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Abstract: Asthma is a heterogenous chronic inflammatory lung disease with endotypes that man-
ifest different immune system profiles, severity, and responses to current therapies. Regardless of
endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and
airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and,
depending on the environment, different effector functions. Lung macrophages are important in
recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic
inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hyper-
secretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung
function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory
mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are
instrumental in protecting against pathogens and play a critical role in resolution of inflammation
and return to homeostasis. This review summarizes current literature detailing the roles and existing
knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We
also raise the idea that modulating inflammatory responses in lung macrophages is important for
alleviating asthma.
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1. Introduction

Macrophages are important immune cells and present in virtually every tissue in
the body [1]. Lung macrophages contribute to lung homeostasis by patrolling airways
and removing dead cells, inhaled particles, and foreign invaders such as bacteria [2,3].
Macrophages regulate immune responses through cytokine production and their pathogen
killing capabilities are essential for clearing foreign invaders such as viruses and bacteria
away from airways [4]. Additionally, macrophages are important players in the resolution
of pulmonary inflammation and wound healing processes [5–7]. It may be possible to thera-
peutically target macrophages to reduce their deleterious effects, for example inflammatory
mediator production, while simultaneously maintaining or even enhancing the beneficial
effects of macrophages in host defense, immune suppression, and resolution. Given their
importance in driving immune responses, structural integrity, and host defense, it is critical
to understand the roles macrophages play in chronic inflammatory lung diseases.

Asthma is a chronic inflammatory lung disease characterized by increased immune
cell infiltration, airway thickening or remodeling, and airway hyperresponsiveness leading
to restricted airflow and difficulty breathing [8]. Asthma phenotypes/endotypes vary
from a predominant type 2 response with increased T helper (Th) 2 cell populations and
interleukin (IL)-4, -5, -13 levels to more severe endotypes that have additional presence of
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type 1 and/or type 17 inflammation, which are associated with corticosteroid insensitiv-
ity [9]. People with severe asthma experience more frequent exacerbations and account
for an estimated 40–70% of the health care costs associated with asthma [10]. In addition
to type 1/17 inflammation, severe asthma is often associated with mixed granulocytic
eosinophil and neutrophil lung infiltration [11]. The presence of these mixed granulo-
cytic immune cell populations is associated with decreased responsiveness to current
corticosteroid therapies [11–13]. Notably, macrophages contribute to pathways that pro-
mote type 1, 2, and 17 inflammation, indicating a possible role in contributing to asthma
phenotypes/endotypes and severity [14–16].

Macrophages are key orchestrators of the immune response by recruiting eosinophils,
neutrophils, and monocytes, as well as activate effector Th cells that further enhance
inflammation [17–21]. Persistent airway thickening and remodeling consists of increased
airway epithelial thickening, mucus hypersecretion, airway smooth muscle mass, and
collagen deposition leading to stiffening of the airway and restriction of airflow [3,22–25].
Macrophages secrete factors that promote airway remodeling, including IL-4 and IL-13,
and profibrotic growth factors, transforming growth factor-β (TGF-β) and platelet derived
growth factor (PDGF) [26,27]. Given the importance of macrophages in mediating immune
responses, controlling infection, and initiating remodeling/resolution, targeting these
important cells may provide beneficial therapeutics for asthma (Figure 1). This review will
discuss current understanding of macrophages and their diverse roles in asthma. We also
discuss prospective avenues and opportunities for further exploration into the role of lung
macrophages in asthma.
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Figure 1. Macrophages contribute to asthma pathogenesis. Dysfunctional macrophages in asthma
can contribute to enhanced immune cell responses, increased remodeling, and decreased clearance of
inhaled pathogens and dead cells leading to persistent inflammation and asthma severity. Created
with Biorender on 13 June 2023.

2. Lung Macrophage Subsets

Lung macrophage populations are heterogenous and consist of multiple subsets
with varied localization within the lung, functions, and transcriptional profiles. They
are identified by surface marker expression, location, and origin: alveolar, interstitial,
and recruited (monocyte-derived) [28,29]. Each subpopulation shares similar surface
markers, such as CD45+, CD64+, and F4/80+, but are distinguished by additional surface
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markers [30,31]. In this section, we will discuss markers used to identify subsets and the
known functions associated with each subset.

2.1. Alveolar Macrophages

Alveolar macrophages are located in the lung airspace within alveoli and are critical
in maintaining homeostasis in the lung, which is constantly bombarded with inhaled
pathogens, particles, and noxious gases [32]. The alveolar macrophage population arises
from fetal monocytes that infiltrate the lung during fetal development and undergo differ-
entiation into alveolar macrophages through paracrine signaling from alveolar epithelial
cells [33]. This resident population is self-renewing and maintained by proliferation, with
little contribution from circulating monocytes [33,34]. Alveolar macrophages are identi-
fied by CD64+, CD11b−, major histocompatibility complex (MHC) II+, CD11c+, MerTK+,
and Siglec F+ expression [30,31]. They act as a first line of defense to environmental in-
sults and play a central role in maintaining lung homeostasis by regulating removal of
bacterial pathogens and particles via phagocytosis, surfactant maintenance, and tissue
repair [5,35–37].

