,
and troponin subunits T, I, and C [3].

The concentration of intracellular calcium plays a crucial role in regulating heart
contraction by binding calcium ions to the troponin C subunit and altering the structure
of troponin [4]. This causes the tropomyosin strands to move across the actin filament,
opening sites for binding with myosin heads—the N-terminus of myosin heavy chains [5].
The energy required for myosin to propel thin filaments is provided by ATP hydrolysis [6]
in the myosin ATP-binding pocket, which can also bind magnesium ions [7].

In summary, heart contraction involves multiple proteins, including calcium- and
magnesium-binding protein structures, viz. troponin C, the myosin regulatory light chain,
and the ATP-binding pocket of myosin [8–10]. Calcium and magnesium are involved in
a complex cascade of protein interactions during heart contraction, in which timing and
coordination are highly important for the entire process. Therefore, calcium and magnesium
ions play an essential role in regulating actomyosin interaction during heart contraction.
However, is it possible for other cations to intervene in this well-orchestrated process?
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2. Accumulation, Competition, and Toxicity of Divalent Cations
2.1. Accumulation in the Myocardium and Cardiotoxic Effect of Divalent Cations

Myocardium was found to accumulate various chemicals, such as aluminium [11–14],
antimony [15], barium [11], cadmium [11,16–26], calcium [27–29], caesium [11], cobalt [15,18],
copper [11,18,27–32], chromium [11,15,27,33], gold [15], iron [27,28,34], lead [11,18,19,22,35],
magnesium [28,29], manganese [11,18,27,28,36], mercury [15,16], molybdenum [11,28],
nickel [11,18,27,33,34,37,38], strontium [11,27], tin [11], and zinc [11,17–20,22,27–29,32].
Amongst them, there are elements with the primary oxidation state of +2.

The above-mentioned divalent cations can be divided into three groups [39–41]:

1. Essential ions for physiological processes (Ca2+, Cu2+, Fe2+, Mg2+, Zn2+, Mo2+).
2. Nonessential ions with no or low or unknown toxicity (Ba2+, Sr2+, Co2+, Ni2+).
3. Nonessential and highly toxic ions (Cd2+, Pb2+, Hg2+).

Some other less toxic mono-, di-, and trivalent cations also tend to accumulate in the
myocardium and have been used as calcium analogues in various studies, e.g., La3+ and
Tb3+ have been widely used as Ca2+ surrogates to examine metal binding properties and
conformational changes of Troponin C [39,40,42].

Nevertheless, we focused on the nonessential toxic divalent cations from the 3rd group
viz. Cd2+, Pb2+, and Hg2+, which are ubiquitous chemicals and considered to be impor-
tant co-exposures [43]. Chronic exposure to cadmium [44,45], lead [46–48], and mercury [49]
has been associated with multiple cardiovascular diseases. Cardiotoxicity after chronic and
acute exposure was experimentally confirmed in the animal models for cadmium [16,50–54],
lead [19,35,55–57], and mercury [16]. For each of viz. cadmium [58–61], lead [40,62,63],
and mercury [40,64,65], the direct cardiotoxic effect was confirmed at different levels of
organization, including the whole heart, multicellular, cellular, and protein level.

It is worth noting that excess of some essential divalent cations from the 1st and
2nd groups could also be highly toxic. For example, Cu2+ could have mediated toxic
effects through chronic exposure [31] and direct toxic effects [66–68] on the cardiovascular
system. Ni2+ [69–71] and V2+ [69,71] exposure could also be connected with cardiovascular
diseases (CVD). Co-exposure to Cu2+, Mo2+ and V2+ could be closely connected with CVD
mortality [72]. Other essential cations like Ba2+, Mn2+, Co2+, Ni2+, and Zn2+ could have a
direct effect on cardiac cells [61,73], especially on transport channels, whilst Ca2+, Mg2+,
and Sr2+ appear to have less of an effect [73].

There have been informative reviews that broadly cover the topic of the effect of
exposure to toxic metals on the cardiovascular system. For instance, there are reviews
available for xenobiotic metals like lead [74,75], cadmium [74–77], mercury [49,74,75], and
essential but toxic copper [75,78]. However, the direct effect of these ubiquitous chemicals
on the cardiovascular system has not been extensively covered in reviews and is usually
described in experimental articles. Furthermore, there are no comprehensive reviews and
only limited information regarding the direct effect of these divalent cations on cardiac or
skeletal muscle proteins.

2.2. Competition of Divalent Cations in the Body

Toxic cations such as cadmium, lead, and mercury can compete with other physio-
logically relevant divalent cations for entry into cells and in various biochemical reactions
in the body. For example, cadmium absorption and accumulation may increase with
zinc deficiency as cadmium can replace zinc in biochemical reactions [79–83]. Cadmium
is also known to develop toxicity by competing with essential metal cations including
calcium [42,84], iron, copper, and manganese for entry pathways [85]. Toxic cations can
also deplete other important nutrients in the body, such as cadmium’s ability to deplete
selenium, which is a crucial antioxidant and cofactor for various enzymes [86]. On the other
hand, selenium is found to diminish cadmium cardiotoxicity [87]. Molecules specialized in
the handling of alkaline earth (e.g., Mg2+, Ca2+) and transition metal ions (e.g., Zn2+, Cu2+,
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Fe2+) may be particularly sensitive to the presence of Cd2+ because they enclose cationic
sites to which the toxic metal can bind [88].

