
Citation: Marsili, G.; Acchioni, C.;

Remoli, A.L.; Amatore, D.; Sgarbanti,

R.; De Angelis, M.; Orsatti, R.;

Acchioni, M.; Astolfi, A.; Iraci, N.;

et al. Identification of Anti-Influenza

A Compounds Inhibiting the Viral

Non-Structural Protein 1 (NS1) Using

a Type I Interferon-Driven Screening

Strategy. Int. J. Mol. Sci. 2023, 24,

10495. https://doi.org/10.3390/

ijms241310495

Academic Editor: Nikolai Petrovsky

Received: 15 May 2023

Revised: 18 June 2023

Accepted: 19 June 2023

Published: 22 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Identification of Anti-Influenza A Compounds Inhibiting the
Viral Non-Structural Protein 1 (NS1) Using a Type I
Interferon-Driven Screening Strategy
Giulia Marsili 1,† , Chiara Acchioni 1,†, Anna Lisa Remoli 1, Donatella Amatore 2, Rossella Sgarbanti 2,
Marta De Angelis 2,3 , Roberto Orsatti 1, Marta Acchioni 1, Andrea Astolfi 4 , Nunzio Iraci 5 , Simona Puzelli 1,
Marzia Facchini 1, Edvige Perrotti 1, Violetta Cecchetti 4, Stefano Sabatini 4 , Fabiana Superti 6 ,
Mariangela Agamennone 7 , Maria Letizia Barreca 4 , John Hiscott 8, Lucia Nencioni 2

and Marco Sgarbanti 1,*

1 Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
giulia.marsili@iss.it (G.M.); chiara.acchioni@iss.it (C.A.); aremoli@gmail.com (A.L.R.);
roberto.orsatti@iss.it (R.O.); marta.acchioni@iss.it (M.A.); simona.puzelli@iss.it (S.P.);
marzia.facchini@iss.it (M.F.); edvige.perrotti@iss.it (E.P.)

2 Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy;
amatore.donatella@gmail.com (D.A.); marta.deangelis@uniroma1.it (M.D.A.);
rossella.sgarbanti@gmail.com (R.S.); lucia.nencioni@uniroma1.it (L.N.)

3 Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
4 Department of Pharmaceutical Sciences, Università degli Studi di Perugia, Via del Liceo 1,

06123 Perugia, Italy; andrea.astolfi@unipg.it (A.A.); violetta.cecchetti@unipg.it (V.C.);
stefano.sabatini@unipg.it (S.S.); maria.barreca@unipg.it (M.L.B.)

5 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina,
Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; nunzio.iraci@unime.it

6 National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità,
Viale Regina Elena 299, 00161 Rome, Italy; fabiana.superti@iss.it

7 Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
m.agamennone@unich.it

8 Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy;
john.hiscott@istitutopasteur.it

* Correspondence: marco.sgarbanti@iss.it; Tel.: +39-0649903266
† These authors contributed equally to this work.

Abstract: There is an urgent need to identify efficient antiviral compounds to combat existing and
emerging RNA virus infections, particularly those related to seasonal and pandemic influenza
outbreaks. While inhibitors of the influenza viral integral membrane proton channel protein (M2),
neuraminidase (NA), and cap-dependent endonuclease are available, circulating influenza viruses
acquire resistance over time. Thus, the need for the development of additional anti-influenza drugs
with novel mechanisms of action exists. In the present study, a cell-based screening assay and a small
molecule library were used to screen for activities that antagonized influenza A non-structural protein
1 (NS1), a highly conserved, multifunctional accessory protein that inhibits the type I interferon
response against influenza. Two potential anti-influenza agents, compounds 157 and 164, were
identified with anti-NS1 activity, resulting in the reduction of A/PR/8/34(H1N1) influenza A virus
replication and the restoration of IFN-β expression in human lung epithelial A549 cells. A 3D
pharmacophore modeling study of the active compounds provided a glimpse of the structural motifs
that may contribute to anti-influenza virus activity. This screening approach is amenable to a broader
analysis of small molecule compounds to inhibit other viral targets.

Keywords: influenza A viruses; NS1; type I IFN; small molecule screening; luciferase reporter assay;
diverse compound library; pharmacophore modeling
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1. Introduction

Influenza viruses are important human pathogens infecting up to 500 million people
annually, resulting in an estimated 250,000–500,000 deaths worldwide [1], with ~80% of
those deaths occurring in the elderly population. The 2009 H1N1 influenza pandemic
caused more than 18,000 deaths [2] and illustrated the rapidity with which the spread
of influenza could become global. Before the outbreak of COVID-19, influenza viruses
were thought to be the source of the next deadly pandemic. Moreover, avian influenza
viruses also pose a potential threat to human health [3], as demonstrated by the out-
break of the A(H5N1) virus in 1997 [4] and the human infections with 2013 influenza
A(H7N9) in China [5]. Influenza viruses belong to the Orthomyxoviridae family and possess
a negative-strand segmented RNA genome (7 or 8 single-stranded RNA segments encoding
12 proteins). They are divided into four distinct types, A, B, C, and D [6], among which
types A and B are globally distributed pathogens causing respiratory disease in humans [7].
The influenza virus can trigger pulmonary inflammation and exacerbates chronic lung
diseases, with infiltration of inflammatory cells and increased airway hyperresponsiveness.
Bronchial epithelial cells, the primary target and the main host cells for the influenza virus,
play an important role in the pathogenesis of this infection [1].

