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Abstract: The structural stability of the extensively studied organic–inorganic hybrid methylammo-
nium tetrel halide perovskite semiconductors, MATtX3 (MA = CH3NH3

+; Tt = Ge, Sn, Pb; X = Cl,
Br, I), arises as a result of non-covalent interactions between an organic cation (CH3NH3

+) and an
inorganic anion (TtX3

−). However, the basic understanding of the underlying chemical bonding
interactions in these systems that link the ionic moieties together in complex configurations is still
limited. In this study, ion pair models constituting the organic and inorganic ions were regarded as the
repeating units of periodic crystal systems and density functional theory simulations were performed
to elucidate the nature of the non-covalent interactions between them. It is demonstrated that not
only the charge-assisted N–H···X and C–H···X hydrogen bonds but also the C–N···X pnictogen bonds
interact to stabilize the ion pairs and to define their geometries in the gas phase. Similar interactions
are also responsible for the formation of crystalline MATtX3 in the low-temperature phase, some of
which have been delineated in previous studies. In contrast, the Tt···X tetrel bonding interactions,
which are hidden as coordinate bonds in the crystals, play a vital role in holding the inorganic anionic
moieties (TtX3

−) together. We have demonstrated that each Tt in each [CH3NH3
+•TtX3

−] ion pair
has the capacity to donate three tetrel (σ-hole) bonds to the halides of three nearest neighbor TtX3

−

units, thus causing the emergence of an infinite array of 3D TtX6
4− octahedra in the crystalline phase.

The TtX4
4− octahedra are corner-shared to form cage-like inorganic frameworks that host the organic

cation, leading to the formation of functional tetrel halide perovskite materials that have outstanding
optoelectronic properties in the solid state. We harnessed the results using the quantum theory of
atoms in molecules, natural bond orbital, molecular electrostatic surface potential and independent
gradient models to validate these conclusions.

Keywords: methylammonium tetrel halide perovskites; ion pair chemistry; resemblance between the
gas and crystalline systems; charge-assisted hydrogen bonds; pnictogen bond; tetrel bond; stability
and energetics; MESP; IGM-δginter; NBO and QTAIM analyses

1. Introduction

Metal halide perovskite semiconductors are an important class of hybrid chemi-
cal systems [1–3]. They have been synthesized as either organic–inorganic hybrid per-
ovskites [4–6] or all-inorganic perovskites [7–9]. Compounds of the first type have often
been referred to as organometallic halide perovskites [10–12]. Since this is potentially
misleading, Angelis and Kamat [13] have suggested referring to them as metal halide
perovskites, following the arguments developed by one of us [14], although the practice of
referring to them as organometallic halide perovskites continues [15–19].

In organic–inorganic hybrid perovskites [4–6], the organic cation couples with the
inorganic anion to form an ion pair [20–24]; applying periodic boundary conditions leads
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to the formation of a bulk material [25,26]. In the case of all-inorganic perovskites, an
inorganic cation couples with another inorganic anion to form an ion pair [9,20]. Both types
of metal-based halide perovskites have been synthesized as crystalline materials in a variety
of dimensions (i.e., 0D, 1D, 2D and 3D) [27–30]. Many of them have been characterized as
3D single metal halide perovskites [31–33]. Double metal halide perovskites [34–36] are
predominantly all-inorganic hybrids [37–41].

Single metal halide perovskites are represented by the generic formula ABX3 [33,42] (or
AMX3 [43–45]), where A is an organic or inorganic cation, B or M is a metal cation, and X
is a halogen derivative. The oxidation states of A, B (or M) and X are +1, +2 and –1, respec-
tively. Some popular organic–inorganic hybrids that have applications in optoelectronics are
MATtX3 and FATtX3 (MA = CH3NH3

+, FA = HC(NH2)2
+ [46,47]; Tt = Pb [48–51], Sn [49,52,53];

X = I, Br). All-inorganic perovskites that have impressive optoelectronic properties include
CsTtX3 [54,55] and RbTtX3 [56–58]. MAPbI3 and MAPbBr3 [59–61] have been applied in
third-generation photovoltaics (efficient for photo-energy conversion).

The physical chemistry of many single metal halide perovskites has been investigated
both experimentally and theoretically. Many views, not necessarily divergent, have been
expressed about the optical and bandgap features of these systems [14,20,22–25,62–64].
Similar views have been provided on the interionic intermolecular interactions that act
as the glue that holds the organic and inorganic materials together in organic–inorganic
hybrid materials. The importance of organic cations as additives in organic–inorganic
halide perovskites has been demonstrated [65,66], but there seems to be some controversy
concerning the role they play in triggering their optoelectronic properties [9,19,21,67–69].

A point of much discussion is the nature of the chemical bonding in organic–inorganic
hybrids, for example, in FAPbI3 [70] and MATtX3 (Tt = Pb; X = I, Br) [9,22,23,71–73]. Con-
trary to views that there is no hydrogen bonding in hybrid lead halide perovskites at
room temperature [74], which is curious given that these systems have no geometric sta-
bility without the intermolecular interactions, we and others have stressed that the N–H···X
hydrogen bonds hold the ion pairs MA CH3NH3

+) and TtX3
− together in a well-defined

structure of organic–inorganic hybrids, both in the low-temperature (orthorhombic [22,75,76])
and the room-temperature (tetragonal [23,77]) phases. The N–H···X hydrogen bonds formed
by the methyl group of MA, as well as the C–N···X pnictogen bonds formed by the N end of
the same cation with the halogen derivative of the inorganic moiety and their importance in
the functionalization of these highly-valued perovskite systems, were either overlooked or
ignored [22,23]. They have yet to be fully delineated both theoretically and experimentally.

The aim of this study is to elucidate the types of intermolecular interactions between
CH3NH3

+ and TtX3
−, which are the building blocks of CH3NH3TtX3 perovskites in the

crystalline phase. In particular, we show using the [CH3NH3
+•TtX3

−] ion pair models
that the charge-assisted N–H···X and C–H···X hydrogen bonds are important (geometric)
synthons responsible for stabilizing the geometry of the inorganic [TtX3

−] framework
in the various phases of the system observed in the solid state (viz. the cubic phase of
CH3NH3PbI3, Figure 1a,b). The C–N···X pnictogen bonds are non-negligible contributors
to the tilting of the TtX6

4− octahedra of the low-temperature orthorhombic phase (Figure 1c)
and the X–Tt···X tetrel bonds are the key geometric players in the formation of the TtX6

4−

octahedra and the resultant cage-like structure that hosts the organic cation (see polyhedral
models in Figure 1a–c). The definition and characteristic features of the hydrogen bond [78],
pnictogen bond [79,80] and tetrel bond [9,81,82] have been discussed elsewhere, which we
outline in a following section, and a discussion of the physical chemistry of charge-assisted
non-covalent interactions can be found elsewhere [82–86]. We utilize Density Functional
Theory (DFT) calculations at the ωB97X-D [87] level of theory, together with the Quantum
Theory of Atoms in Molecules (QTAIM) [88], Molecular Electrostatic Surface Potential
(MESP) [89–92] and Independent Gradient Model (IGM) [93,94] approaches, to validate
our conclusions.
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Figure 1. The unit cell (left) and 2 × 2 supercell (right) structure of cubic MAPbI3 in the high-
temperature phase (T > 330 K [95]), showing the orientation of the organic cation along the
(a) (111) and (b) (011) directions [25]. (c) Two different polyhedral views of the low-temperature
orthorhombic phase of fully relaxed (PBEsol) geometry of MAPbI3, with the titling angle (in degrees),
∠Pb–I–Pb, along two crystallographic directions (see ESI for details), obtained using the VASP code
(version 5.4) [96–100]. Each polyhedron represents the PbI6

4− octahedron. Three types of bonds
(coordinate, tetrel and hydrogen bonds) are marked in the polyhedral model in (a).
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2. Results
2.1. Methylammonium Tetrel Halide Perovskite Ion Pairs

The (111) direction of the organic cation in the crystalline cubic structure of MAPbI3
results when the ammonium end of the cation faces a triangular face (formed by three
iodides) of a [TtI6

4−] octahedron of an extended solid (Figure 1a). When the unit cell
shown in Figure 1a (left) is expanded, the methyl end of the diagonally placed MA faces the
triiodide face of a [TtI6

4−] that occupies the opposite corner of the cube (Figure 1a (right));
this also represents the (111) direction of the organic cation. The resulting structure when
the organic cation is oriented along the (011) direction is shown in Figure 1b (right). A very
similar orientation of the organic cation is likely to be obtained when X = Br (or Cl).

The orientation of the organic cation in cubic MAPbI3 plays a fundamental role
in determining the material optoelectronic properties of methylammonium tetrel halide
perovskites [25]. For instance, when MA orientates along the (011) direction (Figure 1b),
the inorganic octahedral cage distorts and the bandgap of cubic MAPbI3 becomes indirect;
when the organic cation is oriented along the (111) direction, there is no distortion of the
inorganic octahedral cage with the PbI6

4− units linearly bonded to each other through
the octahedral edges, and the material has a direct bandgap. Using the results of periodic
DFT calculations [25], it was shown that the relaxation of the halide perovskite lattice
with the molecular cation as shown in Figure 1a (left) does not distort its orientation in
any crystallographic direction. This was not the case when MA initially orientated in
the (001) direction; the relaxation of the lattice produced a structure with MA orientated
along the (011) or an equivalent direction. Both configurations were local minima, with an
energy difference of 20 meV in favor of the lattice that has the organic cation along the (011)
direction [25].

A question that arises is whether the orientations of MA observed in the high-
temperature phase of the system also occur in the gas phase when there are no boundary
conditions. To address this question, we examined the geometries of [CH3NH3

+•PbI3
−]

ion pairs in the gas phase (Figure 2a–c). The first two panels, Figure 2a,b, show that
the ammonium and methyl ends of MA face the triangular iodide face of the anion, re-
spectively, and they mimic the (111) orientation of the cation in the periodic structure
(Figure 1a). The third configuration of [CH3NH3

+•PbI3
−] (Figure 2c) resembles the (011)

orientation of MA in the solid state (Figure 1b). The corresponding conformations were also
identified for [CH3NH3

+•PbBr3
−] (Figure 2d–f), [CH3NH3

+•PbCl3−] (Figure 2g–i) and
[CH3NH3

+•PbF3
−] (Figure 2j–l). We will refer to the first two conformations of each ion

pair type on the left of each panel, which mimic the (111) direction of the organic cation, as
Conf. 1 and 2, respectively; the conformation on the right of each panel, which mimics the
(011) orientation of the cation, will be referred to as Conf. 3. In each case, it was found that
Conf. 1 is more stable than Conf. 2 or Conf. 3 (relative values of ∆E are shown in Figure 2),
i.e., Conf. 1 > Conf. 3 > Conf. 2. Conf. 1 is calculated to be the only minimum, while Conf.
2 and 3 are, respectively, second- and first-order transition state gas phase structures.