Pb2+ can substitute calcium in calcium-binding proteins critical for heart function due
to its similarity to Ca2+ [40,89–91]. Similarly, Pb2+ can replace other divalent metals such as
zinc in zinc-finger proteins [92,93]. Lead can potentially lead to magnesium deficiency by
inhibiting its absorption, which, in turn, may aggravate the negative effects of lead on the
human body [94].

Both lead and mercury are powerful oxidizing agents in their +2 cationic state, with the
ability to interfere significantly with processes that require specific divalent cations [40]. For
example, mercury can interfere with Mg2+-binding sites because of their similar enthalpy
energy dehydration values [40]. Interestingly, both toxic mercury and cadmium could have
a competitive relationship in the accumulation in the myocardium [16].

Overall, competition between cations in the body is a vast topic that encompasses
a range of divalent and trivalent ions that can compete for metal-binding structures in
various tissues. For instance, Zn2+, Cu2+, Cd2+, and Hg2+ could compete for metal-binding
sites of cardiac submitochondrial fragments [95]. Calcium can be replaced by strontium in
various intracellular processes due to their high level of similarity [96]. Trivalent ions, e.g.,
Al3+ could also compete with Mn2+ and Mg2+ for binding sites due to their similarly small
size [97–99].

In summary, understanding the competition between divalent and trivalent cations
in the body is crucial for identifying potential strategies for preventing or treating cation-
induced toxicity. Herewith, it is important to focus on their potential targets in the my-
ocardium, as the known competition of two specific divalent cations in other tissues may
be impossible in myocardium due to the absence of ways of entering for one or both cations
in cardiac cells.

2.3. Entry Pathways for Divalent Cations into Cardiomyocytes

Various divalent cations interact with specific parts of the channels to affect their
function [73]. Essential cations like calcium, magnesium, zinc, copper, etc. usually have
their specific transporters or ion channels to enter cardiomyocytes [100]. For example, Mg2+

primarily enters cardiomyocytes through MgtE (SLC41A1) [101] and ACDP2 [102], and to
a lesser extent through SLC41A2 [103], MMgT1, and MMgT2 [104].

Non-essential cations such as cadmium, lead, and mercury do not have specific ion
channels or transport proteins on the cell membrane. Instead, they can utilize existing trans-
port pathways to enter the cells [40,100]. For example, P1B-ATPases, which are transporters
for cations via the membrane, are involved in the transport of Mn2+, Co2+, Cu2+, Ag+,
Zn2+, Cd2+, Hg2+, and Pb2+, and may also play a role in Fe2+ and Ni2+ transport [105,106].
On the other hand, toxic metals like Pb, Cd, and Hg can enter tissues through multiple
mechanisms due to ionic mimicry [107].

Cadmium has no specific ion channels or transport proteins on the cell membrane,
and utilizes the transport pathways for calcium, zinc, iron, copper, and magnesium [60].
Cd2+ can enter cardiomyocytes through voltage-dependent Ca2+ channels [59,60,86], and
inhibit or block the L-type Ca channel current in rabbit [108] and rat [109] ventricular
myocytes. Detailed reviews devoted to cadmium entry through Ca2+ channels, transporters,
receptors [85], and multiple sarcolemmal pathways, including Zn transporters [110], were
published recently.

Lead ions can enter cardiomyocytes through various mechanisms, including Cav1.2
calcium channels [40], zinc transporters, anion exchangers, and non-voltage-dependent
pathways [40]. Interestingly, currents through the Cav1.2 channels are smaller in the
presence of Pb2+, but they last longer compared to those carried only by Ca2+ [40,63],
similar to what has been described for inactivation by Ba2+ [111]. Moreover, Pb2+ can enter
the cell through Trp channels with Ca2+-permeant pores that are known to be secondary
entry pathways for divalent cations, in addition to other transport proteins like the Na+—
Ca2+ exchanger, SOC channels, Zn2+ and other divalent metal transporters, pH-sensitive
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transporters, and aquaporin channels [40]. For details, see the review devoted to lead and
mercury effects on voltage-gated calcium channel functioning [112].

Mercury ions can enter cells through various mechanisms, including ABC-type trans-
porters and amino acid transporters and organic anion transporters. Since Hg2+ has a large
ionic radius, it is unlikely that it enters the cardiomyocytes through Cav1.2 channels and it
is more likely that it just blocks them. Although mercury may not enter through Cav1.2
channels [40], it potentially can enter cardiomyocytes through several pathways, including
calcium transporters. Additionally, mercury ions can also enter cells via transporters for
other divalent cations such as Zn2+ and Cu2+. It is worth noting that inorganic mercury has
a low lipophilicity and thus has a limited ability to cross cell membranes [113].