To date, three classes of anti-influenza drugs are available: inhibitors of the integral
membrane proton channel protein M2 (adamantanes), inhibitors of the neuraminidase
(NA) protein (oseltamivir, zanamivir, peramivir and laninamivir), and inhibitors of RNA-
dependent RNA polymerase such as polymerase basic protein 1 (PB1) inhibitor (favipiravir)
and polymerase acidic protein (PA) inhibitor (baloxavir marboxil). Influenza A(H1N1)pdm09
and A(H3N2) circulating viruses are resistant to the adamantane activity, and H1N1 viruses
retained fitness after acquiring resistance to oseltamivir [8]. Moreover, reduced susceptibil-
ity to baloxavir marboxil has been reported for influenza A(H1N1)pdm09 and influenza
A(H3N2) viruses carrying an I38T mutation in the polymerase acidic protein [9]. Finally,
the acquisition of favipiravir resistance in the pandemic H1N1 influenza A virus has been
demonstrated in a laboratory setting [10], and the transmission of favipiravir-resistant
viruses has been observed in vivo [11], thus highlighting the urgent need to develop anti-
influenza drugs with unique mechanisms of action, potentially as a first line of defense
against a serious or pandemic outbreak.

Influenza A non-structural protein 1 (NS1), encoded by segment eight genomic vRNA,
exerts multiple accessory functions during viral infection; the principal among these is the
inhibition of host antiviral innate response [12]. NS1 is highly expressed in infected cells
with a predominant nuclear localization and a significant cytoplasmic presence later in
infection [13,14]. NS1 possesses a strain-dependent length of 230–237 aa and two different
domains [15]. The NH2-terminal RNA-binding domain (residues 1-73) binds with low
affinity to several RNA species in a sequence-independent manner [16–19]. The effector
domain (ED) at the COOH-terminus (residues 74-230/237) mainly mediates interactions
with host cell proteins [15]. NS1 antagonizes both interferon type I (IFN-I) production and
the antiviral effect of IFN-stimulated gene (ISG) products at both the transcriptional [20–22]
and post-transcriptional level [23,24]. Pre-transcriptional inhibition of IFN-I induction
is related to the block of virus-mediated activation of IRF-3, IRF-7, and NF-κB cellular
transcription factors through the direct binding to the RNA sensor RIG-I [25,26] and also
by inhibiting RIG-I ubiquitination [25,27–29]. NS1 can also block the function of two ISGs
whose products are localized in the cytoplasm and possess antiviral activities, i.e., the
dsRNA-dependent serine/threonine protein kinase R (PKR) and the 2′-5′-oligoadenylate
synthase (OAS), by directly binding PKR [30] and indirectly preventing viral RNAs from
triggering OAS activation [30,31]. Post-transcriptional inhibition of the IFN-I response
is obtained via interaction of the NS1 ED with both the 30-kDa subunit of the cleavage
and polyadenylation specificity factor (CPSF30), a nuclear protein required for 3′ end
processing of cellular pre-mRNAs [32,33], and the poly(A)-binding protein II (PABP II)
involved in the nuclear export of fully processed mRNAs [34]. NS1 also acts by interfering
with NXF1/TAP and several proteins of the nuclear export machinery [35]. The resulting
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inhibition of nucleo- to cytoplasmic transport of all cellular poly(A)-containing mRNAs
also indirectly blocks the translation of IFN-I mRNA [32].

In the present study, an IFN-β promoter luciferase cell-based screening assay was
used to identify inhibitors of influenza NS1. From a diverse library of small molecules,
two potential anti-influenza agents were identified that antagonized A/PR/8/34(H1N1)
replication in human lung epithelial A549 cells, resulting in the restoration of IFN-β and
ISGs expression in virus-infected cells.

2. Results
2.1. Cell-Based Assay to Identify Potential Anti-Influenza A NS1 Compounds

To test the anti-NS1 activity of small molecules, the IFN-β gene promoter driving
the luciferase reporter gene [36] was co-expressed together with a plasmid encoding for
a 35 bp not-targeting (nt) short hairpin (sh) RNA [37], named herein as “IFN inducer”,
and an expression vector for A(H1N1)pdm09 NS1. As depicted in Figure 1A,B, transient
co-transfection of the IFN-inducer plasmid into HEK 293 cells will result in an increase
of the luciferase signal generated as a consequence of the IFN-β promoter stimulation.
The co-transfection of the NS1-expressing plasmid will decrease luminescence due to the
inhibition of the IFN signal transduction pathway. Finally, the addition of a potential NS1
inhibitor will restore the inducibility of the IFN-β promoter by the IFN-inducer.