The orientation of the organic cation inside the inorganic cage (Figure 1a, right)
determines the nature of the charge-assisted hydrogen bonding between it and the cage.
When it lies along the (111) orientation, the three H atoms of the ammonium end (or the
methyl end) of MA are involved in three equivalent N–H···I (or C–H···I) hydrogen bonds
with the three I atoms of the I3 of [PbI3

−]; see for example, Figure 2a,b, for [I3Pb···NH3CH3]
(Conf. 1) and [I3Pb···CH3NH3] (Conf. 2), respectively. When the cation is oriented along
the (011) direction, the N–H···I/C–H···I hydrogen bonds of MA with the [PbI3

−] face are
not equivalent; the two C–H···I (equivalent) hydrogen bonds are longer than the N–H···I
hydrogen bonds (see, for example, Conf. 3 ([I3Pb···H3NCH3]), Figure 2c). The same trend
was found when X = Br, Cl and F (see Figure 2d–f, g–i and j–l, respectively).



Int. J. Mol. Sci. 2023, 24, 10554 5 of 28Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 28 
 

 

 

Figure 2. [ωB97X-D/def2-TZVPPD] level fully relaxed geometries of [CH3NH3+•PbX3−] (X = F, Cl, Br, 

I) ion pairs, including (a) [I3Pb···NH3CH3]; (b) [I3Pb···CH3NH3]; (c) [I3Pb···H3NCH3]; (d) 

[Br3Pb···NH3CH3]; (e) [Br3Pb···CH3NH3]; (f) [Br3Pb···H3NCH3]; (g) [Cl3Pb···NH3CH3]; (h) 

[Cl3Pb···CH3NH3]; (i) [Cl3Pb···H3NCH3]; (j) [F3Pb···NH3CH3]; (k) [F3Pb···CH3NH3]; (l) 

[F3Pb···H3NCH3]. Shown are selected coordinate and hydrogen bond distances (solid and dotted 

lines, respectively) in Å and hydrogen bond angles in degrees. The relative energies (ΔE) with re-

spect to the most stable conformer for each series with a given halogen derivative are shown in kcal 

mol−1. Atom labeling is shown for selected systems. 

For a given halogen derivative in [CH3NH3+•PbX3−], the N–H···X hydrogen bond dis-

tances are shorter than the C–H···X hydrogen bonds, in agreement with what was ob-

served in the solid state for CH3NH3PbX3 (X = Cl, Br, I) perovskites [22,23]. This means 

that the charge-assisted N–H···X hydrogen bonds formed by the ammonium end of MA 

are stronger than the C–H···X hydrogen bonds formed by the methyl end of MA, and their 

strength increases with the electronegativity of the halogen (F > Cl > Br > I). For both Conf. 

1 and Conf. 2, the hydrogen bond distance decreases as the halogen becomes more elec-

tron-withdrawing (see Figure 2a,d,g,j or Figure 2b,e,h,k), a feature found for ion pairs 

when Tt = Sn and Ge, but not when Tt = Si (see Figures S1–S4 of the Electronic 

Figure 2. [ωB97X-D/def2-TZVPPD] level fully relaxed geometries of [CH3NH3
+•PbX3

−]
(X = F, Cl, Br, I) ion pairs, including (a) [I3Pb···NH3CH3]; (b) [I3Pb···CH3NH3]; (c) [I3Pb···H3NCH3];
(d) [Br3Pb···NH3CH3]; (e) [Br3Pb···CH3NH3]; (f) [Br3Pb···H3NCH3]; (g) [Cl3Pb···NH3CH3];
(h) [Cl3Pb···CH3NH3]; (i) [Cl3Pb···H3NCH3]; (j) [F3Pb···NH3CH3]; (k) [F3Pb···CH3NH3];
(l) [F3Pb···H3NCH3]. Shown are selected coordinate and hydrogen bond distances (solid and dotted
lines, respectively) in Å and hydrogen bond angles in degrees. The relative energies (∆E) with respect
to the most stable conformer for each series with a given halogen derivative are shown in kcal mol−1.
Atom labeling is shown for selected systems.

For a given halogen derivative in [CH3NH3
+•PbX3

−], the N–H···X hydrogen bond
distances are shorter than the C–H···X hydrogen bonds, in agreement with what was
observed in the solid state for CH3NH3PbX3 (X = Cl, Br, I) perovskites [22,23]. This means
that the charge-assisted N–H···X hydrogen bonds formed by the ammonium end of MA
are stronger than the C–H···X hydrogen bonds formed by the methyl end of MA, and their
strength increases with the electronegativity of the halogen (F > Cl > Br > I). For both Conf. 1
and Conf. 2, the hydrogen bond distance decreases as the halogen becomes more electron-
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withdrawing (see Figure 2a,d,g,j or Figure 2b,e,h,k), a feature found for ion pairs when
Tt = Sn and Ge, but not when Tt = Si (see Figures S1–S4 of the Electronic Supplementary
Information, ESI). In all cases, the hydrogen bonds are non-linear (∠N–H···X or ∠C–H···X
< 143◦), regardless of their type, and (based on the bond lengths) the strength of the Pb–X
coordinate bonds decreases passing from F through Br to Cl to I in [CH3NH3

+•PbX3
−] (see

Figure 2a,d,g,h, for example).
Replacement of Pb by Sn and Ge in [CH3NH3

+•PbX3
−] did not appreciably change

the nature of the coordination between Tt and X in TtX3
−, although the hydrogen-bonded

environment was affected (see Figures S1a–l and S2a–l of the ESI). When Tt = Si in
[CH3NH3

+•TtX3
−], Conf. 3 was found to be unstable for X = I and Br (see Figure S3a–d), but

[X3Si···NH3CH3] was more stable than [X3Si···CH3NH3]. Figures S3e–g and S4a-c of the ESI
provide the geometric and relative energy details of the ion pair series [CH3NH3

+•SiX3
–]

and [CH3NH3
+•SiF3

–], respectively. In all cases, Conf. 1 was observed to be more stable
than Conf. 2 and Conf. 3.

Conf. 3 was obtained from the initial geometry shown in Figure S4d for each of the
three tetrel halide perovskite ion pair series, [CH3NH3

+•PbX3
−] (X = Cl, Br, I). However,

when this initial configuration was used for relaxation of the [CH3NH3
+•SiF3

−] ion pair,
the resulting geometry was no longer an ion pair and the initial configuration was not
retained after energy minimization. This was not the case when the methyl and ammonium
ends of the organic cation were pointed toward the center of the trifluoride triangular face
of SiF3

−. The energy-minimized geometry in Figure S4d shows that there is a significant
interaction between the two ionic moieties when in close proximity, with a breaking of the
N–H covalent bond and the formation of two neutral species, SiHF3 and CH3NH2, due
to complete hydrogen transfer from the ammonium end to the anion. (This is addressed
later.) Due to this, we then used the optimized geometry of the [PbF3

−···NH3CH3
+] ion

pair (Figure 2l) as an initial configuration, replacing Pb with Si; the final energy-minimized
geometry is shown in Figure S4c. Although this was the case for the system with the anion
SiF3

−, a similar attempt did not stabilize the analogous geometry of the ion pair when
X = I and Br.

To help determine the validity of these conclusions we performed an MESP analysis;
the results are summarized in Table 1. Analysis of these data suggests that the Si surfaces
of [SiX3

−···NH3CH3
+] (X = I and Br) ion pairs are weakly positive but are negative in

the remaining eight ion pairs of the same series regardless of the identity of the halogen
derivative. The halogen in [SiX3

−] has high electron density compared to the surface
of the Si atom. There are three equivalent negative σ-holes on Si in each of the two ion
pairs for a given halogen except for Conf. 3, and their strength decreases with an increase
in the size of the halogen in [SiX3

−]. The σ-hole on Si is more electrophilic when the
ammonium head faces the triangular X3 face of [SiX3

−] than when the methyl head faces
that face. This is reasonable since the –NH3 group in MA is strongly electrophilic and hence
relatively more electron-withdrawing than the methyl head. The first arrangement causes
the development of a structure with relatively greater depletion of charge density on the
surface of the Si atom along the outermost extensions of the three X–Si bonds. Since the
lone pair of the Si lies along the outer extension of the C3v axis, the VS,min associated with it
is increasingly more positive as the halogen becomes more electron-withdrawing, making
the entire surface of the Si atom nucleophilic.
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Table 1. Selected [ωB97X-D/def2-TZVPPD] computed 0.001 a.u. isoelectronic density envelope
mapped potential maxima and minima (kcal mol−1) on the electrostatic surfaces of ion pairs
X3Tt−···MA (X = I, Br, Cl, F; Tt = Pb, Sn, Ge, Si; MA = NH3CH3

+). The 0.0015 a.u. isoelectronic
density envelope mapped potentials are given in parentheses for selected systems.