For other non-essential cations, it is also possible to enter the cells. For example, nickel
can enter cells through divalent metal transporters and inhibit mitochondrial function,
leading to oxidative stress and DNA damage [100]. Cobalt can enter cells through calcium
channels and disrupt mitochondrial function, leading to oxidative stress and apoptosis;
cobalt excess can also cause severe cardiomyopathy [114,115]. The cardiac ryanodine recep-
tor provides a suitable pathway for the rapid transport of Zn2+ [116], and the sarcoplasmic
reticulum in cardiac muscle is suggested to act as a dynamic storage for Zn2+ release and
reuptake [116]. Cobalt is a harmful cation that can infiltrate cells via calcium channels and
interfere with mitochondrial function. This can result in oxidative stress and apoptosis,
ultimately leading to severe cardiomyopathy.

Non-essential and non-native essential cations can use multiple transport processes to
enter various cells. Most of these transport pathways have been confirmed to allow various
cations to enter cardiomyocytes (Figure 1). For example, L-type calcium channels are a
suitable entryway for Sr2+ [96], Fe2+ [117], Ni2+ [100], Cd2+ [118], and Pb2+ [40]; T-type
calcium channels are suitable for Fe2+ [117] and Cd2+ [118]; store-operated channels (SOC)
for Pb2+ [40]; transient receptor potential (TRP) channels for Fe2+ [117] and Pb2+ [40]; Piezo
type mechanosensitive ion channel component 1 (Piezo1) for Hg2+ [119]; sodium-calcium
exchanger (NCX) for Sr2+ [96] and Pb2+ [40]. Aquaporins could be used by Pb2+ [40];
magnesium transporters E (MgtE) by Mn2+ [101]; zinc-regulated, iron-regulated transporter-
like proteins (ZIP) by Mn2+ [120], Fe2+ [117], and Cd2+ [120]; divalent metal transporter 1
(DMT1) by Mn2+ [121], Zn2+ [121], Cu2+ [122], Cd2+ [123], Pb2+ [40], and Hg2+ [124].
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to their effective ionic radius.
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Once inside the cell, divalent cations such as cadmium [59,107,125,126], lead [125,126],
and mercury [49,64,107] ions can bind efficiently to sulfhydryl groups (-SH) of proteins.
This interaction of cations with thiol and other groups is a crucial factor in understanding
the toxic effects of these cations on the body. These toxic cations can target important
sites such as the calcium- and magnesium-binding sites of troponin C, the ventricular and
atrial myosin regulatory light chains, and the ATP-binding pocket of myosin, leading to
disruptions in cellular processes and potentially harmful cardiac effects.

2.4. Toxic Effects of Different Concentrations of Divalent Cations in Cells

Numerous studies have confirmed the ability of heart tissue to accumulate various
divalent cations (see Section 2.1). However, the fraction of accumulation of cations specifi-
cally in cardiomyocytes remains unclear, while the heart tissue is composed of different cell
types, including cardiomyocytes, cardiac fibroblasts, smooth muscle cells, endothelial cells,
etc. [127]. The range of concentrations of these cations in cardiomyocytes are unknown for
most cations, and therefore the evaluation of the potential toxic effect connected with their
concentrations is difficult.

It could be proposed that highly toxic xenobiotic cations such as Pb2+, Cd2+, and Hg2+

could have an adverse effect on the heart at any concentration within cardiomyocytes. For
example, the addition of Pb up to 100 µM has been shown to have negative cardioinotropic
effects on cardiomyocytes [63]. Similarly, the addition of 1 mM of Cd inhibited the time-
dependent hyperpolarization-activated inward current on pulmonary vein and left atrial
cardiomyocytes [128]. Heightened accumulation of mercury in the myocardium has been
observed in idiopathic dilated cardiomyopathy (22-fold) and secondary forms of cardiac
dysfunction (3-fold) patients [15].

While free Cu is absent inside cells [129], some essential divalent cations have a certain
concentration in normal conditions. For example, intracellular rest Ca2+ is ~0.0001 mM/L
and extracellular rest ~1.2 mM/L [130]. In toxic conditions, such as malignant hyperther-
mia, excessive calcium release from the sarcoplasmic reticulum leads to disturbances in
intracellular Ca2+ homeostasis, uncontrolled skeletal muscle hypermetabolism, and ar-
rhythmias [131,132]. The cytosolic free magnesium ion concentration is 0.85 ± 0.1 mM, but
it can significantly increase to a level of 2.1 ± 0.4 mM under ischemia [133]. Another study
has confirmed an increase in free intracellular Mg2+ concentrations under ischemia [134].
However, in the myocardial tissue of men with sudden death from myocardial infarction,
the Mg2+ concentration is decreased [135].