Expression vector for NS1 protein belonging to A(H1N1)pdm09 pandemic influenza
A subtype was evaluated in the cell-based assay for its ability to inhibit the stimulation
of the IFN-β promoter by the IFN-inducer construct. To obtain a consistent stimulation
of the IFN-β promoter and a concomitant inhibition by NS1, different amounts of IFN-
inducer and NS1-expressing plasmids were evaluated in the experimental setup. The 100
ng amount of the IFN inducer plasmid (Figure 1C), coupled with 150 ng of NS1 plasmid
(Figure 1D), were chosen based on their statistically significant activation and inhibition,
respectively; the activation of IFN-β promoter by the IFN inducer RNA was significantly
reduced (77.7%) by NS1 expression, the latter detected by immunoblotting (Figure 1D,E).

2.2. Identification of Compounds Inhibiting NS1 activity in the Cell-Based Assay

Compounds belonging to a diverse library of 84 small molecules [38] were tested in
the experimental system at a concentration of 50 µM using a luciferase glow detection assay
(Figure 2A,B). Several compounds—157, 164, 165, 166, 177, 179, 181, 186, 188, 190, 192, 216,
217, and 226—increased IFN-β promoter stimulation by at least 50%. The specificity of the
IFN-β promoter assay was also confirmed with reference compound JJ3297, a known NS1
inhibitor (right side of Figure 2 panel B) [39].
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Figure 1. Cell-based assay to evaluate the anti-IFN-I activity of NS1. (A) Schematic representation
of plasmids, small molecules, and experimental points used for the cellular luciferase assay. The
pBS IFN-β promoter-Luciferase reporter construct, the pUC57 nt shRNA (IFN-inducer), and the
pFlag CMV2 NS1 (H1N1 Pdm 09) are shown. RNA Pol II promoter regions of IFN-β and the CMV
virus promoters are shown as tick blue and violet arrows, respectively. RNA Pol III 7SK promoter
is shown as a tick light blue arrow. Coding regions for luciferase and NS1 are shown as tick green
and red rectangles, respectively. The forward and reverse sequences belonging to the nt shRNA
IFN inducer are shown as petroleum and magenta rectangles, respectively. Compound x, able to
act as an NS1 inhibitor, is shown as a purple-filled circle. RNA Pol II PolyA sequences and RNA
Pol III terminator region are shown as mustard and red rectangles, respectively. The nt shRNA IFN
inducer is shown as a 35 bp long red hairpin structure; pBS = pBluescript; 7SK p. = 7SK promoter;
H1N1Pdm 09 = A(H1N1)pdm09 influenza virus; compound (Cpd). (B) Schematic representation of
the expected outcome of transfection with different plasmid combinations and effective compound
Cpd x treatment. The basal and induced luminescence signals of the IFN-β promoter luciferase
construct, transfected in IFN-I competent cells alone or together with the nt shRNA (IFN inducer)
expressing vector, are shown. The inhibition of luciferase signal after NS1 expressing vector co-
transfection and the restoration of luciferase expression by the pretreatment with an x compound
are also shown schematically. (A,B) were created with BioRender.com (accessed on 5 June 2023).
(C) Evaluation of different IFN-inducer construct amounts to obtain an optimal IFN-β stimulation
suitable for the assay. HEK 293 cells were transiently transfected with 25 ng of IFN-β promoter
luciferase reporter construct alone (IFN-β p. L.) or together with increasing amounts of shRNA
plasmid expressing the IFN-inducer (IFN-i). (D) Evaluation of the optimal NS1 expressing construct
to be used in the assay. HEK 293 cells were transiently transfected with increasing amounts of pFLAG
CMV2 expression A(H1N1) pdm09 NS1, together or not with the same amounts of IFN-β p. L. and
IFN-I constructs used in (A). The green bars in both panels C and D indicate the optimal induction of
the luciferase signal by the IFN-inducer (IFN-i) expression, while the red bars in panel D indicate
the optimal inhibition of luciferase signal by the co-transfection of NS1 expression vector. IFN-β p.
L. = IFN-β promoter Luciferase. FOI = Fold of Induction. (E) Expression of NS1 after transfection by
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Western blotting using anti-FLAG (NS1) and anti-actin (as a loading control) Antibodies. HEK
293 cells were transiently transfected with 150 ng of pFLAG CMV2 NS1 and WCE subjected to
Western blotting with αFLAG monoclonal Ab, using actin as loading control, detected with αActin
polyclonal Ab. Results shown in the bar graph are expressed as luciferase FOI with respect to cells
transfected with the empty vector. Mean and standard deviation are shown. Statistical analysis was
performed using the “two tailed unpaired t test” ((A), left panel). * p < 0.05; ** p < 0.01; *** p < 0.001;
n.s. not significant.
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Figure 2. (A,B) Screening of a diverse library of compounds in the IFN-β luciferase system (treatment
with compounds from 153 to 192 is shown in panel (A), while treatment with compounds from 193 to
236 is shown in panel (B)). (A) HEK 293 cells were transiently transfected with the IFN-β promoter
luciferase reporter construct alone, together with the IFN-inducer shRNA plasmid alone, or together
with the pFLAG CMV2 A(H1N1)pdm09 NS1 construct. Cpds 153 to 192 of the library were added to
cells at a final concentration of 50 µM in fresh medium 6 h post-transfection, and cells were harvested
42 h later (48 h after transfection) and subjected to luciferase assay. (B). HEK 293 cells were transiently
transfected as in A, and cpds 193 to 236 of the library, were added to cells as in (A). The reference
cpd JJ3297 was used at 5 µM. The empty vector pFLAG CMV2 was used to normalize the amount
of transfected DNA in each experimental point. Results shown in the bar graph are expressed as
luciferase fold of induction (FOI) with respect to cells transfected with the empty vector. Green and
red bars indicate the upregulation and downregulation of luciferase activity, respectively. Blue bars
underline >50% restoration obtained with the effective compounds. All experimental points were
transfected with the IFN-β promoter reporter construct. The green bars in both panels indicate the
induction of the luciferase signal by the IFN-inducer (IFN-i) expression (in panel (B), the far-right
green bar also indicates the treatment with positive control JJ3297). DMSO (Dimethyl sulfoxide)
presence is indicated in both panels.
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Compounds that tested positive in the screening were re-evaluated with a more
sensitive flash luciferase detection assay in the same IFN-β promoter stimulation assay. As
shown in Figure 3A, compounds 157, 164, and 181 demonstrated a significant restoration of
the luciferase signal (compound 166 was shown as an example of an unconfirmed positive
hit). To rule out potential non-specific activities within the assay, compounds were tested
in the absence of NS1 while in the presence or absence of the IFN inducer (Figure 3B); these
results showed no statistically significant difference compared to controls.
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is indicated in both panels. H1N1Pdm 09 = A(H1N1)pdm09 influenza virus. (A,B) HEK 293 cells
were transiently transfected with the IFN-β promoter luciferase reporter construct alone, together
with the IFN-inducer nt shRNA plasmid alone, or together with the pFLAG CMV2 A(H1N1)pdm09
NS1 construct. Compounds testing positive by luciferase analysis were added to cells at a final
concentration of 50 µM in fresh medium 6 h post-transfection, and cells were harvested 42 h later
(48 h after transfection) and subjected to luciferase assay. Results shown in the bar graph are expressed
as luciferase fold of induction (FOI) relative to cells transfected with the empty vector. Green and
red bars indicate the upregulation and downregulation of luciferase activity, respectively. Blue bars
underline restoration obtained with the effective compounds. Mean and standard deviation are
shown. Statistical analysis was performed using the “two tailed paired t test”. * p < 0.05, ** p < 0.01,
n.s. not significant.