Ion Pairs VS,max(X–Tt) VS,max(X–Tt) VS,max(X–Tt) VS,min(Tt) VS,max(N-
C)/VS,max(C-N) VS,min(X) VS,min(X)

I3Pb···NH3CH3 26.1 26.1 26.1 22.2 38.2 −18.0
I3Pb···CH3NH3 11.9 11.9 11.9 9.6 90.4 −29.9
I3Pb···H3NCH3 23.4 23.4 19.4 18.3 --- −23.1 −17.4
Br3Pb···NH3CH3 26.6 26.6 26.6 22.2 36.4 −21.2
Br3Pb···CH3NH3 10.4 10.4 10.4 7.7 88.3 −34.1
Br3Pb···H3NCH3 23.0 23.0 19.1 17.4 --- −27.2 −21.5
Cl3Pb···NH3CH3 26.1 26.1 26.1 21.0 34.9 −23.8
Cl3Pb···CH3NH3 8.3 8.3 8.3 5.1 86.6 −37.0
Cl3Pb···H3NCH3 21.8 21.8 17.9 15.5 --- −30.5 −26.9
F3Pb···NH3CH3 22.8 22.8 22.8 14.8 27.4 −37.6
F3Pb···CH3NH3 −0.4 (4.1) −0.4 (4.1) −0.4 (4.1) −5.7 (−4.2) 79.6 (83.8) −53.1 (−57.0)
F3Pb···H3NCH3 16.1 16.1 12.5 6.8 --- −39.2 −47.5
I3Sn···NH3CH3 15.6 15.6 15.6 5.3 39.5 −16.9
I3Sn···CH3NH3 0.5 0.5 0.5 −7.9 91.4 −30.0
I3Sn···H3NCH3 12.5 12.5 9.5 1.6 --- −22.2 −17.2
Br3Sn···NH3CH3 15.5 15.5 15.5 3.8 38.2 −19.8
Br3Sn···CH3NH3 −1.6 (3.6) −1.6 (3.6) −1.6 (3.6) −11.1 (−10.1) 89.8 (94.4) −33.8 (−34.7)
Br3Sn···H3NCH3 11.5 11.5 8.6 −0.7 --- −25.8 −20.9
Cl3Sn···NH3CH3 14.6 14.6 14.6 1.7 37.2 −22.1
Cl3Sn···CH3NH3 −4.0 (1.1) −4.0 (1.1) −4.0 (1.1) −14.8 (−14.2) 88.5 (93.0) −35.8 (−37.8)
Cl3Sn···H3NCH3 10.1 10.1 7.2 −3.6 --- −28.7 ---
F3Sn···NH3CH3 11.5 11.5 11.5 −5.4 31.6 −34.6
F3Sn···CH3NH3 −11.7 (−6.9) −11.7 (−6.9) −11.7 (−6.9) −25.8 (−26.4) 82.8 (---) −50.8 (−54.4)
F3Sn···H3NCH3 5.3 5.3 3.3 −12.3 −36.3 −44.0
I3Ge···NH3CH3 7.0 7.0 7.0 −3.0 40.6 −17.3
I3Ge···CH3NH3 −8.2 (−3.8) −8.2 (−3.8) −8.2 (−3.8) −16.0 (−15.3) 92.5 (97.1) −30.9 (−31.1)
I3Ge···H3NCH3 4.2 4.2 1.4 −6.1 --- −22.2 −17.8
Br3Ge···NH3CH3 6.1 6.1 6.1 −5.5 39.7 −19.9
Br3Ge···CH3NH3 −11.3 −11.3 −11.3 −20.7 90.9 −35.4
Br3Ge···H3NCH3 2.4 (7.4) 2.4 (7.4) −0.3 (4.3) −9.6 (−8.9) --- −25.4 (−26.4) −21.4 (−22.4)
Cl3Ge···NH3CH3 4.8 4.8 4.8 −8.7 39.0 −21.7
Cl3Ge···CH3NH3 −14.2 −14.2 −14.2 −25.3 89.7 −37.9
Cl3Ge···H3NCH3 0.6 (5.9) 0.6 (5.9) −1.8 (2.7) −13.4 (−13.1) --- −27.6 (−29.0) −24.1 (−25.1)
F3Ge···NH3CH3 −0.3 (4.7) −0.3 (4.7) −0.3 (4.7) −19.2 (−19.9) 35.4 (38.0) −33.1 (−35.5)
F3Ge···CH3NH3 −23.8 −23.8 −23.8 −39.5 85.2 −50.3
F3Ge···H3NCH3 −6.1 −6.1 −6.7 −25.1 --- −41.1 −35.3
I3Si···NH3CH3 −0.8 (3.3) −0.8 (3.3) −0.8 (3.3) −15.8 (−16.0) 41.8 (44.7) −16.6 (−16.7)
I3Si···CH3NH3 −16.3 −16.3 −16.3 −29.1 93.4 −30.6
Br3Si···NH3CH3 −3.1 (1.3) −3.1 (1.3) −3.1 (1.3) −20.5 (−21.3) 41.3 (44.2) −19.2 (−19.7)
Br3Si···CH3NH3 −20.9 −20.9 −20.9 −35.7 92.3 −35.0
Cl3Si···NH3CH3 −5.3 (−1.0) −5.3 (−1.0) −5.3 (−1.0) −25.5 (−26.7) 41.3 (44.2) −21.0 (−21.7)
Cl3Si···CH3NH3 −24.6 −24.6 −24.6 −41.9 91.7 −37.6
Cl3Si···H3NCH3 −9.8 −9.8 −10.8 −29.8 --- −24.5 −27.5
F3Si···NH3CH3 −12.6 −12.6 −12.6 −41.2 40.8 −32.1
F3Si···CH3NH3 −35.0 −35.0 −35.0 −60.0 89.6 −50.6
F3Si···H3NCH3 −17.70 −17.70 −15.0 −45.8 --- −34.2 −39.4

The electrostatic surfaces of Pb in [PbX3
−···NH3CH3

+], [PbX3
−···CH3NH3

+] and
[PbX3

−···H3NCH3
+] have electron-deficient regions along the X–Pb bond extensions (VS,max

(X–Pb) > 0) (Figure 3). They are equivalent in Conf. 1 or 2 but not in Conf. 3. The surface
of Pb along the outermost extension of the C3v axis is also positive, represented by a
positive local minimum of potential (VS,min (Pb) > 0). For example, values of VS,min (Pb)
are 22.2, 9.6 and 18.3 kcal mol−1 for Conf. 1, Conf. 2 and Conf. 3, as shown in Figure 3a–c
(bottom), respectively. These results indicate that the coordinately bonded Pb atom has three
electrophilic σ-holes in these molecular ion pairs, and its surface is entirely electrophilic.
An exception was found for [F3Pb−···CH3NH3

+] when the 0.001 a.u. isoelectronic density
envelope was invoked on which to compute the potential (VS,max (F–Pb) =−0.4 kcal mol−1),
but a larger isoelectronic density envelope of 0.0015 a.u. gave VS,max (F–Pb) = 4.1 kcal mol−1.
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Both C and N atoms along the N–C and C–N bond extensions have electrophilic σ-holes
in Conf. 1 and Conf. 2, respectively, and their strength in the former was weaker than
that in the latter (VS,max(N–C) and VS,max(C–N) 38.2 and 90.4 kcal mol−1, respectively).
Similarly, the lateral portions of the halogen in Conf. 1 or Conf. 2 are equipotential,
described by VS,min (X) < 0, although this was not the case in Conf. 3 because of symmetry.
For instance, the surface of the halogen that is hydrogen-bonded to the methyl group is
less negative than the halogens bonded to the ammonium group in Conf. 3 (VS,min (X)
−23.1 and −17.4 kcal mol−1, respectively). The detailed nature of the MESP graphs of the
three conformations of [CH3NH3

+•SnI3
−] and [CH3NH3

+•GeI3
−] ion pairs are shown in

Figures S5 and S6 of the ESI, respectively.
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Figure 3. [ωB97X-D/def2-TZVPPD] level potential on the electrostatic surface of the three
conformations of [CH3NH3

+•PbI3
−]: (a) [PbI3

−···NH3CH3
+]; (b) [PbI3

−···CH3NH3
+]; and

(c) [PbI3
−···H3NCH3

+]. The methyl, ammonium and both groups of MA are facing the reader
in the top panel of (a), (b) and (c), respectively. The Pb atom is facing the reader in the bottom panel
of all three MESP plots shown in (a–c). Values on the color bar are in kcal mol−1. Atom labeling is
shown for selected systems.

As observed in the case of methylammonium lead halide perovskite ion pairs, the tin
surfaces of the three tin-based halide perovskite ion pairs (I3Sn···NH3CH3, I3Sn···H3NCH3
and Br3Sn···NH3CH3) are entirely positive, while the surfaces of the same atom in the
remaining nine tin halide perovskite ion pairs are not completely positive; VS,min (Sn) is
negative in the first two and negative in the latter nine ion pairs (Table 1). Except for
F3Sn···CH3NH3, the three σ-holes on the surface of Sn along the X–Sn bond extensions are
electrophilic (VS,max(X–Sn) > 0). They are negative for F3Sn···CH3NH3 regardless of the
isoelectronic density envelopes used for mapping of the potential (cf. Table 1).

In the case of germanium halide perovskite ion pairs, VS,min(Ge) is found to be negative
for all 12 ion pairs, evidence that the lone pair of Ge is active along the outer extension
of the C3v axis. The σ-holes on the surface of Ge in I3Ge···CH3NH3 (X = I, Br, Cl) are
not all nucleophilic, although they are for the germanium fluoride perovskite ion pairs
(F3Ge···NH3CH, F3Ge···CH3NH3 and F3Ge···H3NCH3). This suggests that the formation
of an MAGeF3 perovskite is unlikely in the solid state, as inferred for the MASiX3 systems
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(vide supra). The synthesis of the chloro- and bromo-analogues of MAGeF3 may be feasible,
although the interaction between the ion pairs will be weaker and thus it is expected that
the solid-state compounds would be readily degraded.

Among the ion pairs investigated, the lead atom in Br3Pb···NH3CH3 provides the
strongest σ-holes, suggesting that they are likely to form stronger oligomers, or clusters, when
a number of such ion pairs are in close proximity. The phenomenon is likely to persist in the
crystalline phase and rationalizes why MAPbBr3 perovskites were observed to be significantly
more stable under ambient conditions than MAPbI3 perovskite materials [59,101,102]. A
number of suggestions have been provided to explain the enhanced stability of MAPbBr3
compared to MAPbI3, including bromide migration, and the reduced activation energy,
diffusion coefficient and concentration for halide ions in MAPbBr3 compared to MAPbI3 [59].