To summarize, further research is needed to better understand the concentration range
of various cations in cardiomyocytes, a topic which is still is largely unknown, which makes
it challenging to assess their potential toxic effects.

3. EF-Hand Protein Family and Divalent Cations

The EF-hand family are calcium-binding proteins with a structural motif called the EF-
hand, which participate in various cellular processes, including muscle contraction [136].
The EF-hand protein family has been studied extensively, and Snyder et al. [137] have
concluded that the binding of metal ions to the EF-hand motif is dependent on their charge
and size [137]. The EF-hand binding sites are specifically designed to bind highly charged
cations, resulting in low affinities for monovalent metals such as Na+ and K+. Therefore,
these metals are not included in our research focus, despite the fact that myocardium is
known to accumulate various chemicals, including monovalent ones [27]. The size of the
cavity of binding sites is optimized for divalent metals that have effective ionic radii similar
to Ca2+, i.e., optimal binding occurs at an ionic radius between those of Mg2+ (0.81 A) and
Ca2+ (1.06 A) [137]. Additionally, trivalent metal ions of the group IIIA and the lanthanides
also exhibit size-dependent affinities, with an optimal effective ionic radius between those
of Sc3+ (0.81 A) and Yb3+ (0.925 A) [137].

Calmodulin plays a crucial role in regulating myosin light chain kinase activity in
smooth muscles and, being a member of the EF-hand family, has calcium-binding sites [138].



Int. J. Mol. Sci. 2023, 24, 10579 6 of 20

It has been shown that Ca2+ can be substituted by bi- and trivalent cations with similar
ionic radii viz. Zn2+, Mn2+, Cd2+, Sr2+, Pb2+, Cr2+, Tb3+, Sm3+, and La+ [84,139], altering
the conformation of calmodulin. Sr2+, Pb2+, Cd2+, and Cr2+ can stimulate the activity of
calmodulin to varying degrees, from 60% to 90% [138,139]. Sr2+ is also known to bind
to α-parvalbumin, which is another member of the EF-hand family [140]. On the other
hand, Na+, Mg2+, Ba2+, and Ni2+ had no distinct effect on calmodulin [84]. Data on the
affinity of Al3+ and Hg2+ to calmodulin are contradictory [84,139,141], though there is an
opinion that Zn2+, Al3+, and Hg2+ do not affect calmodulin activity at concentrations up to
1 mM [139]. It is noteworthy that various cations may exhibit different degrees of affinity
towards the distinct binding sites of calmodulin [39], with the lead having a higher affinity
for calmodulin binding sites than other metals [142], especially in the N-terminal domain
where Pb2+ binds with an 8-fold higher affinity than Ca2+ [90].

Concerning proteins affected by lead, de Souza et al. [142] described many such
proteins and proposed that their number is probably much higher. This hypothesis could
be proposed for proteins of the EF-hand family and other cations. Such ionic displacement
(e.g., ionic mimicry) or opportunistic binding of cations to proteins [90], such as with the
EF-hand family, could underlie the mechanisms of toxicity.

3.1. Troponin C

Troponin C is a subunit of cardiac and skeletal troponin and, like calmodulin, it is a
member of the EF-hand family, which has calcium-binding sites [143]. In both skeletal and
cardiac troponin C, there are Ca2+ binding sites, two of which are high-affinity sites, which
can also bind other divalent cations such as Mg2+ and Cd2+ [143]. Troponin C also has
low-affinity Ca2+-specific sites (2 sites for skeletal TnC and 1 site for cardiac TnC), which
are highly selective to Ca2+ under a normal physiological concentration of Mg2+ [143].
Previous studies have shown that Ca2+ could be substituted by Cd2+ (72% of calcium ions
were substituted), Sr2+ (57%), Pb2+ (45%), and Mn2+ (35%), Co2+ (12%), Ni2+ (10%), Ba2+

(10%), Mg2+ (8%), and Zn2+ (6%) ions with a concentration 0.1 mM. The affinity of divalent
cations for the receptor site of troponin C is closely related to their ionic radius and its
proximity to the ionic radius of Ca2+.

Trivalent lanthanide ions such as La3+, Ce3+, Nd3+, Sm3+, and Dy3+ can partially
displace about 25–35% of the bound Ca2+ from troponin C at a concentration of 0.02 mM,
but their affinity for the receptor site is lower than that of Ca2+ despite their similarity
to Ca2+ in size and chemical properties. To compare, the same concentrations of Cd2+

and Sr2+ could displace 40 and 29% of the bound Ca2+, respectively [144]. Pb2+ and Cd2+

can bind to skeletal muscle troponin C and activate myosin ATPase activity at a low
concentration, but significantly decrease ATPase activity at concentrations higher than
100 µM [42]. Interestingly, Sr2+ can activate the contractile process in diaphragm fibres,
and the response is dependent on the composition of TnC isoforms, with the slow isoform
conferring on average a 7-fold greater sensitivity to Sr2+ than the fast isoform [145].