2.2. Interstitial Macrophages

Interstitial lung macrophages are another lung resident macrophage population that
reside within interstitial areas around peri-bronchiolar, peri-vascular spaces, and alveolar
walls [2,38,39]. Interstitial lung macrophage populations also have a fetal origin but can
be replenished by circulating monocytes that infiltrate the lung and differentiate into
macrophages [2]. Interstitial macrophages are identified by CD64+, CD11b+, CD11c+,
MHCII+, MerTK+, and Siglec F- expression [31]. This macrophage subset has key roles
in inflammation, tissue repair and fibrosis, and antigen presentation [40]. The function
of interstitial macrophages is somewhat distinct from alveolar macrophages as they lack
the ability to support surfactant production and maintenance [41]. Their close proximity
to the airway and vasculature enables them to affect the surrounding environment by
secreting cytokines, chemokines, and growth factors [42–44]. Their MHCII expression
suggests a key role in antigen presentation and adaptive immune cell activation [44].
Their immunoregulatory functions include IL-10 secretion, a cytokine known to suppress
inflammation by inhibiting IFN-γ, TNF-α, and IL-5 production [37,43,45].

2.3. Recruited Macrophages

Upon acute lung inflammation, monocytes are recruited from the bone marrow
or circulation and infiltrate into the lung. For recruited monocytes/monocyte-derived
macrophages, surface marker expression changes once monocytes enter the lung and be-
come macrophages [46]. Recruited monocytes are identified as MHCII-, CD11b+, Ly6C+,
and by low CD64 expression [31]. Once monocytes enter the lung and differentiate into
monocyte-derived macrophages, these cells are identified as CD64+, CD11c+, F4/80+,
MerTK+, and low Siglec F expression [31]. The C-C motif chemokine ligand (CCL2) and its
receptor CCR2 is a well characterized chemoattractant axis for monocyte recruitment [47].
Monocytes produce high amounts of pro-inflammatory cytokines and chemokines that
contribute to immune cell recruitment and activation. They also differentiate into both alve-
olar and interstitial macrophages, helping replenish resident lung macrophage populations
after an inflammatory event [37].

Taken together, there is likely to be a division of labor between lung macrophage
subsets [37]. Each population has important roles in driving innate and adaptive immune
mechanisms in lung inflammation. For asthma, their differential roles are just beginning
to be revealed in mouse models of allergic airway inflammation and ex vivo studies from
human lung macrophages.
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2.4. Macrophage Activation

Macrophage activation status is identified using various markers to determine clas-
sical or alternative activation. Classical macrophage activation is induced by type 1 cy-
tokines such as IFN-γ, and bacterial products such as lipopolysaccharide [48]. These
macrophages produce type 1 cytokines: IL-6, IL-1β, and TNF-α [49]. Classically-activated
macrophages are also identified by enhanced inducible nitric oxide synthase (iNOS) ex-
pression [49]. Alternative macrophage activation is induced by type 2 cytokines, IL-4 and
IL-13 [48,50]. In response, alternatively-activated macrophages produce IL-13, IL-5, TGFβ,
and IL-10 [50]. In mice, alternatively-activated macrophages can be identified by Fizz1
or arginase (Arg-1) [51]. In humans, CD206 and MARCO are being used as markers for
alternative macrophage activation [52]. In summary, macrophages readily respond to the
inflammatory environment in order to secrete mediators that drive inflammation. In depth
analyses does not need to focus solely on location of the macrophages but also macrophage
activation status, in order to truly understand their role in airway diseases such as asthma.

3. Role of Macrophages in Asthma Pathogenesis

Asthma is a heterogenous disease that involves complex mechanisms between immune
cells and airway structural cells. Lung macrophages and monocytes contribute to allergic
airway inflammation by promoting inflammatory cell recruitment/activation and secreting
factors that induce structural cell thickening and remodeling. Macrophages and monocytes
also play important roles in inflammatory resolution post-exacerbation by suppressing
immune responses and contributing to tissue repair processes [53]. In this section, we
discuss the roles of lung macrophages and monocytes in asthma pathogenesis.

3.1. Eosinophils and Neutrophils

Eosinophils are granulocytes that have long been associated with asthma and type 2
associated responses and serve as a key biomarker for asthma phenotypes/endotypes [54].
They are recruited and activated via mechanisms mediated by CCL11, CCL24, and IL-5
among other type 2 cytokines and chemokines [55,56]. Eosinophils release granules con-
taining IL-4 and IL-10 that further enhance type 2 immune responses commonly associated
with asthma [57]. Biologic therapies for asthma include anti-IL-5 (mepolizumab) and anti-
IL-5R (benralizumab), which neutralize IL-5 signaling [58]. These targeted therapies reduce
circulating eosinophils in asthma patients and reduce exacerbation frequency, highlighting
the importance of eosinophils and type 2 inflammation in asthma pathogenesis [59,60].