2.2. QTAIM, IGM-δginter and NBO Analysis of Ion Pairs

The molecular graphs of all twelve ion pairs associated with the three conformers
[PbX3

−···NH3CH3
+], [PbX3

−···CH3NH3
+] and [PbX3

−···H3NCH3
+] (X = I, Br, Cl, F) are

shown in Figure 4. The N–H···X hydrogen bonds in Conf. 1 and Conf. 3 are shown in the
ion pairs (Figure 4a,c,d,f,g,i,j,l) as dotted bond paths between the bonded atomic basins
with a (3, –1) bond critical point (bcp) between them [78]. The C–H···X hydrogen bonds
are present in Conf. 2 in which the methyl H atoms point towards the triangular X3 face of
the inorganic anion. They are weaker than the N–H···X hydrogen bonds, indicated by the
charge density values, ρb, at their corresponding bcps.

QTAIM misses the bond path topologies of the C–H···X hydrogen bonds in the molec-
ular graphs shown in Figure 4c,f,i,l; this is not unexpected since the intermolecular dis-
tances associated with these weakly bonded close contacts (cf. Figure 2c,f,i,l) are longer
than the sum of the van der Waals radii of X and H (rvdW(H) = 1.20 Å; rvdW(F) = 1.46 Å;
rvdW(Cl) = 1.82 Å; rvdW(Br) = 1.86 Å; rvdW(I) = 2.04 Å) [103]. Very similar results have been
reported recently in a study that focused on the physical chemistry of anion–molecule
systems driven by tetrel bonds [82]. QTAIM identifies a C···X tetrel bond between the
methyl C of MA and an X site on PbX3

− in Conf. 3 (cf. Figure 4c,f,i,l), instead of C–H···X
hydrogen bonds; the emergence of such an interaction is not surprising since the outer
electrostatic surface of the C atom along the H–C bond extensions is positive.

The topological charge density characteristics of the intermolecular interactions identi-
fied by QTAIM are different from those of the Pb–X coordinate bonds. Most of the former,
but not all, are characterized by∇2ρb > 0 and Hb > 0, whereas the latter are characterized by
∇2ρb > 0 but Hb < 0 and a relatively large ρb, where ∇2ρb and Hb are the Laplacian of the
charge density and the total energy density, respectively. These results suggest that most
of the intermolecular (interionic) interactions are of the closed-shell type [104], whereas
the coordinate bonds in the ion pairs are of mixed character [105]. For each series with
a given halogen derivative, the value of ρb is the largest for the N–H···X hydrogen bond
(see Conf. 1 and Conf. 3) and the smallest for the C···X tetrel bond (Conf. 3). The largest
value of ρb is associated with the N–H···X hydrogen bonds in some ion pairs, for which
the bond paths between the interacting ions are described by solid lines in atom colors
(viz. [Cl3Pb···NH3CH3] (Figure 4g) and F3Pb···NH3CH3] (Figure 4j)). The three equivalent
N–H···X hydrogen bonds in Conf. 1 of each series possess some covalency character since
Hb < 0 at the bcps [105] (see Figure 4a,d,g,j).



Int. J. Mol. Sci. 2023, 24, 10554 10 of 28

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 28 
 

 

which the bond paths between the interacting ions are described by solid lines in atom 

colors (viz. [Cl3Pb···NH3CH3] (Figure 4g) and F3Pb···NH3CH3] (Figure 4j)). The three equiv-

alent N–H···X hydrogen bonds in Conf. 1 of each series possess some covalency character 

since Hb < 0 at the bcps [105] (see Figure 4a,d,g,j). 

 

Figure 4. [ωB97X-D/def2-TZVPPD] level QTAIM’s molecular graphs for [CH3NH3+•PbX3−] (X = F, 

Cl, Br, I) ion pairs in the conformational space, including (a) [I3Pb···NH3CH3]; (b) [I3Pb···CH3NH3]; 

(c) [I3Pb···H3NCH3]; (d) [Br3Pb···NH3CH3]; (e) [Br3Pb···CH3NH3]; (f) [Br3Pb···H3NCH3]; (g) 

[Cl3Pb···NH3CH3]; (h) [Cl3Pb···CH3NH3]; (i) [Cl3Pb···H3NCH3]; (j) [F3Pb···NH3CH3]; (k) 

[F3Pb···CH3NH3]; (l) [F3Pb···H3NCH3]. The bond paths are shown as solid and dotted lines, respec-

tively, in atom colors, and bond critical points (bcps) as tiny spheres in green between bonded 

atomic basins. Values (in a.u.) represent the charge density (ρb), the Laplacian of the charge density 

(∇2ρb) and the total energy density (Hb) at bcps. Atom labeling is shown for each case. 

Figure 4. [ωB97X-D/def2-TZVPPD] level QTAIM’s molecular graphs for [CH3NH3
+•PbX3

−] (X = F,
Cl, Br, I) ion pairs in the conformational space, including (a) [I3Pb···NH3CH3]; (b) [I3Pb···CH3NH3];
(c) [I3Pb···H3NCH3]; (d) [Br3Pb···NH3CH3]; (e) [Br3Pb···CH3NH3]; (f) [Br3Pb···H3NCH3];
(g) [Cl3Pb···NH3CH3]; (h) [Cl3Pb···CH3NH3]; (i) [Cl3Pb···H3NCH3]; (j) [F3Pb···NH3CH3];
(k) [F3Pb···CH3NH3]; (l) [F3Pb···H3NCH3]. The bond paths are shown as solid and dotted lines,
respectively, in atom colors, and bond critical points (bcps) as tiny spheres in green between bonded
atomic basins. Values (in a.u.) represent the charge density (ρb), the Laplacian of the charge density
(∇2ρb) and the total energy density (Hb) at bcps. Atom labeling is shown for each case.

That QTAIM missed the C–H···X hydrogen bonds in Conf. 3 is confirmed by our
IGM-δginter analysis, presented in Figure 5. The results demonstrate that the IGM-δginter
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isosurface volumes (circular or flat), colored bluish green (or green), spread within the
area between the interacting atomic basins that are non-covalently engaged with each
other, a color code that appears only when there is an attractive interaction between the
interacting basins. These isosurfaces are representatives of ρ × sign (λ2) < 0, where λ2 is the
second eigenvalue of the Hessian of the charge density matrix. When ρ × sign (λ2) > 0, one
would expect repulsion between interacting basins, and these are generally described by
red isosurfaces. Van der Waals interactions correspond to ρ × sign (λ2) ≈ 0 [93,94]. Clearly,
as inferred from geometries alone (see Figure 2, for example), Conf. 1 and Conf. 2 are
stabilized by N–H···I and C–H···I hydrogen bonds, respectively, with the former relatively
stronger than the latter. Similarly, Conf. 3 is stabilized by N–H···I, C···I and C–H···I close
contacts. The latter are very weak and appear only when an isovalue < 0.01 a.u. is used.
The flat capsule type isosurface volume between the methyl group in MA and I in the
inorganic anion in Figure 5d suggests that the attraction between the interacting units is
weakly dispersive and includes weak C–H···I hydrogen bonds and the C···I tetrel bond.
The presence of the former was confirmed when the interacting atomic basins (H and I) in
the ion pair were used in the analysis of IGM-δginter for which a smaller isovalue of 0.005 a.u.
was invoked. This is shown in Figure 5d (right), and the IGM-δginter isosurface volume
between I and H representing C–H···I is more localized and weaker. These conclusions
may hold for ion pairs formed with any other halogen derivative.
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Figure 5. [ωB97X-D/def2-TZVPPD] level IGM-δginter isosurface plots of the three conformations of
[CH3NH3

+•PbI3
−]: (a) [PbI3

−···NH3CH3
+]; (b) [PbI3

−···CH3NH3
+]; (c) [PbI3

−···H3NCH3
+]. Shown

in (d) are the IGM-δginter isosurface plots for [PbI3
−···H3NCH3

+], in which different isovalues of IGM
are shown. Labeling of selected atoms is shown in (a).

We carried out a second-order natural bond orbital analysis [106,107] to provide some in-
sight into the nature of the charge transfer (hyperconjugative) interactions that occur between
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the “filled” (donor) Lewis-type NBOs and “empty” (acceptor) non-Lewis NBOs, but only for
the three confirmations of [CH3NH3

+•PbI3
−] (Figure 5). The results suggest that the charge

transfer interactions between the acceptor and donor NBOs responsible for either of the two N–
H···I hydrogen bonds in Conf. 3 ([PbI3

−···H3NCH3
+]) can be described by n(3)I→ σ*(N–H)

(E(2) = 6.71 kcal mol−1) andσ(Pb–I)→ σ*(N–H) (E(2) = 2.0 kcal mol−1), whereas the C–H···I hy-
drogen bond and H–C···I tetrel bond are described by n(3)I→ σ*(N–C) (E(2) = 0.17 kcal mol−1)
and n(3)I→ σ*(N–C) (E(2) = 0.16 kcal mol−1), respectively, where n(3) refers the third lone
pair and E(2) is the second-order stabilization energy [106,108]. The charge transfer interaction
for each of the three N–H···I hydrogen bonds in Conf. 1 ([PbI3

−···NH3CH3
+]) is described

by n(3)I→ σ*(N–H) (E(2) = 14.52 kcal mol−1), σ(Pb–I)→ σ*(N–H) (E(2) = 0.52 kcal mol−1)
and n(3)I→ σ*(N–C) (E(2) = 0.36 kcal mol−1), with the latter indicative of a weak C–N···I
pnictogen bond. Similarly, the charge transfer interaction associated with each of the three
C–H···I hydrogen bonds in Conf. 2 [PbI3

−···CH3NH3
+] is described by n(3)I → σ*(C–H)

(E(2) = 4.17 kcal mol−1), and n(3)I→ σ*(C–N) (E(2) = 0.47 kcal mol−1), indicating that the σ*
anti-bonding orbital of the C–N bond of the organic cation has the ability to act as an acceptor
of electronic charge density via a charge transfer interaction with the π-type lone pair orbital
of iodine in the inorganic anion and corresponds to an I–C···I tetrel bond. Since the geometric
topology is very similar for all ion pairs investigated, it may be assumed that similar charge
transfer interactions occur between the interacting ions that lead to the formation of the other
ion pairs investigated.