3.2. Regulatory Light Chain

Cardiac myosin filaments are directly regulated by calcium ions, as reported by Ma
et al. [146]. Currently, two substructures of myosin that are capable of binding calcium ions
are confirmed: the ATP-binding pocket and the regulatory light chain (RLC). The myosin
RLC belongs to the EF-hand family and contains the EF-hand domain responsible for
binding calcium and magnesium cations [147]. Under relaxed conditions, the myosin RLC
EF-hand domains have been observed to bind magnesium (Mg2+), but as the concentration
of calcium ions increases during muscle contraction, they become increasingly occupied
by Ca2+ [148]. At the same time, the elevated free Mg2+ concentration reduces the Ca2+

sensitivity of skeletal myosin and this effect could be associated with the influence of the
RLC [149].

The function of cation-binding sites in muscle contraction is important, but not fully
understood [148]. Optimal binding to the EF-hand occurs at an ionic radius close to Mg2+
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and Ca2+. However, the affinity of the EF-hand-like Ca2+ binding sites [97,150], including
those of smooth muscle RLC [151], to cations can be significantly altered by amino acid
substitutions. For instance, Da Silva et al. [151] demonstrated that amino acid substitutions
could alter the affinity of the EF-hand in smooth muscle RLC to divalent ions (Mg2+ or Ca2+).
This effect may be important in mutations that cause alterations in the amino acid sequence.
Moreover, post-translational modification hypothetically could influence the affinity of
proteins to divalent cations. For α-synuclein, it has been shown that phosphorylation in
very close proximity to the putative metal binding sites, could increase the binding affinity
of Cu(II), Pb(II), and Fe(II) [152]. However, it remains unclear whether this is also true for
EF-hand proteins.

It is highly possible that various cations, including toxic Pb2+, Cd2+, and Hg2+, may
compete with Ca2+ not only for the calcium-binding sites of calmodulin [138] and skeletal
troponin C [42] as described above, but also for other members of the EF-hand family, such
as cardiac troponin C and atrial and ventricular myosin regulatory light chains.

4. The Myosin ATP-Binding Pocket

The myosin ATP-binding pocket binds both ATP and Mg2+ (MgATP) to coordinate
ATP hydrolysis for force generation and muscle contraction [153]. While MgATP is the
natural substrate [154], myosin is not a specific ATPase, and the myosin ATP-binding
pocket can bind other divalent cations, such as Ca2+ [153–155], and Mn2+ [153], which
support myosin ATPase activity (Table 1).

The concentration of CaATP in the sarcomere reaches 64–71 µM [156], which is about
1% of all available ATP [155]. The rate of the basal CaATPase activity is higher than that of
MgATPase [153–155,157], and actin-activated CaATPase activity is also higher than that of
MgATPase [155,157], or does not have a significant difference [153,154]. The rate of ATP
binding is higher in the presence of Ca2+ than in the presence of Mg2+ [155], and at the same
time, CaATP dissociates actomyosin 3–4 times slower than MgATP [154,155,157], increasing
the time of strong actomyosin binding. The authors pointed out a higher actin affinity when
S1-CaADP- Pi is converted to S1-CaADP, compared to the magnesium case [154], and that
CaATP binds tighter to myosin than MgATP [155]. It was shown that the isometric force
produced by muscle fibres when CaATP was the substrate is only 20% of the value obtained
with MgATP [154]. Later, it was proposed that myosin readily produces futile strokes with
CaATP [155]. At the same time, the gliding assay indicated that myosin did not propel
F-actin in the presence of Ca2+ ions [153]. In healthy muscles, contraction occurs regardless
of the small amount of CaATP that is always present in the muscle [155,156]. However,
Ge et al., proposed that an increase of Ca2+ during disturbed calcium homeostasis in the
muscle will increase the probability of finding CaATP [155].

In the presence of physiologically essential Mn2+, the rate of basal [153,157,158] and
actin-activated [153,159,160] MnATPase activity is higher than that of MgATPase. How-
ever, there was no statistically significant F-actin stimulation for MnATPase [153], and no
alteration in the mechanical characteristics of skeletal fibres [160]. In the presence of Mn2+,
the sliding velocity of F-actin over myosin was inhibited approximately 3-fold compared
to Mg2+ [153]. The rate of movement of the myosin lever arm and phosphate release in
MnATPase cycles are significantly accelerated compared to the MgATPase cycle [157].
Walker et al. concluded that a significant proportion of myosin might undergo the power
stroke and phosphate release before reattaching to the F-actin filament. As a result, there is
an increase in the probability of futile power strokes that could explain the reduced motility
observed for myosin in the presence of Mn2+ compared to Mg2+ [153].