Macrophages play an important role in recruiting eosinophils from the bone marrow to
the site of inflammation and activation. Eosinophil recruitment and migration to the lung is
driven by CCR3, which binds chemokines CCL11 and CCL24 [61]. In an ovalbumin mouse
model, isolated alveolar macrophages were shown to secrete CCL24, while interstitial lung
macrophages secreted CCL11 at greater levels [62]. It was proposed that CCL11 attracts
circulating eosinophils, while CCL24 guides eosinophils to infiltrate airspaces, suggest-
ing distinct contributions from resident lung macrophage populations [62,63]. Recruited
monocytes have also been shown to contribute to eosinophilic infiltration. Intravenous
clodronate administration to deplete circulating monocytes decreased eosinophil numbers
in the BAL of HDM challenged mice [64]. However, less is known about how circulating
monocytes contribute to eosinophil recruitment to the lung. In vitro studies in THP-1 cells,
a human monocyte cell line, stimulated with PMA, IL-4, and IL-13 showed increased CCL24
production [65]. In summary, each macrophage subset has been linked to the recruitment
of eosinophils, thereby displaying potential to enhance type 2 inflammatory responses.

While not part of type 2 allergic responses, the presence of neutrophils is strongly
linked to severe asthma and reduced response to corticosteroid treatment [66]. These
cells are recruited from the bone marrow to sites of inflammation through IL-6 and
CXCL1 [67,68]. IL-6 stimulates neutrophil release from the bone marrow [67] and CXCL1
serves as a key neutrophil chemoattractant via CXCR2 [69]. Bronchoalveolar lavage (BAL)
macrophages from severe asthma patients exhibit increased gene expression in IL6 and
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CXCL1, among other pro-inflammatory mediators, indicating a role of neutrophil recruit-
ment and activation by macrophages in humans [70]. Alveolar macrophages recruit and
stimulate neutrophils by secreting granulocyte-colony stimulating factor (G-CSF), IL-6, and
CXCL1 in mouse models of allergic airway disease [62,71] and other lung disease models,
such as cystic fibrosis [72]. G-CSF is important for neutrophil maturation in the bone mar-
row and its expression is increased in neutrophilic asthma [73]. Interstitial macrophages
have been shown to suppress neutrophil infiltration by secreting IL-10. HDM-challenged
Il10−/− mice exhibited increased neutrophil infiltration compared to HDM-challenged wild
type (WT) mice. Adoptive transfer of WT interstitial macrophages into HDM-challenged
Il10−/− mice reduced neutrophil infiltration, indicating a protective role for interstitial
lung macrophages [43]. Recruited monocytes have been identified as producing IL-6 in
HDM-challenged mice [74]. These cells are also identified as major recruiters of neutrophils
in cystic fibrosis through CXCL1 production [24]. Overall, macrophage subsets have dif-
ferent roles in neutrophilic inflammation by either recruitment or suppression. It will
be important to further understand how macrophages affect neutrophil infiltration and
consequently asthma severity.

3.2. Monocytes

Monocytes are found in higher numbers in sputum from asthma patients compared
to healthy controls and contribute to increased inflammation in mice with allergic airway
inflammation [64,75]. Monocytes arise from the bone marrow and are recruited to the lung
during inflammation through the CCL2/CCR2 recruitment axis. CCL2 expression has been
found to be increased in asthma patient BAL compared to healthy controls, suggesting
enhanced monocyte recruitment in asthma [76,77]. In allergen provocation in humans,
CCL2 is rapidly induced and followed by subsequent monocyte-derived macrophage
infiltration to the airway [77]. Although CCL2 is produced by other cell types, such as
airway epithelial cells, recent studies have found lung macrophages to be a major source
of CCL2, implicating them as orchestrators of monocyte recruitment [78,79]. In a mouse
model of lung injury, alveolar macrophages were shown to be major producers of CCL2, as
depletion of alveolar macrophages via clodronate reduced CCL2 levels in the lung [80].

The type 2 cytokine, IL-13, is important for increased CCL2 expression in allergen-
challenged mice [81]. Adoptive transfer of IL-4Rα, the receptor for IL-13, expressing
macrophages into ovalbumin sensitized and challenged mice enhanced allergic airway
inflammation that included substantial increases in CCL2 and CCL11 BAL expression, sug-
gesting that macrophages promote CCL2 production [82]. A recent study found high CCL2
expression in alternatively activated macrophages and implicated CCL2-CCR2 signaling
in macrophage activation through a mechanism via miR-511-3p targeting, binding, and
reducing CCL2 expression [83]. Deletion of Mrc1, where miR-511-3p is encoded, in mice
heightened airway inflammation and hyperresponsiveness while enhancing macrophage ac-
tivation [83]. Collectively, these studies suggest that CCL2 production by lung macrophages
contributes to monocyte recruitment and macrophage activation in asthma.

3.3. Innate Lymphoid Cells

Innate lymphoid cells (ILCs) are an important lymphocyte population that are key
sources of type 1, 2, and 17 effector cytokines in asthma. They are distinguished from T
lymphocytes by their lack of requirements for receptor recombination [84]. Type 2 ILCs
(ILC2) are stimulated by type 2-associated cytokines, IL-33, IL-25, and thymic stromal
lymphopoietin (TSLP) to differentiate and secrete IL-5 and IL-13 [85]. In addition to airway
epithelial cells, macrophages express and secrete IL-33 to enhance type 2 inflammation in
allergic airway inflammation [86–88]. Macrophages also secrete IL-4 and IL-13 to further
enhance ILC2 responses [89,90]. Myeloid IL-4Rα deficiency in mice shows reduced type
2 inflammation and ILC2 populations [91], implicating macrophage IL-4Rα signaling as
an important contributor to ILC2 activation. Pro-inflammatory signaling in macrophages
may also antagonize ILC2 expansion and type 2 inflammation. Stimulator of IFN genes
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(STING) activation by 2′3′-cGAMP in alveolar macrophages induces IRF3-type I IFN sig-
naling which inhibits IL-33-induced ILC2 activation [92]. In interstitial lung macrophages,
toll-like receptor (TLR) 7 activation was recently shown to induce IL-27 production and
suppress ILC2 populations and type 2 inflammation in IL-33-induced eosinophilic airway
inflammation in mice [93]. More in-depth investigation into macrophage enhancement
of ILC2 cytokine secretion may provide possible therapeutic targets to mitigate enhanced
type 2 responses.