2.3. Energy Stability of the Ion Pairs

The interaction energies ∆E of all the ion pairs investigated are summarized in Table 2;
the total electronic energies obtained from the geometries of the ion pairs and the individual
ions in the energy-minimized geometries of the same ion pairs were used. The counterpoise
procedure of Boys and Bernardi [109] was followed, as implemented in Gaussian 16 [110]
(see Section 4 for details). Among the three conformers examined for each tetrel derivative
for a given halide, the hydrogen-bonded ion pair that has the ammonium head point-
ing towards the X3 triangular face of the anion was found to be the most stable. For
example, the relative stability of the three conformers of [CH3NH3

+•PbI3
−] follows the

order: Conf. 1 (I3Pb···NH3CH3) > Conf. 3 (I3Pb···H3NCH3) > Conf. 2 (I3Pb···CH3NH3)
(Figure 2a–c), which is similar to that of their corresponding interaction energies, summa-
rized in Table 1. The most stable ion pair was F3Pb···NH3CH3, with an interaction energy
of −138.54 kcal mol−1 (Table 2).

The interaction energy listed in Table 2 for each ion pair is not the consequence of a
single hydrogen bond. For example, this means that the ∆E(BSSE) of −104.85 kcal mol−1

for I3Pb···NH3CH3 arises from three equivalent charge-assisted I···H(N) hydrogen bonds;
that of −76.33 kcal mol−1 for I3Pb···CH3NH3 is due to three equivalent charge-assisted
I···H(C) hydrogen bonds; and that of −97.53 mol−1 for I3Pb···H3NCH3 is the result of a
pair of equivalent charge-assisted I···H(N) hydrogen bonds and a pair of charge-assisted
I···H(C) hydrogen bonds.

For ion pairs formed with a given tetrel derivative and a variable halide, i.e., [X3Pb···NH3CH3]
where X = F, Cl, Br, I, the interaction energy increases (F > Cl > Br > I) as the polarizability of
the halide decreases (I > Br > Cl > F). This is intuitively obvious since the electronegativity of the
halides plays a significant role in determining the strength of an intermolecular charge-assisted
hydrogen bonds.

While the interaction energies of the fluorinated ion pairs (viz. F3Pb···H3NCH3 and
F3Sn···H3NCH3) are very large, and are of the ultra-strong type, these ion pairs hinder the
formation of their corresponding perovskite structures in the solid state since the volume
of the cage formed by the inorganic moiety is unlikely to be large enough to accommodate
the organic cation.

On the other hand, the interaction between the two neutral molecules SiHF3 and
CH3NH2 in F3HSi···NH2CH3 (Figure S4d) is not weak. The monomers in the complex are
bonded to each other through a Si···N tetrel bond. The formation of this bond is perhaps
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obvious since the lone pair on the ammonium N is directly engaged with the positive σ-hole
on the Si atom in SiHF3, which appears along the F–Si bond extension. The uncorrected (and
BSSE-corrected) interaction energy of this bond is –22.80 (–22.23) kcal mol−1, indicative of
a reasonably strong non-covalent interaction [81].

Table 2. The uncorrected and BSSE-corrected interaction energies, ∆E and ∆E(BSSE), respectively,
of methylammonium tetrel halide perovskite ion pairs, obtained with [ωB97X-D/def2-TZVPPD].
Values in kcal mol−1.

System Interaction Type ∆E ∆E(BSSE)

I3Pb···NH3CH3 I···H(N) −104.95 −104.85
I3Pb···CH3NH3 I···H(C) −76.42 −76.33
I3Pb···H3NCH3 I···H(N), I···H(C) −97.64 −97.53

Br3Pb···NH3CH3 Br···H(N) −111.04 −110.66
Br3Pb···CH3NH3 Br···H(C) −80.05 −79.77
Br3Pb···H3NCH3 Br···H(N), Br···H(C) −102.95 −102.62
Cl3Pb···NH3CH3 Cl···H(N) −115.95 −115.66
Cl3Pb···CH3NH3 Cl···H(C) −82.78 −82.55
Cl3Pb···H3NCH3 Cl···H(N), Cl···H(C) −107.24 −106.99
F3Pb···NH3CH3 F···H(N) −138.54 −138.23
F3Pb···CH3NH3 F···H(C) −94.39 −94.18
F3Pb···H3NCH3 F···H(N), F···H(C) −126.47 −126.2
I3Sn···NH3CH3 I···H(N) −103.12 −103.01
I3Sn···CH3NH3 I···H(C) −75.02 −74.93
I3Sn···H3NCH3 I···H(N), I···H(C) −96.07 −95.96

Br3Sn···NH3CH3 Br···H(N) −108.39 −108.01
Br3Sn···CH3NH3 Br···H(C) −78.17 −77.89
Br3Sn···H3NCH3 Br···H(N), Br···H(C) −100.76 −100.44
Cl3Sn···NH3CH3 Cl···H(N) −112.48 −112.19
Cl3Sn···CH3NH3 Cl···H(C) −80.43 −80.2
Cl3Sn···H3NCH3 Cl···H(N), Cl···H(C) −104.45 −104.19
F3Sn···NH3CH3 F···H(N) −131.44 −131.11
F3Sn···CH3NH3 F···H(C) −90.37 −90.15
F3Sn···H3NCH3 F···H(N), F···H(C) −121.08 −120.79
I3Ge···NH3CH3 I···H(N) −101.91 −101.74
I3Ge···CH3NH3 I···H(C) −74.2 −74.05
I3Ge···H3NCH3 I···H(N), I···H(C) −95.31 −95.13

Br3Ge···NH3CH3 Br···H(N) −106.63 −106.22
Br3Ge···CH3NH3 Br···H(C) −77.07 −76.74
Br3Ge···H3NCH3 Br···H(N), Br···H(C) −99.64 −99.26
Cl3Ge···NH3CH3 Cl···H(N) −110.15 −109.82
Cl3Ge···CH3NH3 Cl···H(C) −79.01 −78.74
Cl3Ge···H3NCH3 Cl···H(N), Cl···H(C) −102.88 −102.56
F3Ge···NH3CH3 F···H(N) −125.21 −124.92
F3Ge···CH3NH3 F···H(C) −87.26 −87.04
F3Ge···H3NCH3 F···H(N), F···H(C) −116.94 −116.66
I3Si···NH3CH3 I···H(N) −100.36 −100.25
I3Si···CH3NH3 I···H(C) −73.01 −72.91

Br3Si···NH3CH3 Br···H(N) −104.19 −103.86
Br3Si···CH3NH3 Br···H(C) −75.28 −75.03
Cl3Si···NH3CH3 Cl···H(N) −106.61 −106.34
Cl3Si···CH3NH3 Cl···H(C) −76.58 −76.37
Cl3Si···H3NCH3 Cl···H(N), Cl···H(C) −99.92 −99.65
F3Si···NH3CH3 F···H(N) −115.3 −115.02
F3Si···CH3NH3 F···H(C) −81.46 −81.24
F3Si···CH3NH3 F···H(N), F···H(C) −109.02 −108.77

2.4. [CH3NH3
+•TtX3

−]2 (Tt = Si, Ge, Sn, Pb; X = F, Cl, Br, I) Dimers

The fully relaxed geometries of [CH3NH3
+•PbI3

−]2 (X = F, Cl, Br,I) dimers are shown
in Figure 6. The connectivity between the ion pairs is driven by three types of intermolecular
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interactions: the N–H···X hydrogen bonds, the C–N···X pnictogen bonds and the X–Pb···X
tetrel bonds. A tetrel bond occurs when there is evidence of a net attractive interaction
between an electrophilic region associated with a covalently or coordinately bonded tetrel
atom (or atoms) in a molecular entity and a nucleophilic region in another, or the same,
molecular entity [81]. The same underlying definition applies to a pnictogen bond, with the
terms “tetrel bond” and “tetrel atom” replaced by the terms “pnictogen bond” and “tetrel
atom”, respectively. Both the pnictogen and tetrel bonds are linked, with a bent ∠Pb–X···Pb
angle between the two ion pairs forming the [CH3NH3

+•PbI3
−]2 dimer. Although these

were obtained from gas phase calculations, a very similar geometric feature was found in
the low-temperature orthorhombic structure of the CH3NH3PbX3 perovskites (X = Cl, Br)
(Figure 6e–g); however, the X–Pb bonds in the latter are nearly equivalent as a result of
crystal packing forces.

A question that arises is why the [PbI3
−] anions are bonded to each other in the

crystal, forming an infinite array of [PbX6
4−]∞ octahedra that form cage-like structures

to host the organic cations, even though the anions are expected to coulombically repel
each other. An immediate answer to this is probably the presence of CH3NH3

+ that locally
polarizes the potential on the electrostatic surface of the tetrel atom in [PbI3

−] when in close
proximity, driven by an extensive number of double-charge-assisted N–H···X and C–H···X
hydrogen bonds that appear between them. As the surface of the tetrel atom in the ion pair
[CH3NH3

+•TtX3
−] is highly electrophilic, featuring three positive σ-holes on Tt (Tt = Pb

and Sn), it is capable of accepting electrons simultaneously from three halogens of three
interacting ion pairs [CH3NH3

+•TtI3
−] at equilibrium, forming the [TtX6

4−] octahedra in
the crystalline phase. QTAIM calculations suggest there is an appreciable transfer of charge
between the organic and inorganic ions, facilitating the formation of the ion pair, and this
is true in all three conformations investigated for [CH3NH3

+•TtX3
−], a feature that also

occurs between the ion pairs responsible for the dimers. When the same process of assembly
continues with [CH3NH3

+•PbX3
−] ion pairs, the formation of CH3NH3TtX3 perovskite in

the solid state is the likely consequence, a result of interplay between the σ-hole-centered
tetrel bonds and other non-covalent interactions. The MESP plots that provide evidence of
the formation of X–Tt···X tetrel bonds (dotted lines) between two ion pairs, leading to the
formation of [CH3NH3

+•PbX3
−]2 dimers, are shown in Figure 7a–d (left). They show that

the positive σ-hole on Pb in an ion pair is in coulombic attraction with the negative halide
of the anion with which it interacts.