If essential cations can significantly influence the ATPase activity, xenobiotics with a
high degree of probability may have a similar effect. For instance, acute lead exposure could
influence myocardial contractility through alterations in the ATPase activity of myosin [62].
Specifically, exposure to 8 µM lead acetate was shown to increase the ATPase activity of
left-ventricular myosin by 30% [161]. However, exposure to 100 µM lead acetate has been
shown to reduce ATPase activity of right-ventricular myosin by 26% [62]. This contradiction
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could be a result of different doses of lead or different ventricles from which the myosin
was extracted. The first assumption is more possible, as myosin of both ventricles have
the same structure, and may differ only in the ratio of myosin heavy chain isoforms [162].
Chao et al. have shown that myofibrillar PbATPase activity in the presence of TnC was
higher than that of CaATPase at a concentration of ca. 100 µM and decreased at higher
concentrations. Without TnC, myofibrillar PbATPase was comparable to that of CaATPase
at concentrations lower than 75 µM and decreased at higher concentrations [42].

Similar results were shown for cadmium: myofibrillar CdATPase activity in the
presence of TnC was lower than that of CaATPase. Without TnC, myofibrillar PbATPase
was comparable to that of CaATPase at concentrations lower than 75 µM and increased at
higher concentrations [42].

Extracellular Hg2+ significantly reduces the contraction of isolated guinea-pig car-
diomyocytes [40] and inhibits myosin ATPase activity. Myosin ATPase activity was shown
to be completely blocked with 1 µM Hg2+ and reduced by 50% with 0.15 µM Hg2+ [65].
Later, similar results were shown, i.e., HgCl2 reduced the activity of myosin ATPase in
a dose-dependent manner, beginning from small concentrations of 50 nM, and achieved
about a 45% reduction in activity following exposure to 100 nM HgCl2 [64].

Many other divalent cations are also able to support myosin ATPase activity in experi-
mental conditions. For instance, Fe2+, Mn2+, Ni2+, and Co2+ support the ATPase activity
of S1-myosin in the absence of actin, and this activity increases with the increasing ionic
radius of the metal (Me) ions [159]. These metal ions also support actin activation; however,
there is no strong correlation between actin-activated MeATPase activity and their ionic
radii [159]. At the same time, NiATP does not support muscle fibre contraction [160].
Zn2+ [163] and Cu2+ [67] significantly inhibit ATPase activity, while Al has no effect [163].
Wherein, Sr2+ has been found to activate actomyosin ATPase and has often been used as a
Ca2+ surrogate to regulate muscle contraction in experimental conditions [4].

In a normal actin-myosin interaction, Mg2+ stimulates myosin ATPase activity. How-
ever, other divalent cations can significantly affect the kinetics of myosin. The specific
cation appears to play a critical role in this effect. Physiologically relevant cations (Ca2+,
Mn2+) could intervene in the ATPase activity, and low concentrations of the toxic and
xenobiotic metals, e.g., Pb2+, Hg2+, Cd2+ inhibit the activity of myosin ATPase, suggest-
ing a strong toxic effect. Previous studies have shown a linear relationship between the
ionic radius of Ca2+, Mg2+, and Mn2+ and the respective basal and actin-activated ATPase
activities in the presence of these cations [157]. The larger the ionic radius, the higher
the myosin ATPase activity. However, it should be checked for more cations, which are
shown to have myosin ATPase activity e.g., Pb, Cd, Hg etc. Interestingly, actin activation of
myosin ATPase does not depend on the metal cation, despite the cation-specific kinetics
of nucleotide binding and dissociation. The rate-limiting step of myosin ATPase activity
depends on the metal cation, with the rate of the recovery stroke and reverse recovery
stroke being directly proportional to the ionic radius of the cation. The rate of nucleotide
release from myosin and actomyosin and ATP binding to actomyosin depends on the cation
coordination number [157].
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Table 1. Influence of divalent cations on myosin ATPase activity.

Cation Compound Concentration Change of Basal
ATPase Activity, % *

Change of
Actin-Activated

ATPase Activity, % *

Velocity in Motility
(Gliding) Assay, % * Object Reference

Ca CaCl2

1 µM −10

Rabbit fast skeletal
muscle myofibrils Chao, 1990 [42]

10 µM +305

50 µM +350

100 µM +350

1 mM +328

1 mM +655 −52 Rabbit fast skeletal muscle
myosin S1 fragment Peyser, 1996 [159]

2 mM No motility Dictyostelium discoideum
myosin II Walker, 2021 [153]

5 mM

+1450 +475

+4333 +516 Rabbit fast skeletal
muscle myosin

Ge, 2019 [155]

+3544 −16 Polosukhina, 2000 [154]

Mn MnCl2

1 mM +383 +12 Myosin S1 fragment back
and leg muscles of rabbit Peyser, 1996 [159]

2 mM −63 Dictyostelium discoideum
myosin II Walker, 2021 [153]

5 mM +4900 +1050 Dictyostelium discoideum
myosin II Walker, 2021 [153]

6 mM +32 Rabbit fast skeletal muscle
myosin S1 fragment Burton, 2005 [160]
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Table 1. Cont.