In type 1 inflammation, macrophages are major producers of IL-12 and IL-18 in
asthma [94,95]. Similar to Th1 cells, ILC1s respond to IL-12 and IL-18 to secrete IFN-γ
and TNF-α [96–98]. IFN-γ and TNF-α have been found to increase corticosteroid insensi-
tivity in airway smooth muscle leading to enhanced inflammatory gene expression and
cytokine secretion [99,100]. For type 17 inflammation, ILC3 populations are expanded
and respond to IL-1β and IL-23 to secrete IL-17A and IL-22 [101]. Alveolar macrophages
have been shown to secrete IL-1β and IL-23, suggesting contributions to expansion of ILC3
populations [102,103]. While less is known about how lung macrophages regulate ILC1
and ILC3 populations, their ability to produce cytokines associated with ILC1 and ILC3
differentiation highlight a potential role in orchestrating ILC activation in type 1 and 17
inflammation to influence asthma endotype and severity.

3.4. T Lymphocytes

Macrophages facilitate adaptive immunity through antigen presentation and cytokine
secretion. Th cell responses are initiated by presentation of antigenic peptide by the major
histocompatibility complex II (MHCII) on macrophages and interactions with the T cell
receptor (TCR) [104]. Alveolar macrophages express MHCII and have been shown to be im-
portant antigen presenting cells (APCs) in the airway [105]. Macrophages can also influence
the inflammatory milieu by acting as important drivers of Th1 and Th17 differentiation by
secreting IL-12 and IL-6 [18,74,106,107]. Additionally, macrophages secrete type 1 and 17
cytokines IL-1β, TNF-α and IL-17A [108–110]. In cockroach allergen challenged mice, de-
pletion of alveolar macrophages, via administration of dichloro-methylene-di-phosphonic
acid disodium salt, reduced TNF-α levels in lung homogenates [110]. Much like the in-
nate immune system, macrophages modulate Th cell responses that are most commonly
associated with asthma and influence asthma endotype based on the inflammatory milieu.

Tissue-resident memory T cells (TRM) are a recently discovered T cell type that persist
in the lung and, upon activation, secrete large amounts of inflammatory cytokines [111].
TRM cells are found in barrier tissues in the lung, digestive, and reproductive tract to
provide protection from pathogens [112,113]. Much like conventional CD4+ Th cells, these
TRM cells secrete Th1 cytokines IFN-γ and TNF-α, Th2 cytokines IL-4, IL-5, and IL-13,
and Th17-associated cytokine IL-17A in large quantities [114–116]. In a mouse model of
allergic airway disease via HDM challenge, Turner et al. found that CD4+ TRM persisted
in the lung 4–8 weeks post-allergen challenge [117]. Further, a short secondary HDM
challenge that did not elicit a response in previously unchallenged mice (naïve) resulted in
increased AHR and immune cell infiltration in mice challenged previously with HDM [117].
CD4+ TRM were concluded to be the initiators of this heightened response, as increased
AHR was observed during a secondary HDM challenge when circulating Th cells were
depleted via anti-Thy1 antibody [117]. These studies provide evidence that TRM cells are
important upon re-exposure to an allergen and can be targeted to reduce the persistent
inflammation associated with asthma. One striking difference between conventional Th
cells and TRM cells is that TRM lack honing mechanisms to lymph nodes, so their activation
is rapid locally within the lung [118,119]. This creates opportunities for macrophages to
act as activating cells due to their proximal location to the airway by means of antigen
presentation, co-stimulation, and cytokine secretion [120,121]. IL-15 is required for CD4+
TRM generation and macrophages have been identified as potent producers of IL-15 in the
lung [122,123]. Additional models of disease have identified the important interactions
between macrophages and TRM. Cytokines secreted from macrophages are linked to the
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maintenance of TRM, not only in the lung, but also in other areas of the body such as the
reproductive tract [124]. In a mouse model of herpes simplex virus 2 infection, Iijima
et al. found that CCL5 was needed to support CD4+ TRM, and macrophages served as the
primary CCL5 source [124].