As shown in Figure 6a–d, the organic cation in the [CH3NH3
+•PbX3

−] ion pair on
the left connects with another ion pair on the right through N–H···X hydrogen bonds and
X–Tt···X tetrel bonds. The former are equivalent in a given ion pair, and become shorter
as the size of the halogen decreases from I through to F. Based on the bond distances,
it is clear that the hydrogen bonds are stronger in [CH3NH3

+•PbF3
−] and weaker in

[CH3NH3
+•PbI3

−]. This might be expected since the lighter halogens are more electronega-
tive and hence able to form stronger hydrogen bonds. Partial halogen transfer from [PbF3

−]
on the right ion pair [CH3NH3

+•PbF3
−] towards the ammonium H atom is evident in

the [CH3NH3
+•PbF3

−]2 dimer (Figure 6d); this may indicate that the formation of the
perovskite CH3NH3PbF3 is unlikely in the solid state. The result also suggests that the
formation of a different type of ion pair, methylammonium fluoride ([CH3NH3

+•F−]), is
a likely consequence when more than two units of the [CH3NH3

+•PbF3
−] ion pair are in

close proximity. The geometric arrangement between them would hinder the formation
CH3NH3PbF3 perovskite in the crystalline phase and might explain why CH3NH3PbF3 is
unknown in the solid state.
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Figure 6. [ωB97X-D/def2-TZVPPD] level fully relaxed gas phase geometries of
(a) [CH3NH3

+•PbI3
−]2; (b) [CH3NH3

+•PbBr3
−]2; (c) [CH3NH3

+•PbCl3−]2; and
(d) [CH3NH3

+•PbF3
−]2. Shown in (d–f) are the low-temperature orthorhombic structures

of MAPbI3, MAPbBr3 and MAPbCl3. Selected bond lengths (Å) and bond angles (degrees) are shown
in (a–d), and the tilting angle (degrees) is shown in (e–g). The H atoms in MA are missing in the
crystal structure of MAPbBr3.
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Figure 7. (Left) [ωB97X-D/def2-TZVPPD] computed 0.001 a.u. mapped electrostatic potential on the
molecular surfaces of (a) [CH3NH3

+•PbI3
−]2; (b) [CH3NH3

+•PbBr3
−]2; (c) [CH3NH3

+•PbCl3−]2;
and (d) [CH3NH3

+•PbF3
−]2. (Right) QTAIM-based molecular graphs of the corresponding systems,

respectively. (The bond critical points between atomic basins are shown as tiny spheres in green, and
bond paths in atom colors.) Values on the color bar are in kcal mol−1, with the surface involving the
fragment Pb–X···Pb–X facing the reader.
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The X–Tt···X tetrel bonds formed between the ion pairs in the dimers at equilib-
rium are all less than the sum of the van der Waals (vdW) radii of Tt and X; for in-
stance, the tetrel bond distances of 3.582, 3.351, 3.163 and 2.530 Å in [CH3NH3

+•PbI3
−]2

(Figure 6a), [CH3NH3
+•PbBr3

−]2 (Figure 6b), [CH3NH3
+•TPbCl3−]2 (Figure 6c) and

[CH3NH3
+•PbF3

−]2 (Figure 6d) are much less than the vdW radii sum 4.64 (Pb + I),
4.46 (Pb + Br), 4.42 (Pb + Cl) and 3.50 Å (Pb + F) [104], respectively. Moreover, they are
quasi-linear, (∠X–Pb···X values between 168◦ and 176◦). This signature satisfies character-
istic features d and f and Note 4 of tetrel bonds discussed in a recently suggested definition
of a tetrel bond [81].

The geometries of the isolated ion pair, [CH3NH3
+•TtX3

−], and its dimer, [CH3NH3
+•TtX3

−]2,
and the intermolecular interactions in them are not identical. A major rearrangement of the
monomers occurred on dimer formation. In particular, the organic cation shared between the two
inorganic anions rearranged in a manner so as to maximize its non-covalent interactions with the
halides of the two inorganic moieties (Figure 6), while the organic cation on the right retains its
shape as observed in the isolated ion pair itself (cf. Figure 2). The physical arrangement between
the ions in the former (left) part of the dimer resembles the geometry of crystalline tetrel halide
perovskites (Figure 6e–g) in the low-temperature orthorhombic phase. The corner-shared [TtX6

4−]
octahedra in these structures are tilted along the crystallographic a–c-axes. The tilting can be gauged
from the ∠Pb–X···Pb angle between a pair of octahedra that are located at corners of a significantly
distorted cube.

The tilt angle is smallest in the [CH3NH3
+•PbI3

−]2 dimer (∠Pb–I···Pb = 146.4◦) and
increases as the size of the halogen in [CH3NH3

+•PbX3
−]2 decreases from Br through Cl

to F (∠Pb–Br···Pb = 151.7◦; ∠Pb–Cl···Pb = 156.2◦; ∠Pb–F···Pb = 168.7◦). Although this
angle is obtained from a linearly arranged structure in the gas phase, it reflects the same
feature observed in the crystalline phase. For instance, the Cl–Pb–Cl angles are 155.1◦,
160.9◦ and 163.9◦ in the low-temperature (100 K) orthorhombic (o) phase of MAPbCl3 [111]
(ICSD ref: 241415) along the crystallographic a-, b- and c-directions, respectively (two
are shown in Figure 6g). In the case of (120 K) o-MAPbBr3 [112] (ICSD ref: 268782),
the corresponding angles are 157.7◦, 169.6◦ and 157.7◦, respectively (two are shown in
Figure 6f). In the Pnma structure of (100 K) o-MAPbI3 [113] (ICSD ref: 428898), the tilt
of the octahedra is such that the Pb–I–Pb angles (Figure 6e) are Pb–I–Pb = 161.94(16)◦

(along b-axis) and Pb–I–Pb = 150.75(12)◦ (along the a- and c-axes) respectively. The average
tilt angle, ∠Pb–X–Pb, in o-MAPbCl3, o-MAPbBr3 and o-MAPbI3 is 160.0◦, 161.4◦ and
154.5◦, respectively, in reasonable agreement with the tilt angles of the gas phase dimers.
Geometric details of [CH3NH3

+•TtX3
−]2 (Tt = Sn, Ge, Si; X = F, Cl, Br, I) dimers are given

in Figures S7 and S8 of the ESI.
It has been shown that to improve the efficiency of perovskite solar cells, it is necessary

to tune the degree of octahedral tilting of the halide framework, which affects the optical
band gap and the effective mass of the charge carriers [75,114]. The steric effects dominate
the magnitude of the tilt in inorganic halides, while hydrogen bonding between the organic
cation and the halide frame plays an important role in hybrids, and tuning the degree
of hydrogen bonding can be used as an additional control parameter to optimize the
photoelectric conversion properties of the perovskites [75]. In the absence of hydrogen
bonding, the octahedra in the tetrel halide perovskites do not tilt at all, a view which is
in disagreement with our results discussed above and elsewhere [22]. In the case of all-
inorganic alkali tetrel halide perovskites, the in-phase tilting provides a better arrangement
of the larger bromide and iodide anions, which minimizes the electrostatic interactions,
improves the bond valence of the A-site cations and enhances the covalency between the
A-site metal and Br− or I− ions [115].

The chemical bonding shown in the left portion of the [CH3NH3
+•PbX3

−]2 dimer
(Figure 6a–c), which includes N–H···X hydrogen bonds, a C–N···X pnictogen bond and an
X–Pb···X tetrel bond, is very similar to that found in crystals of tetrel halide perovskites.
A major difference between them is that the gas phase structures do not have hydro-
gen bonds formed by the methyl group of the organic cation; these can evolve if the
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[CH3NH3
+•PbX3

−]2 dimer is surrounded with additional ion pairs in all three directions.
Likewise, the C–N···X pnictogen bond apparent in the left portion is absent on the right of
the [CH3NH3

+•PbX3
−]2 dimer. An extended array of [CH3NH3

+•PbX3
−] ion pairs to the

right of the dimer will enable the terminal organic cation to rearrange in a manner as on the
left so the terminal hydrogen H atom of the ammonium group of the organic cation on the
right can engage in the formation of N–H···X bonding interactions with the halogen atoms
of a third ion pair; the N site of the same cation can also engage with the tetrel-bonded X
site to form a C–N···X pnictogen bond. These intermolecular interactions were confirmed
by a QTAIM analysis, see Figure 7 (right). The analysis shows that there is variability in
the character of the N–H···X hydrogen bonding interactions in the gas phase geometries,
characterized by the topological properties of the charge density.

The QTAIM results suggest that the strength of the C–N···X pnictogen bond increases
with an increase in the size of the halogen in [CH3NH3

+•TtX3
−]2. For instance, ρb (∇2ρb)

[Hb] values at the N···X bcps were 0.0070 (0.0231) [0.0010], 0.0080 (0.0293) [0.0012], 0.0086
(0.0339) [0.0015] and 0.0094 (0.0463) [0.0023] a.u. for [CH3NH3

+•SnI3
−]2, [CH3NH3

+•SnBr3
−]2,

[CH3NH3
+•SnCl3−]2 and [CH3NH3

+•SnF3
−]2, respectively. The positive sign of both∇2ρb

and Hb indicates that the pnictogen bond is of the closed-shell type, and its magnitude signifies
that the close contact is more ionic in nature in [CH3NH3

+•SnF3
−]2 than in [CH3NH3

+•SnI3
−]2.