Cation Compound Concentration Change of Basal
ATPase Activity, % *

Change of
Actin-Activated

ATPase Activity, % *

Velocity in Motility
(Gliding) Assay, % * Object Reference

Pb

Pb(C2H3O2)2
8 µM +30 Rat left ventricle myosin Fioresi, 2013 [161]

100 µM −26 Rat right ventricle myosin Vassallo, 2008 [62]

PbCl2

1 µM −1

Rabbit fast skeletal
muscle myofibrils Chao, 1990 [42]

10 µM +215

50 µM +395

100 µM +373

1 mM +58

Cd CdCl2

1 µM −15

Rabbit fast skeletal
muscle myofibrils Chao, 1990 [42]

10 µM +170

50 µM +340

100 µM +305

1 mM No activity

Hg HgCl2

50 nM −20

Rat left ventricle myosin

Moreira, 2003 [64]
100 nM −40

150 nM −50 Vassalo, 1999 [65]

200 nM −55

Moreira, 2003 [64]300 nM −70

400 nM −80

Cu CuCl2 10 µg/mL −67 Rat left ventricle myosin Filetti, 2018 [67]

Ni
NiCl2 1 mM −43 −76 Rabbit fast skeletal muscle

myosin S1 fragment Peyser, 1996 [159]

Ni(CH3CO2)2 5 mM −63 Rabbit fast skeletal muscle
myosin S1 fragment Burton, 2005 [160]
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Table 1. Cont.

Cation Compound Concentration Change of Basal
ATPase Activity, % *

Change of
Actin-Activated

ATPase Activity, % *

Velocity in Motility
(Gliding) Assay, % * Object Reference

Zn ZnSO4

100 µM −40

Rabbit fast skeletal
muscle myosin Jones, 1997 [163]

250 µM −75

500 µM −85

1 mM −90

Al

AlCl3

100 µM No effect

Rabbit fast skeletal
muscle myosin Jones, 1997 [163]

250 µM +10

500 µM +10

1 mM No effect

AlC6H5O

100 µM No effect

Rabbit fast skeletal
muscle myosin Jones, 1997 [163]

250 µM No effect

500 µM No effect

1 mM No effect

Fe FeCl2 1 mM +360 −45 Rabbit fast skeletal muscle
myosin S1 fragment Peyser, 1996 [159]

Co CoCl2 1 mM +262 −27 Rabbit fast skeletal muscle
myosin S1 fragment Peyser, 1996 [159]

* Percentage change of described ATPase compared to native or experimental MgATPase activity.
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It is worth noting that divalent cations have been shown to influence the ATPase
activity of various motor proteins, including kinesin [164], non-muscle [165], and mus-
cle [154,155] myosin. Walker et al. pointed out that in kinesin, microtubule gliding velocities,
as well as basal and microtubule-stimulated ATPase rates, were similar with either Mn2+ or
Mg2+ [164], unlike in myosin where the basal ATPase activity was stimulated by MnATP
but not by MgATP [165]. Apparently, different motor proteins and isoforms of myosin may
respond differently to the same cations due to differences in their structure. Therefore, it is
essential to investigate how various cations can affect different motor proteins. Moreover, it
is important to consider the possibility that ATPase activity may be influenced not only by
cation interactions with the myosin ATP-binding pocket but also by metal binding to the
RLC or other unknown mechanisms. Further investigation is necessary to fully understand
the impact of metal binding on the RLC and its potential effect on ATPase activity.

5. Materials and Methods

This review was prepared following the PRISMA statement guidelines [166]. Using
databases MEDLINE (via PubMed) and Google Scholar, we searched for articles that met
specific criteria:

(1) In the article title, at least one of the following words was found: “heart OR car-
diomyocytes OR cardiotoxicity OR myocardial OR cardiac OR cardiovascular OR
cardiomyopathy”.

(2) In the found article, the chemical symbol, English, or Latin name of the divalent
cation must be present in the article body. Namely [167], beryllium (Be2+), magnesium
(Mg2+), calcium (Ca2+), strontium (Sr2+), barium (Ba2+), radium (Ra2+), vanadium
(Va2+), chromium (Cr2+), manganese (Mn2+), iron/ferrum (Fe2+), ruthenium (Ru2+),
osmium (Os2+), cobalt (Co2+), rhodium (Rh2+), nickel (Ni2+), palladium (Pd2+), plat-
inum (Pt2+), copper/cuprum (Cu2+), zinc (Zn2+), cadmium (Cd2+), mercury (Hg2+),
tin/stannum (Sn2+), lead/plumbum (Pb2+), polonium (Po2+). Divalent lanthanides
that are known in the solid state but are unstable in water: neodymium (Nd2+),
samarium (Sm2+), europium (Eu2+), dysprosium (Dy2+), Thulium (Tm2+), ytterbium
(Yb2+). Divalent actinides (all artificially made): americium (Am2+), californium
(Cf2+), einsteinium (Es2+), fermium (Fm2+), mendelevium (Md2+), nobelium (No2+).