3.5. B Lymphocytes

B cells also have important roles in asthma pathogenesis and as a biomarker [125]. As
part of humoral immunity, B cells secrete immunoglobulins (Igs), IgE and IgA [126,127].
IgE heightens type 2 responses by causing mast cell degranulation leading to increased IL-4
and IL-13 levels and bronchoconstriction [128,129]. IL-4 secreted from macrophages help
drive IgE production by B cells, thus enhancing type 2 immune responses [130]. IgE has
also been shown to have effects on macrophage function. Macrophages express FcεR and
readily respond to IgE-mediated allergic airway inflammation [131]. In a mouse model of
allergic airway inflammation via ovalbumin-specific IgE sensitization/challenge, depletion
of alveolar macrophages using 2-chloroadenosine reduced immune cell infiltration, type 2
cytokine levels, mucous cell abundance, fibrosis, and airway smooth muscle mass [131]. In
a study by Pellizzari et al., macrophages were isolated from human blood and differentiated
into pro-inflammatory or anti-inflammatory phenotypes and incubated with IgE. Treatment
with IgE increased macrophage TNF-α and IFN-γ production [132]. Although IgE has
previously been associated with enhanced type 2 responses, the study by Pellizzari et al.
suggests that IgE can induce macrophages to produce type 1 cytokines associated with
severe asthma and corticosteroid insensitivity, indicating an importance of macrophages in
determining asthma endotypes [9,100].

IgA is the primary Ig in the respiratory tract [133]. Decreases in IgA levels are as-
sociated with increases in airway bacterial colonization [87,134]. In a study by Ladjemi
et al., bronchial epithelial cells were isolated from asthma patients and cultured with IL-4
and IL-13 [135]. IL-4 and IL-13 were found to downregulate polymeric immunoglobulin
receptor (pIgR) at the site of IgA binding on airway epithelial cells, suggesting that IgA
levels may be reduced in asthma [135]. Reduction in protective IgA levels creates the
possibility for opportunistic pathogens to infiltrate the airways of asthmatics, resulting in
infection, as discussed in a later section. As in the case of IgE, type 2 cytokines secreted
by macrophages could reduce pIgR, leading to reduced IgA levels in the airways. In fact,
depletion of macrophages using myeloid-specific Diphtheria Toxin A-driven apoptosis
in a mouse model of muco-obstructive lung disease resulted in higher BAL levels of IgA,
pointing to the possible role of dysfunctional macrophages negatively impacting host
defense mechanisms [136].

In inflammatory conditions, B cells along with T cells form lymphoid structures
known as inducible bronchus-associated lymphoid tissue (iBALT) that is embedded in
lung tissue and enacts local immune responses, similarly to lymph nodes [137–139]. We
have previously shown the increased formation of iBALTs in a mouse model of severe
allergic airway inflammation accompanied by neutrophilic inflammation. Further, these
iBALTs persisted in the presence of corticosteroids [140]. In a mouse model of fine particle
exposure, Kuroda et al. found that IL-1α release from apoptotic alveolar macrophages
promoted iBALT formation in the lungs of mice exposed to either aluminum oxide or silica
particles [141]. IL-1α is increased in the BAL of asthma patients with neutrophilia compared
to a more type 2-associated asthma [142]. In a mouse model of muco-obstructive lung
diseases similar to cystic fibrosis (Scnn1b-Tg+ mice), depletion of macrophages via myeloid-
specific Diphtheria Toxin-A induced apoptosis resulted in increased number of iBALTs
and increased BAL Ig levels [136]. This was attributed to the need for enhanced adaptive
immune system compensation to combat bacterial infection in the absence of macrophages.
iBALTs have also been shown to cause macrophages to secrete matrix metalloproteinase 12
(MMP12) in a mouse model of COPD, which could possibly enhance airway remodeling by
macrophages, as discussed in the next section [143]. Further investigation into interactions
between macrophages and B cells will provide insight not only into important immune
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responses but the possible connection to persistent airway remodeling that is observed in
patients with more severe asthma.

4. Pathological and Functional Changes in Asthma

Persistent airway remodeling refers to structural changes in the lung and is a key
pathological feature in airway disease [22]. In asthma, the airway epithelium and smooth
muscle undergo structural alterations, such as hyperplasia and hypertrophy, that contribute
to airflow obstruction [144,145]. This section will discuss the current literature on how
interactions between lung macrophages and airway structural cells promote pathological
and functional changes in asthma.

4.1. Airway Epithelium

The airway epithelium lines the conducting airways and provides a protective barrier
uniquely designed to combat invading pathogens that infiltrate the airways [146]. This
innate barrier is composed of club cells, mucus-producing goblet cells, and ciliated cells
that work in concert to remove unwanted pathogens, such as allergens, viruses, and bac-
teria [147,148]. The integrity of the airway epithelium is held together by tight junctions
that attach to neighboring cells [149]. Exposure to allergen and chronic inflammation in
asthma has been shown to damage epithelial tight junctions, increasing the accessibility of
allergens, viruses, and bacteria to penetrate further into the lung [150–152]. Macrophages
may have a direct connection with tight junctions during both homeostasis and inflam-
matory conditions [153]. In a mouse model of lung injury via lipopolysaccharide (LPS)
administration, alveolar macrophages and epithelial cells worked in concert to reduce
cytokine release, attenuate inflammation, and maintain epithelial barrier integrity [153].
Not much else is known about crosstalk between alveolar macrophages and airway ep-
ithelium in the context of asthma [19,154]. Future studies should focus on the protective
functions of macrophages to maintain airway epithelial structural integrity in order to
decrease accessibility of allergens, viruses, and bacteria.