The trend in the charge density properties is in agreement with the geometric features of
the pnictogen bond, viz. bond distance r(N···X) (and bond angle (∠C–N···X)): 3.634 (174.3◦),
3.406 (172.1◦), 3.261 (170.2◦) and 2.870 Å (172.6◦) in [CH3NH3

+•SnI3
−]2, [CH3NH3

+•SnBr3
−]2,

[CH3NH3
+•SnCl3−]2 and [CH3NH3

+•SnF3
−]2, respectively. These are very similar to values

found for the [CH3NH3
+•TtX3

−]2 dimers, viz. the corresponding values in [CH3NH3
+•PbI3

−]2,
[CH3NH3

+•PbBr3
−]2, [CH3NH3

+•PbCl3−]2 and [CH3NH3
+•PbF3

−]2 were 3.747 (173.8◦), 3.537
(170.7◦), 3.396 (171.5◦) and 3.069 Å (174.1◦), respectively. They were 3.582 (172.5◦), 3.350
(170.4◦), 3.211 (167.1◦) and 2.761 Å (178.5◦) for [CH3NH3

+•GeI3
−]2, [CH3NH3

+•GeBr3
−]2,

[CH3NH3
+•GeCl3−]2 and [CH3NH3

+•GeF3
−]2, respectively, and 3.535 (172.6◦), 3.311 (170.5◦)

and 3.169 Å (164.4◦), for [CH3NH3
+•SiI3

−]2, [CH3NH3
+•SiBr3

−]2 and [CH3NH3
+•SiCl3−]2,

respectively.
The relatively longer pnictogen bonds in the [CH3NH3

+•SiX3
−]2 dimers are a result

of increasing repulsion between the interacting atomic basins (Si and X) when two ion pairs
are in close proximity. The stability of these Si-based dimers is governed by N–H···X hydro-
gen bonds formed by the organic cation common to both the interacting ion pairs. Details
of the topological charge density properties associated with the pnictogen bond are given
in Table 3, and the molecular graphs of the dimers with Tt = Sn, Ge and Si are shown in
Figures S9a–d, 10a–d and 11a–d of the ESI, respectively. Formation of a dimer is accom-
panied by an induction of weakly electrophilic σ-holes on the surface of the coordinately
bound Si when X = I, Cl and Br but not when X = F, explaining why there is a weak Si···X
tetrel bond in the first three dimers but not in [CH3NH3

+•SiF3
−]2 (see Figures S8d and S11d

of the ESI). In the case of the latter, the development of electrophilic sites on Si is seen
only in the equilibrium structure of the system; induction of the electrophilic sites does not
occur during the course of the interaction between the two ion pairs because of coulombic
repulsion between entirely negative Si and F sites in the two interacting ion pairs. The
feature is shown in Figure S12 of the ESI for [CH3NH3

+•SiX3
−]2 (X = F, Cl, Br, I).
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Table 3. Selected QTAIM-based topological charge density properties associated with the tetrel
and pnictogen bonds of [CH3NH3

+•TtX3
−]2 (Tt = Pb, Sn, Ge, Si; X = I, Br, Cl, F), obtained with

[ωB97X-D/def2-TZVPPD]. Values in a.u. a,b.

System Tetrel
Bond ρb ∇2ρb Hb

Pnictogen
Bond ρb ∇2ρb Hb

[CH3NH3
+•PbI3

−]2 Pb···I 0.0144 0.0272 0.0002 N···I 0.0058 0.0189 0.0009
[CH3NH3

+•PbBr3
−]2 Pb···Br 0.0163 0.0368 0.0003 N···Br 0.0064 0.0230 0.0011

[CH3NH3
+•PbCl3−]2 Pb···Cl 0.0187 0.0496 0.0007 N···Cl 0.0066 0.0257 0.0013

[CH3NH3
+•PbF3

−]2 Pb···F 0.0342 0.1373 0.0002 N···F 0.0062 0.0294 0.0016
[CH3NH3

+•SnI3
−]2 Sn···I 0.0108 0.0191 0.0003 N···I 0.0070 0.0231 0.0010

[CH3NH3
+•SnBr3

−]2 Sn···Br 0.0113 0.0234 0.0004 N···Br 0.0080 0.0293 0.0012
[CH3NH3

+•SnCl3−]2 Sn···Cl 0.0124 0.0292 0.0008 N···Cl 0.0086 0.0339 0.0015
[CH3NH3

+•SnF3
−]2 Sn···F 0.0283 0.0965 0.00005 N···F 0.0094 0.0463 0.0023

[CH3NH3
+•GeI3

−]2 Ge···I 0.0085 0.0193 0.0007 N···I 0.0077 0.0253 0.0010
[CH3NH3

+•GeBr3
−]2 Ge···Br 0.0090 0.0174 0.0005 N···Br 0.0090 0.0326 0.0013

[CH3NH3
+•GeCl3−]2 Ge···Cl 0.0082 0.0211 0.0010 N···Cl 0.0096 0.0378 0.0016

[CH3NH3
+•GeF3

−]2 Ge···F 0.0125 0.0415 0.0014 N···F 0.0116 0.0594 0.0027
[CH3NH3

+•SiI3
−]2 Si···I 0.0068 0.0134 0.0005 N···I 0.0083 0.0274 0.0190

[CH3NH3
+•SiBr3

−]2 Si···Br 0.0054 0.0125 0.0006 N···Br 0.0096 0.0351 0.0263
[CH3NH3

+•SiCl3−]2 Si···Cl 0.0026 0.0063 0.0004 N···Cl 0.0105 0.0418 0.0376
[CH3NH3

+•SiF3
−]2 H···Si b 0.0228 0.0281 −0.0018 N···F 0.0102 0.0496 0.0669

a The properties include the charge density (ρb), the Laplacian of the charge density (∇2ρb) and the total energy
density (Hb). b A hydrogen bond (see Figure S11d).

In the case of the [CH3NH3
+•SiF3

−]2 dimer, the Si center in the [CH3NH3
+•SiF3

−] ion
pair on the left of Figure S8d of the ESI acts as a hydrogen bond acceptor for an ammonium
H of the organic cation in the second ion pair on the right when they are in close proximity.
The interaction energy of the Si···H hydrogen bond was calculated to be –14.35 kcal mol−1

and this does not involve any secondary interactions between the two ion pairs. Each of
the C–N···X (X = F, Cl, Br, I) pnictogen bonds found in the four other [CH3NH3

+•SiX3
−]2

dimers was stronger than the Si···X tetrel bonds found in [CH3NH3
+•SiX3

−]2 (X = I, Br,
Cl), which can be inferred from the ρb values at the bcps shown in Figure S11a–d of the ESI
and in Table 3. These are characterized by a positive value of ∇2ρb and Hb, indicative of
closed-shell interactions; these are also present in the orthorhombic crystals of MAPbX3
(see Figure S13 of the ESI for MAPbI3 and MAPbBr3) and are discussed elsewhere [22,23].
The Si···H hydrogen bond in [CH3NH3

+•SiF3
−]2 has a covalent character since ∇2ρb > 0

and Hb < 0) (see Figure S11d and Table 3 for values).
The uncorrected and BSSE-corrected interaction energies, ∆E and ∆E(BSSE), respec-

tively, of all the [CH3NH3
+•TtX3

−]2 (Tt = Pb, Sn, Ge, Si; X = I, Br, Cl, I) dimers exam-
ined are given in Table 4. The interaction energy holding the two ion pairs together
in the dimers decreases for a given type of halogen derivative in [CH3NH3

+•TtX3
−]2

(except [CH3NH3
+•SiF3

−]2). This is attributed to the polarizability of the Tt derivative
that decreases as the size of the tetrel atom decreases from Pb through to Si. For in-
stance, the BSSE-corrected interaction energies, ∆E(BSSE), are −16.83, −13.51, −11.66 and
−9.92 kcal mol−1 for [CH3NH3

+•PbI3
−]2, [CH3NH3

+•SnI3
−]2, [CH3NH3

+•GeI3
−]2 and

[CH3NH3
+•SiI3

−]2, respectively. The decrease in the interaction energy in the series is also
attributed to the weakening of the tetrel bond between the ion pairs (see Figure S7 of the
ESI, for example, for [CH3NH3

+•SnX3
−]2, as well as discussion on [CH3NH3

+•PbX3
−]2

and [CH3NH3
+•GeX3

−]2). It should be noted that the interaction energy is not due solely
to the tetrel bond but also due to several hydrogen bonds that are the key forces holding
the ion pairs together in the equilibrium geometry of each of the dimers.
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Table 4. [ωB97X-D/def2-TZVPPD] level uncorrected and BSSE-corrected interaction energies, ∆E
and ∆E(BSSE), respectively (kcal mol−1), for the [CH3NH3

+•TtX3
−]2 (Tt = Pb, Sn, Ge, Si; X = I, Br, Cl,

I) binary complexes examined.

System Interaction Type a ∆E ∆E(BSSE)

[CH3NH3
+•PbI3

−]2 Pb···I −17.11 −16.83
[CH3NH3

+•PbBr3
−]2 Pb···Br −17.78 −17.26

[CH3NH3
+•PbCl3−]2 Pb···Cl −18.26 −17.85

[CH3NH3
+•PbF3

−]2 Pb···F −25.21 −24.73
[CH3NH3

+•SnI3
−]2 Sn···I −13.80 −13.51

[CH3NH3
+•SnBr3

−]2 Sn···Br −13.40 −12.87
[CH3NH3

+•SnCl3−]2 Sn···Cl −12.99 −12.59
[CH3NH3

+•SnF3
−]2 Sn···F −17.22 −16.72

[CH3NH3
+•GeI3

−]2 Ge···I −12.11 −11.66
[CH3NH3

+•GeBr3
−]2 Ge···Br −11.08 −10.41

[CH3NH3
+•GeCl3−]2 Ge···Cl −10.01 −9.50

[CH3NH3
+•GeF3

−]2 Ge···F −9.09 −8.60
[CH3NH3

+•SiI3
−]2 Si···I −10.20 −9.92

[CH3NH3
+•SiBr3

−]2 Si···Br −8.81 −8.33
[CH3NH3

+•SiCl3−]2 Si···Cl −7.49 −7.15
[CH3NH3

+•SiF3
−]2 H···Si b −14.48 −14.35

a See text for discussion. b A hydrogen bond (see Figure S11d).

We did not observe any systematic trend in ∆E(BSSE) values for any given Tt in
[CH3NH3

+•TtX3
−]2. However, our results show that ∆E(BSSE) increases as the size of

the halogen derivative decreases from I through to F. The trend does not correlate with
the strength of the σ-hole on the surface of the Tt atom in the ion pairs. For instance, the
σ-holes on Pb along the X–Pb bond extensions in [I3Pb···NH3CH3], [Br3Pb···NH3CH3],
[Cl3Pb···NH3CH3] and [F3Pb···NH3CH3] are 26.1, 26.8, 26.1 and 22.8 kcal mol−1, re-
spectively. Accordingly, the same trend in the interaction energy could be expected for
[CH3NH3

+•PbI3
−]2, [CH3NH3

+•PbBr3
−]2, [CH3NH3

+•PbCl3−]2 and [CH3NH3
+•PbF3

−]2,
respectively, yet the observed trend follows the order: [CH3NH3

+•PbI3
−]2 < [CH3NH3

+•PbBr3
−]2

< [CH3NH3
+•PbCl3−]2 < [CH3NH3

+•PbF3
−]2. The increase in the interaction energy with

the decrease in the size of the halogen in [CH3NH3
+•PbX3

−]2 is clearly a result of strong
hydrogen bonding between the ion pairs that play a vital role in stabilizing the tetrel bonds.
It is worth mentioning that the trend in the decrease in the interaction energy correlates with
the decreasing strength of the σ-hole on Ge in [X3Ge···NH3CH3] for [CH3NH3

+•GeX3
−]2

series, although this was not so for the [CH3NH3
+•SnX3

−]2 series. We have not performed
similar calculations with other theoretical methods, but our MP2 level calculations for the
X3Pb−···MA (X = I, Br, Cl, F, and MA = NH3CH3

+) ion pair series, in conjunction with the
def2-TZVPPD and aug-cc-pVTZ basis set, have produced a similar trend (Br > I > Cl > F)
for the strength of the σ-hole on Pb along the X–Pb bond extensions (see Tables S1 and S2).