2.3. Compounds 157 and 164 Inhibit Influenza A/PR/8/34(H1N1) Virus Replication and Restore
IFN-β and IFN-Stimulated Gene (ISGs) Expression in Infected Cells

To determine if compounds testing positive in the cell-based assay were able to inhibit
influenza A virus replication, the human lung epithelial A549 cells were treated for 3 h with
compounds 157, 164, and 181 and then subjected to infection with 0.1 MOI of influenza
virus A/PR/8/34(H1N1). Only compounds 157 and 164 inhibited viral replication (50%
and 60% reduction, respectively), with IC50 values of 51.6 µM and 46.4 µM, respectively
(Figure 4A,B). The cytotoxic concentration 50 (CC50) for 157 and 164 was calculated as
>400 µM for 157 and >150 µM for 164. Thus, the therapeutic index of 157 and 164, defined as
the ratio between CC50/IC50 values, was >7.8 and 3.6 in A549 cells, respectively (Figure 4B).

To determine if inhibition of viral replication by the two bioactive compounds was
associated with an increase in IFN-β and IFN-I stimulated genes, mRNA accumulation in
infected A549 cells was evaluated by qRT-PCR after normalization for virus replication
with HAU. A significant 3.2- and 2.7-fold increase in IFN-β mRNA accumulation was
observed with 164 and 157, respectively (Figure 5A). A trend of increased ISGs expression
was also detected in 157 and 164 treated cells, with a 2.5- and 2.3-fold increase for RNase L,
2.3 and 1.7 for 2′5′ OAS, and 4.5 and 1.7 for PKR, respectively (Figure 5B–D).

Finally, the key physicochemical and pharmacokinetic properties, as well as the ADME
(adsorption, distribution, metabolism, and excretion) parameters of 157 and 164, were
predicted through the free web tool SwissADME (http://www.swissadme.ch (accessed
on 3 May 2023) [40]. The outcomes (Figure S1) suggested a drug-like profile and no
alerts (e.g., the presence of Pan Assay Interfering compounds (PAINS) structures) for both
small molecules.
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for 24 h. Then, cells were treated with compounds 164 and 157 for 3h and infected with influenza
virus A/PR/8/34(H1N1) at an MOI of 0.1. At 24 h post-infection, total RNA was extracted and
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all panels. Statistical analysis was performed using the “two tailed paired t test” ((A), left panel).
* p < 0.05.