Mucus is a vital contributor to the overall health of the lung by trapping inhaled
pathogens and particles to keep them away from the lower airways [155]. Mucus is
produced by goblet cells located within the airway epithelium and submucosal glands in
larger airways [156]. Excessive accumulation of mucus in the airway is a prominent feature
in asthma and in severe cases has been linked to the major cause of fatal asthma [156–158].
Increased mucus can be attributed to increases in the number of goblet cells and amount
of mucus they produce [156]. Bronchial biopsies revealed a higher composition of goblet
cells compared to healthy controls [159]. Further, patients with fatal asthma exhibited a
significantly higher amount of goblet cells in the airway epithelium compared to asthma
patients dying due to other causes, highlighting the severity of mucus accumulation in
asthma [160]. IL-13 is a key inducer of mucus production and the increased abundance
of goblet cells in asthma [156]. Macrophages are identified as a key source of IL-13 in
airway disease [161]. Interstitial macrophage-derived IL-10 has been shown to reduce
epithelial mucous cells’ abundance. HDM-challenged Il10−/− mice exhibited increased
epithelial mucous cell abundance compared to HDM-challenged wild type (WT) mice.
Further, adoptive transfer of WT interstitial macrophages into HDM-challenged Il10−/−

mice reduced epithelial mucous cell abundance, suggesting a protective role of interstitial
macrophages in regard to mucous cell abundance [43]. The ability of macrophages to both
contribute to and reduce mucous cell abundance may lie in the subset of macrophage
and in-depth investigation is needed to distinguish their roles in regulating mucous cell
abundance and mucus production.

4.2. Airway Smooth Muscle

Airway smooth muscle (ASM) is a key contributor to thicker and stiffer airways,
increased contraction, and airway narrowing. Airway hyperresponsiveness (AHR) is a
feature in asthma and defined by increased airway smooth muscle force during contraction
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and airway narrowing in response to bronchoconstrictor histamine or acetylcholine [162].
Inflammatory cytokines, such as TNF-α and IL-1β, increase ASM proliferation and con-
tractile force to restrict airflow in asthma [163,164]. Classically-activated macrophages are
known producers of both TNF-α and IL-1β in asthma [103,165]. Aside from cytokine secre-
tion, interactions between macrophages and ASM in the context of asthma are still poorly
understood. Yet some insight can be drawn from co-culture experiments in atherosclero-
sis models. In a study by Butoi et al., human primary aortic smooth muscle cells were
co-cultured with monocyte-like line THP-1 cells that were stimulated towards classical
activation. Co-culture with THP-1 cells increased growth factors’ production by aortic
smooth muscle cells. Conversely, responses from aortic smooth muscle cells increased
matrix metalloproteinase (MMP)-9 and IL-1β in THP-1 cells, indicating a cross-talk be-
tween the two cell types [166]. Although this study was performed in aortic smooth muscle
cells, one can speculate that similar mechanisms between airway smooth muscle and lung
macrophages may be important in asthma.

4.3. Airway Fibrosis and Extracellular Matrix Deposition

Fibroblasts are structural cells that contribute to extracellular matrix (ECM) orga-
nization [167]. Matrix metalloproteinases (MMP) degrade ECM protein (collagens, fi-
bronectin), regulating turnover and composition in the lung. Increased MMP activation
contributes to inflammation and fibrosis through immune cell infiltration and ECM protein
turnover [168,169]. In a study by Mautino et al., alveolar macrophages from people with
asthma released higher MMP-9 levels compared to healthy controls [170]. Further, higher
MMP-9 secretion from alveolar macrophages isolated from asthmatics was associated with
increased airway thickness and faster decline in forced expiratory volume in one second
(FEV1) [169].

Pro-fibrotic mediators activate fibroblasts to secrete extracellular matrix proteins, such
as collagen and fibronectin, that stiffen airways [171]. Alveolar macrophages produce
pro-fibrotic mediators that activate fibroblasts to promote airway remodeling [172,173].
PDGFs, PDGF-AA and PDGF-BB, are growth factors that induce collagen synthesis in
fibroblasts [23]. In a study by Lewis et al., primary fibroblasts isolated from bronchial
biopsies of patients with severe or mild-moderate asthma were cultured with PDGF-AA or
PDGF-BB [23]. Fibroblasts isolated from severe asthmatics exhibited increased procollagen
I expression compared to both healthy control and mild-moderate asthma groups and
this was correlated with FEV1 decline [23]. In addition to alveolar macrophages, recruited
macrophages have also been shown to enhance airway remodeling [77,174,175]. Asthmatics
with increased bronchial wall thickening had higher levels of CCL2 compared to asthmatics
with no thickening of the bronchial wall, indicating a role for the CCL2-CCR2 monocyte
recruitment axis [175].

4.4. Airway Nerve Innervation

Nerves have integral roles in airway tone regulation, inflammation, and asthma [176].
Nerves secrete inflammatory mediators and bronchoconstrictors that induce smooth mus-
cle contraction and contribute to eosinophil recruitment and activation [177,178]. Their
importance is highlighted by the use of long acting anti-muscarinic drugs to induce bron-
chodilation in asthma [179]. Macrophages may contribute to increased airway nervous
innervation leading to enhanced airway contraction and restricted air flow. One possibility
lies in the macrophage’s role in eosinophil recruitment through IL-5 secretion. Studies show
that IL-5-overexpressing mice exhibit increased eosinophilic infiltration, airway hyperre-
sponsiveness, and airway nervous innervation [177,180]. Macrophages may also actively
contribute to nerve growth and survival through neurotrophins (NT) secretion including
NT3, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) during
allergen challenge [181,182].