3. Discussion

The application of the current state-of-the-art theoretical methods has revealed various
types of intermolecular (interionic) interactions between organic and inorganic ions, leading
to the formation of molecular methylammonium tetrahalide perovskite ion pairs in the
gas phase. Of the ion pairs investigated, for any given halogen and tetrel derivative, the
conformer with the amine group facing towards the triangular face of the inorganic anion
was found to be the most stable (i.e., Conf. 1). This is similar to the geometry observed in
the solid state with the organic cation oriented along the (111) direction. The other two
conformers (Conf. 2 and 3) known (and extracted) from lead halide perovskite crystal
in the cubic phase were found to be the second- and first-order saddle-point structures,
respectively.

The conclusion that emerged from combined second-order hyperconjugative charge
transfer delocalization and charge-density based IGM-δginter analyses is that the most stable
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ion pair for each Tt series [CH3NH3
+•TtX3

−] (Tt = Pb, Sn, Ge, Si; X = I, Br, Cl, F), with
the organic cation along the (111) direction as observed in the solid state, is not entirely
stabilized by N–H···X hydrogen bonds but also partially by a C–N···I pnictogen bond.
The latter interaction cannot be readily identifiable by just looking at the geometry of the
ion pair yet can be revealed at a very low isovalue around 0.008 a.u. using an IGM-δginter

analysis. This is not unexpected given that anti-bonding σ*(N–C) is an electron-accepting
orbital and hence capable of accepting electrons from the lone pair orbital of coordinate I
atoms of the inorganic anion when they are in close proximity.

The MESP analysis of the ion pairs led to the identification and subsequent characteri-
zation of electrophilic and/or nucleophilic σ-holes on the surface of the tetrel derivative
in the ion pairs examined. The strength of the σ-hole was shown to vary with the size of
the halogen derivative for any given tetrel atom in the ion pair. There were three such
equivalent σ-holes on the electrostatic surface of Tt in each ion pair when the methyl or
ammonium end of the organic cation faced towards the triangular face of the inorganic
cation. They were inequivalent when the organic cation was in a sitting orientation (viz.
(011) orientation in the cubic lattice in the solid state) (Conf. 3). Our calculations suggest
that the effect of electrostatic polarization (and/or charge transfer) of the organic cation
plays a crucial role in transforming the negative potential to positive on the surface of the
tetrel derivative in TtX3

− in the majority of the ion pairs, and hence three electrophilic
σ-holes appeared, especially when Tt = Pb, Sn (except [F3Sn···CH3NH3]).

Except for the three conformations of F3Ge···MA and X3Ge···CH3NH3 (X = I, Br, Cl),
the surfaces of Ge in the remaining ion pairs of the same series were electrophilic, which
suggests that the methyl end is relatively less effective in polarizing the GeX3

− anion
compared to when the ammonium head faces the triangular halide face of the anion ion
in the ion pair. Except for a few cases (viz. I3Si···NH3CH3 and Br3Si···NH3CH3), the
organic cation was unable to polarize the electron charge density on the surface of Si in
[X3Si···MA]), thus nucleophilic σ-holes developed on its electrostatic surface.

Gas phase exploration of the dimers of each of the ion pairs investigated has enabled
us to reveal why the inorganic anion is capable of forming corner-shared TtX6

4− octahedra
in the solid state, especially when X = I, Br and Cl and Tt = Pb, Sn and Ge. In particular, our
results led to the conclusion that the coulombic attraction between the monovalent anions
TtX3

− leading to the TtX6
4− octahedra in an infinite array in the crystalline material is

driven by (X3
−)Tt···X(TtX2

−) tetrel bonds in the presence of the organic cation MA. Three
such tetrel bonds can be formed by each Tt center in each TtX3

− anion when each ion pair
is surrounded by three identical ion pairs, forming the corner-shared TtX6

4− octahedra,
in which each octahedron occupies a corner of a regular cube in the high-temperature
phase of the system. Although our calculation was limited to the gas phase and dimers
of some representative ion pairs, our results have provided evidence of possible tilting of
the TtX6

4− octahedra observed in the low-temperature orthorhombic phase of MATtX3
(X = I, Br, Cl; Tt = Pb, Sn), driven by different types of intermolecular interactions. In
particular, the electronic structures of the dimer models, in combination with the QTAIM
results, suggested that C–N···X pnictogen bonds play a critical role, in addition to the
MA(X3

−)Tt···X(TtX2
−)MA tetrel bonds and N–H···X and C–H···X hydrogen bonds, which

interact in determining the octahedral tilting. The formation of (C)N···X pnictogen bonds
is an inherent feature of the organic–inorganic tetrel halide perovskites and is present in all
the 16 dimers investigated, whether or not the geometry of the dimer mimics a part of the
tetrel halide perovskite structure in the crystalline phase. Therefore, it would be misleading
to attribute the octahedral tilting feature in methylammonium tetrel halide perovskites
to just the N–H···X hydrogen bonds. It should be borne in mind that the intermolecular
interactions between the ions leading to the formation of an ion pair are charge-assisted,
whereas those responsible for the interaction between ion pairs are not, given that each
ion pair is a neutral system and the assembly between the ion pairs in dimers or extended
systems is driven by ordinary medium-to-strong non-covalent interactions.
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Our investigation has also shed light on why MATtX3 (X = F, Br, Cl; Tt = Ge, Si)
perovskites are not known in the crystalline phase. The failure to synthesize these systems
was speculated on when exploring the MESP of the ion pairs of the corresponding systems.
The σ-holes on the Tt sites in these systems were weakly positive (or even nucleophilic)
and are unlikely to be able to engage appreciably in attractive (coulombic) intermolec-
ular interactions with the halides of a neighboring ion pair. While [CH3NH3

+•TtX3
−]2

(X = Cl, Br, I; Tt = Si) perovskite dimers are stable in the gas phase as result of N–H···X
strong hydrogen bonding, the MASiX3 perovskites are not likely to be formed in the crys-
talline phase because the Si···X tetrel bonds between the ion pairs are very weak; they
are not only secondary interactions but also driven by N–H···X hydrogen bonds formed
between the ion pairs when in close proximity.

4. Materials and Methods

The DFT-ωB97X-D [87] calculations, in combination with the basis set def2-TZVPPD,
were performed to fully relax the geometry of 46 ion pairs and their binary complexes; a
binary complex refers to the dimer of an ion pair. The density functional uses a version of
Grimme’s D2 dispersion model [116], as implemented in Gaussian 16 [110]; the basis set
is available in the EMSL basis set exchange library [117,118]. Default convergence criteria
(tight SCF and ultrafine integration grid) were used. A harmonic frequency calculation was
performed in each case. The identified local minima and saddle points are discussed in the
Results section. Second-order Møller–Plesset perturbation theory (MP2) [119,120] calcu-
lations were also performed on a few systems to demonstrate the reliability of the results
obtained with DFT. Although the theoretical methods discussed above were employed on
the chemical systems in the gas phase, the results shown in Figure 1 were obtained using
periodic boundary calculations, in which the popular PBEsol [121] functional implemented
in VASP 5.4 [96–100] was utilized. This was carried out to illustrate the geometric aspects
of analogues of the ion pairs responsible for the crystalline phase.

The MESP model [89–92] generates two physical descriptors that are the local min-
ima and maxima of the potential (VS,min and VS,max, respectively [71,90,122–128]) when
mapped on an isoelectronic density envelope of a molecule. The positive/negative signs
of VS,min and VS,max ([VS,min > 0 and VS,max > 0]/[VS,min < 0 and VS,max < 0]) represent
the electrophilicity/nucleophilicity of a particular region on the electrostatic surface of
the molecular domain. The magnitude of VS,min or VS,max determines the strength of the
potential and correlates linearly with the strength of the intermolecular interactions. The
usefulness of the model has been demonstrated in a number of studies. Following a prior
recommendation [129,130], the 0.001 a.u. isoelectronic density was used to map the po-
tential for all cases. However, we have also shown that the choice of this envelope can
be misleading in systems where the anion contains a more electronegative (and hence
less polarizable) tetrel derivative and the less acidic portion of the organic cation faces the
anion to form an ion pair. In this case, the use of a higher-value isodensity envelope is
necessary [125,131–136]. A σ-hole on the surface of Tt along the outermost extension of the
R–Tt covalent/coordinate σ-bond in a molecule was identified when the most local poten-
tial associated with it is positive (VS,max > 0); R is the remaining part of the molecule [81].

QTAIM [88] relies on the zero-flux boundary condition and the bond path topology
recovers the connectivity between covalently bonded atoms that make up the ion pair or
dimers examined. Analysis of the reduced charge density-based isosurfaces was performed
using the actual density computed within the framework of IGM-δginter [93,94]. Software
such as AIMAll [137] and Multiwfn [138,139], together with VMD [140], were used for
QTAIM, MESP and IGM-δginter analyses and drawing of MESP and IGM-δginter graphs.

The uncorrected and Basis Set Superposition Error (BSSE)-corrected interaction en-
ergies (∆E and ∆E(BSSE), respectively) were calculated using Equations (1) and (2). ET
in Equation (1) and E(BSSE) in Equation (2) are the electronic total energy of respective
species and the error in total electronic energy due to the effect of the basis set superposi-
tion accounted for by the counterpoise procedure of Boys and Bernardi [109], respectively.
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The total electronic energy of the individual ion (or ion pair) was calculated using the
energy-minimized geometry of the ion pair (or binary complex), which was used for the
calculation of the interaction energy.

∆E (dimer) = ET(dimer) − [ET(monomer 1) + ET(monomer 2)] (1)

∆E(BSSE) = ∆E(dimer) + E(BSSE) (2)
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