3. Discussion

NS1 is a multifunctional regulatory protein that readily inhibits the antiviral response
by counteracting the production of type I IFN, often in a strain-specific manner [41], and/or
inhibiting the activity of ISGs. Previous studies demonstrated that deletion of NS1 from
influenza A/H1N1 generated a recombinant virus with lower pathogenicity in rhesus
macaques and with the capacity to protect animals from a lethal challenge with wild-
type influenza [42]. Thus, NS1 represents an ideal therapeutic target for small molecule
inhibition [39,43,44].

In this study, a human cell-based screening assay was used to search for compounds
capable of inhibiting influenza regulatory protein NS1 based on the modulation of an IFN-β
luciferase reporter gene assay.

Potential NS1 inhibitors, derived from a commercial library of 84 structurally diverse
molecules [38], were screened for their ability to reverse IFN inhibition by NS1 (Figure 2).
The diverse library was selected to screen molecules with different structures/properties to
cover a wide drug-like chemical space and activity landscape on different targets [45]. The
reliability of the assay was confirmed by employing the known NS1 inhibitor JJ3297 at the
effective concentration of 5 µM.

Two compounds (cpds), 157 and 164, were identified and confirmed as active in
antagonizing NS1 activity (Figures 2 and 3A) without showing non-specific activities on
the reporter construct alone or transfected together with the “IFN-inducer” (Figure 3B). The
same compounds inhibited A/PR/8/34(H1N1) influenza A virus replication in A549 human
lung carcinoma cells, restoring virus-induced IFN-β and ISGs expression (Figures 4 and 5).

The luciferase assay was sensitive to the cytotoxicity of some inhibitors, and com-
pounds with non-specific toxicity did not support the rebound of the IFN-β driven lu-
ciferase signal. In this respect, both 157 and 164 showed an acceptable CC50 profile, with
157 possessing a >2-fold higher therapeutic index compared to 164 in a lung epithelial cell
line (Figure 4B) [46]. The JJ3297 NS1 inhibitor [39] is an analog of compound NSC125044,
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previously identified from a chemical library screen as an inhibitor of the slow-growth
phenotype of budding yeast expressing NS1 protein [43]. The anti-NS1 activity of JJ3297
requires a functional RNase L and is not related to direct inhibition of NS1 binding to
dsRNA [39]. Subsequently, medicinal chemistry efforts led to the more potent derivative
A22 [47]. It was reported that A22 had a superior EC50 of about 50 nM [44], compared
to the 0.8 µM EC50 of JJ3297 [39] and the 8 µM EC50 of NSC125044 [43]. Interestingly,
evaluation of the structural motif of compounds 157 and 164 revealed a close similarity
with JJ3297 and A22, with the four small molecules sharing two aromatic portions spaced
by a five-member linker containing an amide function (Figure 6A). To gain better insight
into the common chemical functionalities, we developed a 3D ligand-based pharmacophore
model using the four compounds as input. A reasonable superimposition between JJ3297,
A22, 157, and 164 was obtained, with the generated model (Figure 6B) characterized by
four features—two aromatic rings and one donor and acceptor group corresponding to the
amide moiety.
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accounts for two aromatic portions (orange rings), the amide NH as H-bond donor (cyan arrow)
and the amide CO as H-bond acceptor (red arrows). The four compounds are represented as green
(JJ3297), purple (A22), cyan (157), and yellow (164) sticks.

This observation suggests that the antiviral agents JJ3297, A22, 157, and 164 may act
via similar mechanisms of action since structurally distinct compounds with comparable
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pharmacophore patterns are likely to bind the same macromolecule target [48] (i.e., NS1
protein). Furthermore, the proposed 3D model could be exploited in virtual screening
campaigns [48,49] to support drug discovery efforts aimed at the rational identification of
novel anti-influenza drugs potentially targeting NS1.

It should be mentioned that molecular docking studies and NMR analysis suggested
that the mechanism of action of JJ3297 and A22 was related to their binding to a hy-
drophobic pocket within the ED; this region of NS1 is recognized to bind CPSF30, a host
factor responsible for the polyadenylation of cellular mRNA [50]. However, the influenza
A/PR/8/34(H1N1) virus expresses an NS1 protein bearing two mutations (F103L and
M107I) in the ED region that interfere with the binding of CPSF30 and prevent host mRNA
processing and subsequent antiviral protein accumulation [51]. Moreover, R108, E125, and
G189 residues within the ED of NS1 also interfere with CSF30 binding [52]. Therefore,
it is feasible to assume that the mechanism of action of bioactive compounds identified
here does not inhibit the NS1-CPSF30 interaction. Rather, 157 and 164 may affect a distinct
NS1-host cell factor/s interaction.