Int. J. Mol. Sci. 2023, 24, 10451 10 of 26

5. Inflammatory Resolution

As discussed in previous sections, the inflammation associated with asthma results in
enhanced immune responses and structural changes that, if not mitigated, lead to decreased
lung function and poorer quality of life for people with asthma [183]. Inflammatory resolu-
tion is essential for lung restoration and homeostasis after an asthma exacerbation [183].
Macrophages have been found to play a critical role in resolution of lung inflammation by
clearing apoptotic cells, via efferocytosis, and promoting tissue repair (Figure 2) [6,64,184].
This section will discuss different mechanisms macrophages use to promote tissue repair
and resolve inflammation.
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Figure 2. Macrophages contribute to both inflammation and inflammatory resolution. In inflamma-
tory conditions, macrophages produce mediators such as TNF-α, IL-1β, and MMPs that lead to lung
structural cell damage and remodeling. Dysfunctional efferocytosis leads to persistence of necrotic
cells in lung tissue that release damage signals and further enhance inflammation. Macrophages
contribute to inflammatory resolution by secreting mediators such as IL-10 and TGFβ, to repair lung
structural integrity and by engulfing apoptotic cells to reduce inflammation. Created with Biorender
on 13 June 2023.

5.1. Efferocytosis

Apoptotic eosinophils and neutrophils are common in asthma [185]. Efferocytosis is a
process that removes apoptotic cells during the inflammatory resolution stage and is essential
for returning the lung to homeostasis [186]. Defective efferocytosis has been linked to sec-
ondary necrosis and release of damage signals that further enhance inflammation [185,187].
Macrophages are premier cell types for efferocytosis, but this mechanism is found to be
dysfunctional in asthma, particularly in macrophages from severe asthmatics [188,189]. In
a study by Simpson et al., macrophages isolated from the sputum of patients with severe
asthma exhibited decreased efferocytosis of apoptotic bronchial epithelial cells compared
to macrophages isolated from mild-moderate asthmatics [189]. Increases in oxidative stress
in macrophages are associated with classical activation of macrophages and reduced ability
to remove apoptotic cells [20]. The presence of these classically-activated macrophages
is increased in people with severe asthma as compared to mild-moderate asthma [190],
which may explain the decrease in efferocytosis. In a study by Ryan et al., impaired ef-
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ferocytosis was linked to increases in oxidative stress in COPD lung macrophages [191].
Restoring NRF2, a key regulator of antioxidant responses and oxidative stress, expression
in macrophages reduced oxidative stress and restored efferocytosis [191]. Although this
study was performed in a model of COPD, NRF2 expression has also been found to be
reduced in asthma macrophages and could contribute to impaired efferocytosis and asthma
severity [192]. These data would suggest that antioxidant mechanisms may be important
for reducing oxidative stress and enhancing macrophages’ efferocytosis activity in asthma.

In addition to clearing apoptotic cells, efferocytosis-related mechanisms may also
promote macrophage-mediated tissue repair. A recent study has shown that efferocytosis
of apoptotic cells also induces macrophages to secrete IL-10 and TGF-β to help resolve and
repair damaged tissue [193]. In summary, macrophages play a key role in clearing apoptotic
cells and contributing to inflammatory resolution. Targeting dysfunctional macrophage
efferocytosis in asthma, particularly more severe endotypes, may provide a means to reduce
persistent inflammation caused by uncleared apoptotic cells.

5.2. Tissue Repair

During asthma, environmental insults and infection causes injury to airway struc-
tural cells, inducing inflammation and compromising their structural integrity. Tissue
repair mechanisms help resolve inflammation and restore the airway integrity. However,
impaired repair and resolution mechanisms can lead to airway fibrosis which can cause
airway narrowing and obstruction of airflow [194–196]. Several studies have shown that
macrophages contribute to the repair of the airway epithelium, airway smooth muscle,
and fibrosis.

Damage to the airway epithelium during allergic airway inflammation results in in-
creased mucous cells and expression of damage signals that enhance inflammation and in-
crease lung tissue permeability [196]. Epidermal growth factor (EGF) is key in epithelial cell
proliferation and repair and has been shown to be produced by macrophages [197,198]. The
epithelial repair process has mainly been tied to alternatively activated macrophages [199].
Using a mouse model of lung injury via naphthalene administration that resulted in a loss
of club cells within the epithelium, Dagher et al. demonstrated that epithelial regeneration
post-naphthalene insult required resident lung macrophages that were skewed towards
the alternatively-activated phenotype. Further, this repair process was linked to IL-33
macrophage stimulation, a driver of alterative activation [200], as naphthalene-challenged
St2−/− mice exhibited incomplete epithelial repair. Adoptive transfer of WT macrophages
into naphthalene-challenged St2−/− mice restored epithelial repair following injury [201].