(3) In the found article, at least one of the words must be present in the text “transport”,
“channel”, “accumulation”, “cardiotoxicity”, or “intoxication”. Additional search and
selection were also made on the exact phrase according to the template “divalent
cation + key word”, e.g., “copper cardiotoxicity”. All publications were screened based
on their title and abstract to assess their relevance and eligibility, with special attention
given to the known or proposed influence of divalent cations on the contractile or
regulatory muscle proteins. More than 170 papers were carefully read and processed,
and ca. 135 articles devoted to cations were utilized for the manuscript draft, which
was revised several times.

The curation of text was conducted by dint of Artificial Intelligence (AI) Language
Model ChatGPT 3.5 using an enquiry “AI, improve the following text with special attention
to English grammar, punctuation, and grammatical form of time”. The AI made minor
improvements to the text, but the authors retained discretion over word choice and final
correction. The total time spent working on the manuscript took more than 8000 min,
excluding the search, selection, and reading of articles. After revisions, a final version of
the manuscript was prepared and approved by all the authors.

6. Conclusions

Heart contraction is a highly coordinated process that involves the interplay of multiple
molecules, including calcium- and magnesium-binding protein structures. Essential and
xenobiotic divalent cations can accumulate in the myocardium, enter cardiac cells, and
possibly bind to proteins, altering their functions.
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The EF-hand family proteins have binding sites optimized for highly charged cations
that have effective ionic radii close to that of Mg2+ and Ca2+. However, only a few members
of the EF-hand family viz. calmodulin, α-parvalbumin, skeletal troponin C, and smooth
muscle RLC were investigated concerning their ability to bind various divalent cations.

Calmodulin alters its conformation when at binding sites where Ca2+ has been substi-
tuted by bi- or trivalent cations with similar ionic radii viz. Cd2+, Sr2+, Pb2+, Cr2+, Zn2+,
Mn2+, Tb3+, Sm3+, and La+. Data on the affinity of Al3+ and Hg2+ to calmodulin are contra-
dictory. Cd2+, Sr2+, Pb2+, Cr2+ stimulate the calmodulin activity to varying degrees. Zn2+,
Al3+, and Hg2+ do not affect calmodulin activity at concentrations up to 1 mM. Na+, Mg2+,
Ba2+, and Ni2+ had no distinct effect on calmodulin. α-parvalbumin, which is a canonical
calcium-binding protein, was shown to bind Sr2+. In skeletal Troponin C, Cd2+, Sr2+, Pb2+,
Mn2+, Co2+, Ni2+, Ba2+, Mg2+, Zn2+, and trivalent lanthanides such as La3+, Ce3+, Nd3+,
Sm3+, and Dy3+ can substitute for Ca2+. Smooth muscle RLC was shown to significantly
alter affinity to divalent cations, i.e., Ca2+ and Mg2+, after amino acid substitutions.

Thus, various cations, including essential Zn2+, Cu2+, etc., and toxic Pb2+, Cd2+, and
Hg2+, may compete with Ca2+ for the calcium-binding sites of EF-hand proteins, altering
their functions. Therefore, it is necessary to study whether cardiac troponin C and atrial
and ventricular myosin regulatory light chains could be potential targets for these cations.

As myosin ATPase is not specific, many cations, including Ca2+, Fe2+, Mn2+, Ni2+,
Sr2+, and Co2+, could support its ATPase activity. At the same time, some other cations
such as Zn2+ and Cu2 significantly inhibit ATPase activity. Therefore, further investigation
is necessary to fully understand the possibility of cations binding by a myosin ATP-binding
pocket. It is important to consider the possibility that ATPase activity may be influenced
not only by cation interactions with the myosin ATP-binding pocket but also by metal
binding to the RLC.

The main question is whether cations could influence myosin and troponin kinetics
in real conditions. In healthy muscles, contraction occurs regardless of the small amount
of e.g., CaATP that is always present in the muscle. However, in certain disturbances of
cation homeostasis, concentration of physiologically relevant divalent ions can be increased,
significantly affecting the kinetics of the interaction between myosin and actomyosin. For
instance, Ca2+ can be increased and CaATPase activity may contribute to observed muscle
rigidity and enhanced muscle thermogenesis as in malignant hyperthermia, or Cu2+ can
significantly increase in Wilson disease [168], with uninvestigated possible effects. The
potential effect apparently depends on the ionic radius and charge of the specific cation,
its concentration in the cell, and the specific isoform of protein. In addition, the affinity
of EF-hand-like Ca2+ binding sites or other targets for divalent ions may be significantly
altered by amino acid substitutions or post-translational modification.

Further investigation is necessary to fully understand the mechanisms of cation entry
into cells, their competition, possible targets, affinity to these targets in different cation
concentrations, and their influence on the mechanical characteristics of cardiac contractile
and regulatory proteins. It is important to thoroughly study both essential and xenobiotic
cations, with a priority on toxic cations, while not omitting trivalent cations. We hope that
our review will help to provide direction for further investigations.
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