Seasonal influenza, as well as the threat of pandemic outbreaks, represent an ongoing
global health concern. Previous pandemic outbreaks affected a large proportion of the
human population with different degrees of severity, ranging from the devastating H1N1
“Spanish influenza” of 1918/19 to the relatively mild A(H1N1)pdm 09, the “swine flu” of
2009 [53]. Although less dramatic, the cumulative effects of seasonal epidemics that occur
in inter-pandemic periods parallel those of pandemics [53]. Avian influenza outbreaks
among humans also represent a continuous hazard with a high mortality rate, as in the
case of the highly pathogenic H5N1 viruses [4], as well as the H7N9 subtype [5]. Although
vaccination represents the best anti-influenza strategy, vaccine production and availability
at the beginning of a pandemic may be limited, thus arguing for new anti-influenza drugs,
especially those interfering with the virus-cellular signaling machinery [54,55].

4. Materials and Methods
4.1. Cell Cultures

Human Embryonic Kidney (HEK) 293 cell line and human A549 lung carcinoma cells,
obtained from the American Type Culture Collection (ATCC), were grown in Dulbecco’s
modified Eagle’s medium (DMEM), (Bio-Whittaker, Cambrex Bio Science, Verviers, Bel-
gium), supplemented with 10% fetal bovine serum (FBS), (Biological Industries, Kibbutz
Beit Haemek, Israel), 1mM glutamine and antibiotics (penicillin 100 U/mL, streptomycin
100 µg/mL). All cells were maintained at 37 ◦C in a 5% CO2 atmosphere.

4.2. Plasmid Preparation and Purification

Plasmid pBS-IFNβ-Luc (a gift of Dr. Giridhar R. Akkaraju, Department of Biol-
ogy, Texas Christian University, Fort Worth, TX, USA) consists of the Luciferase gene
located downstream of the IFN-β promoter; pCMV2-FLAG-NS1 is an expression vector
for FLAG-NS1 fusion proteins; pCMV2-FLAG (Sigma-Aldrich, St. Louis, MO, USA) is the
empty vector.

The Immune-stimulatory/ IFN inducer plasmid expression cassette was obtained by
de novo gene synthesis (GenScript USA Inc. Piscataway, NJ, USA) by inserting the human
Pol III 7SK promoter in the pUC57 vector, followed by a 35 bp sense sequence containing
three different nucleotide stretches known to behave as strong type I IFN inducers [56–58],
followed by a hairpin, a 35 bp antisense, and Pol III terminator sequences, to produce a
non-targeting (nt) short hairpin (sh)RNA upon transfection.

The nucleotide blast of the IFN-inducer sequence through the human genomic plus
transcript database did not retrieve any match (https://blast.ncbi.nlm.nih.gov/Blast.cgi?
PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome (accessed on
14 June 2023).

IFN-inducer sequence: 5′GTCCTTCAACGGTATGCTGAATTGCAAACCTGTGTTTC
AAGAGACACAGGTTTGCAATTCAGCATACCGTTGAAGGACTTTTT3′.

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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The NS1 nucleotide sequences belong to the A(H1N1)pdm09 influenza virus, isolated
in Italy in May 2009, and the corresponding protein sequence is identical to Influenza A
virus [(A/District of Columbia/INS229/2009(H1N1))], sequence ID: ADK32781.1. The
NS1 cDNA was subsequently generated by de novo gene synthesis (GenScript USA Inc.
Piscataway, NJ, USA).

The pBS IFN-β promoter Luciferase and pFlag CMV-2 Flu, NS1 H1N1 Pdm09 plasmids,
express proteins upon transfection (firefly luciferase and Flag-NS1, respectively). The
expression of luciferase was checked by the luciferase assay, while Flag-NS1 expression
was determined by Western blotting. The pUC57 7SK p. IFN inducer plasmid expresses a
double-stranded RNA designed to be unable to target any human gene. All plasmids were
rigorously prepared using endotoxin-free procedures to avoid unrelated induction of the
endogenous type I interferon production.

4.3. Transient Transfection, Compound Treatments, and Reporter Gene Assay

Evaluation of the anti-IFN-I activity of NS1 proteins. HEK 293 cells were seeded
at 1 × 104 cells/well (100 µL/well) the day before transfection. After 24 h, cells were
transiently transfected at 90% confluency in 96 well plates with 25 ng of the IFN-β promoter
luciferase reporter construct and different amounts of both IFN-inducer and pFLAG NS1
CMV2 expression vectors, the latter encoding FLAG-tagged NS1 protein belonging to
influenza A virus subtypes A(H1N1)pdm09.

Screening of a diverse library of compounds in the IFN-β luciferase system. HEK
293 cells, seeded as described above, were transiently transfected at a 90% confluency in
96 well plates with 25 ng of the IFN-β promoter luciferase reporter construct, 100 ng of the
IFN-inducer plasmid, and with 150 ng of the pFLAG CMV2 A(H1N1)pdm09 NS1 construct.
A dose response was not performed, considering the small dynamic range of the assay.

Confirmation experiments in the IFN-β luciferase system. HEK 293 cells seeded at
1 × 105/well (1 mL/well) were transiently transfected at a 90% confluency in 12 well plates
with 150 ng of the IFN-β promoter luciferase reporter construct, 600 ng of the IFN-inducer
plasmid, and with 900 ng of the pFLAG CMV2 A(H1N1)pdm09 NS1 construct.

Equal amounts of plasmid DNA were transfected in each experimental point adding
the pFLAG CMV2 empty vector. All DNA plasmid preparations were endotoxin-free by
using the EndoFree plasmid Maxi Kit (Qiagen GmbH, Hilden, Germany) according to
manufacturer instructions.

The jetPEI (Polyplus-transfection SA, Illkirch FRANCE) reagent was used to transfect
HEK 293 cells with the above-mentioned plasmids according to manufacturer instructions.
Six hours post-transfection, the transfection medium was removed, replaced with a fresh
medium, and cells were treated with compounds for an overall time of forty-two hours.

The ONE Glow Luciferase (glow type) or the Luciferase Assay (flash type) System
reagents (Promega) were used to test extracts for luciferase activity 48 h after transfection
in a Lumat LB9501 luminometer (E&G Berthold, Bad Wildbad, Germany) according to
manufacturer instructions. The same total amount of dimethyl sulfoxide (DMSO) was
used at each experimental point. Luciferase activity, measured as relative luciferase units
(RLU), was then expressed as a fold of (transcriptional) activation compared to controls
(transfected with the reporter plasmids only). The evaluation of the anti-IFN-I activity of
different NS1 proteins was conducted using the ONE Glow Luciferase assay. The screening
of the diverse library (Figure 2) was also performed using the ONE Glow Luciferase assay
and as a single experiment. Active compounds were tested again (Figure 3) using the
Luciferase Assay System reagents to eliminate false positive results.

4.4. Diverse Library and Other Chemicals Used

The diversity-oriented small molecule selection has already been described [38]. A
collection of 950,000 commercially available compounds has been submitted to clustering
after binary fingerprints calculation; the most representative molecule from each cluster was
chosen, resulting in a library of unique compounds, ideally representative of the starting
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library chemical space. Briefly, this cheminformatics procedure exploits the conversion
of a 2D chemical structure in its fingerprints, a mono-dimensional notation that accounts
for compound structural features [59]. Compound fingerprints are then used to compare,
and group compounds based on the similarity index (Tanimoto) calculated between all
compounds. Therefore, compounds are clustered on the basis of structural similarity. A
drug-like subset of 84 small molecules was obtained. All calculations have been carried
out using Canvas [60]. The list of compounds composing the diverse library is reported in
Table S1 of the Supplementary Materials. The library starts with compound 153 and ends
with compound 236. This is just due to an internal progressive nomenclature. The synthesis
of JJ3297 was performed at the Department of Pharmaceutical Sciences, University of
Perugia (Italy), according to the literature [47]. Analytical data (1H-NMR and LC-MS) are
consistent with that reported in the literature. HPLC purity >95%.

4.5. Influenza a Virus Production, Cell Infection, and Viral Titration

Influenza A/PR/8/34(H1N1) virus was grown in the allantoic cavities of 10-day-old
embryonated chicken eggs. The allantoic fluid was harvested 48 h after infection and
centrifuged at 5000 rpm for 30 min to remove cellular debris. Virus titers were determined
by a standard plaque assay [61].

A549 cells were challenged 24 h after plating with influenza A virus at a multiplicity of
infection (MOI) of 0.1 as previously described [62]. Mock infection was performed with the
same dilution of allantoic fluid from uninfected eggs. Briefly, infected and mock-infected
cells were incubated for 1 h at 37 ◦C and then maintained with fresh medium supplemented
with 2% FBS. Tested compounds, dissolved in DMSO, were diluted in DMEM to a final
concentration of 50 µM and then added to A549 cell monolayer 3 h before infection. The
highest DMSO concentration present in the culture medium was 0.05%. The same DMSO
concentration was added to control cells. Supernatants from infected cells were recov-
ered 24 h post-infection (p.i) to measure viral titer by hemagglutinating activity [63]. The
Inhibitory Concentration to reduce virus yield by 50% (IC50) was calculated by plotting
HAU values obtained from A549-infected cells, derived from three separate experiments,
treated with different concentrations of compounds (cpds) compared to those from un-
treated cells (considered as 100%). A linear regression analysis was used to calculate the
IC50 concentration.

4.6. Neutral Red Uptake Assay

Cytotoxic concentration to cause death to 50% of viable cells (CC50) was calculated
by neutral red uptake assay (NRU) assay [64]. In brief, 1 × 104 A549 cells were seeded in
96-well plates and exposed to different concentrations of cpds 157, 164 (25, 50, 100, 200, and
400 µM) or equivalent volumes of DMSO as a control for 48 h. At the end of the exposure
time, cells were washed with phosphate-buffered saline (PBS) before being incubated for
3 h in a medium supplemented with neutral red (50 µg/mL). The medium was washed
off rapidly with PBS, and cells were incubated for a further 15′ at R.T. in a mixture of
1% acetic acid and 50% ethanol to extract the dye. Absorbance was then measured at
540 nm using a micro-plate reader (Biorad). Neutral red powder was purchased from
Sigma-Aldrich. The percentage of cell death for each compound concentration, compared
to the corresponding DMSO amount in untreated controls (y-axis), was plotted against
increasing cpd concentrations (x-axis). Data were transformed in log scale [x = log(x)], and
a linear regression analysis was used to calculate the CC50 concentration.

4.7. Quantitative Real-Time Reverse Transcription-PCR (qRT-PCR)

Total RNA was extracted from infected and/or treated A549 cells using the RNeasy
total RNA extraction kit (Qiagen, Hilden, Germany). Total RNA was subjected to DNase
treatment with RNase-free DNase (Qiagen) and then reverse transcribed with a High-
Capacity cDNA reverse transcription kit (Applied Biosystems, Warrington, UK) according
to the manufacturer’s instructions. cDNA was subjected to quantitative real-time PCR on
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ABI 7000 sequence detection system (Applied Biosystems) by using SYBR green PCR master
mix (Applied Biosystems). Primers used for Quantitative Real-Time Reverse Transcription-
PCR (qRT-PCR) were as follows:

IFN-β forward primer 5′-GCAGCAGTTCCAGAAGGAG-3′ and reverse primer 5′-
GCCAGGAGGTTCTCAACAAT-3′, RNAseL forward primer 5′-GAAGCCGCTGTGTATGG
TAA-3′ and reverse primer 5′-CGCTCTTGATCCTCCTTTGT-3′, PKR forward primer 5′-
AAACAATTGGCCGCTAAACT-3′ and reverse primer 5′-ATTCAGAAGCGAGTGTGCTG-
3′, and OAS forward primer 5′-GGTGGTAAAGGGTGGCTCC-3′ and reverse primer 5′-
ACAACCAGGTCAGCGTCAGAT-3′.

Transcript levels were normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (forward, 5′-GGGTGTGAACCATGAGAAG-3′; reverse, 5′-GCTAAGCAGTTGGT
GGTGC-3′) as an internal control and expressed as fold of increase according to the ∆CT
methods (means ± standard deviations). In the case of qRT-PCR performed using mRNA
derived from infected or infected and treated A549 cells, a further normalization was
performed for the level of viral replication using Hemagglutination data.

4.8. Pharmacophore Modeling

Compounds JJ3297, A22, 157, and 164 were built using the fragment library tool of
Maestro GUI [65] and used as a training set for the development of a common feature
pharmacophore model. MacroModel [66] was used to conduct a conformational search
on these compounds. The maximum number of steps per molecule was set to 10,000
in order to improve conformational sampling. The Polak–Ribiere conjugate gradient
method was used to minimize conformers, with a maximum of 500 minimization steps and
0.0005 kJ/(Å mol) as the gradient convergence threshold. The explored energy window for
the creation of the molecule conformations was 10.04 kcal/mol. The created conformations
were used in the development of a common feature pharmacophore model by using
Phase [67,68]. Pharmacophore models in which at least one training set compound showed
a low fitness value (i.e., <1.8) were discarded. The best-identified hypothesis (ADRR) was
characterized by the following scores: PhaseHypoScore = 1.089; BEDROC score = 0.852;
Survival score = 3.966. The fitness values for the training set compounds were: JJ3297 = 3.0;
A22 = 2.36; 157 = 2.12; 164 = 2.00.

4.9. Statistical Analysis

The GraphPad Prism software for Windows v5.0 (Dotmatics, Bishop’s Stortford, UK)
was used for the statistical analysis through the “two tailed paired/unpaired t test” or,
in the case of multiple comparisons, using the “one-way analysis of variance” (ANOVA),
followed by the Newman–Keuls post hoc test. Values of at least p < 0.05 (*), p < 0.01 (**),
and p < 0.001 (***) were considered to be statistically significant.

5. Conclusions

This study demonstrates the identification of small molecules that inhibit the replica-
tion of influenza using a simplified early drug discovery process. The essential features of
the cell-based assay involve the selection of an appropriate molecular target (in this case,
the multifunctional viral NS1 protein), an optimized cellular gene expression assay (e.g.,
IFN-β promoter luciferase reporter and IFN-inducer plasmid), and a structurally diverse
small molecule library. The choice of using a “transient” assay permits a concentration-
dependent flexibility of the conditions of the assay and the compounds to be evaluated.
Nevertheless, this approach is a starting point in the development of stable cellular plat-
forms expressing the IFN-β promoter and the “IFN-inducer” shRNA for high throughput
screening campaigns. Moreover, the flexible cellular assay can also be adapted to search for
inhibitors of relevant viral targets belonging to other pathogenic viruses.
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