Macrophages, particularly alternatively-activated macrophages, have been shown
to reduce airway fibrosis in animal models. In a study by Li et al., mice were sensi-
tized/challenged with ovalbumin intranasally for 7 days, then treated with exosomes
isolated from alternatively-activated bone marrow derived macrophages on day 6, 7, and
8 [202]. Ovalbumin-challenged mice not treated with exosomes exhibited increased fibrosis
and peribronchiolar immune cell aggregation. Conversely, treatment with alternatively-
activated macrophage exosomes significantly decreased both fibrosis and immune cell
aggregation. This mechanism was found to involve exosomes carrying miR-370, which
has previously been associated with mitigation of LPS-induced lung injury [202,203]. This
study highlights the role of macrophages in repairing fibrosis during the resolution of
inflammation.

6. Host Defense against Pathogens

The confounding effects of airway remodeling, such as epithelial permeability and
mucus stasis, enhance susceptibility to viruses and bacteria [204]. These infections result in
an altered immune environment that may exacerbate asthma symptoms and affect asthma
severity [205,206]. This section will discuss the role of macrophages during viral and
bacterial infections associated with asthma (Figure 3).
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Viruses (rhinovirus and RSV) and bacteria (Staphylococcus aureus, non-typeable Haemophilus influenzae,
and Moraxella catarrhalis) can augment macrophage polarization to heighten type 1, 2, and 17 in-
flammation. These responses are mediated through intracellular (RIG-1, TLR3, and TLR9) and
extracellular (TLR2 and TRL4) pattern recognition receptors. Created with Biorender on 13 June 2023.

6.1. Viral Infection

Viral infections, most notably rhinovirus, are the primary cause of acute exacerbations
in both children and adults with asthma [205,207]. Rhinovirus is demonstrated to induce
robust Th2-associated responses that amplify asthmatic symptoms [208,209]. There is
increasing evidence that viral infection enhances macrophage inflammatory responses in
asthma [210–212]. In an ovalbumin mouse model of allergic asthma, rhinovirus infection
further increased type 2 cytokine (e.g., CCL11, IL-4, and IL-13) production, eosinophil
and neutrophil infiltration, and AHR [210]. In this study, rhinovirus was found to local-
ize with lung macrophages and clodronate macrophage depletion suggested that lung
macrophages play an integral role in the heightened eosinophil infiltration and AHR in
ovalbumin-challenged and rhinovirus-infected mice [210]. Interestingly, RNA-seq analyses
revealed that rhinovirus infected human monocyte-derived macrophages polarized to
M1-like conditions with IFN-γ in vitro exhibited a robust inflammatory response related to
type 1 inflammation [212]. Conversely, infected human monocyte-derived macrophages,
polarized to M2-like conditions with IL-4 in vitro, had a very limited response [212]. These
findings suggest rhinovirus has differential effects on macrophages polarization, but ad-
ditional studies are needed to determine how macrophages enhance the type 2 response
upon rhinovirus infection in allergic asthma.

Similar to rhinovirus, respiratory syncytial virus (RSV) is associated with type 2 inflam-
matory responses and acute exacerbation, particularly in infants and young children [213].
Inflammatory responses to RSV are induced in lung macrophages and are important
for host immunity against RSV [214,215]. Upon RSV infection, alveolar macrophages up-
regulate pro-inflammatory mediator production that includes type I interferon and antiviral
responses through mitochondrial antiviral (MAV) and retinoic acid-inducible gene (RIG)
signaling [21,216,217]. These important antiviral pathways contribute to inflammatory
monocyte lung recruitment for RSV clearance in mice [216,218]. The number of circulating
monocytes is increased in RSV infected patients and is needed for effective defense against
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RSV. Yet reduced human monocyte leukocyte antigen (HLA)-DR expression and IL-10
induction was found to be associated with severe RSV infection [219]. Similarly, alveolar
macrophages are important for host defense against RSV, as macrophage depletion in mice
show increased viral load in RSV infected mice [220,221]. While RSV is strongly linked to
type 2 responses and asthma risk, less is known about how RSV affects type 2-associated
responses in lung macrophages. Recent studies in mice showed RSV infection increases
IL-33 mRNA expression in alveolar but not interstitial lung macrophages [222]. Another
study has reported enhanced alternatively activated macrophage populations that produce
IL-4 and IL-13 during RSV infection in mice [223]. These data indicate that recruited mono-
cytes and alveolar macrophages are important for host defense against RSV but may also
produce type 2 inflammatory cytokines that contribute to asthma pathogenesis.

Rhinovirus has also been implicated in reducing macrophage phagocytic activity, with
rhinovirus infected COPD alveolar and monocyte-derived macrophages having impaired
ability to phagocytose Streptococcus pneumoniae and Haemophilus influenzae (NTHi) [224]. Simi-
lar effects on phagocytosis were observed in alveolar and monocyte-derived macrophages
treated with the TLR3 agonist, Poly I:C, which also dampened IL-10 production [224].
Macrophage phagocytosis in the context of RSV infection is also important. In addition
to pro-inflammatory mediator production, RSV infection increases alveolar macrophages
phagocytosis, via the Fc-γ receptor [225–227]. However, studies using RSV co-infection
with bacteria suggest that RSV infection can reduce macrophage bacterial phagocytic activ-
ity [228]. While the effect of rhinovirus and RSV on macrophage host defense responses in
asthma have yet to be explored, these findings suggest that rhinovirus and RSV infection
can alter pro-inflammatory responses and phagocytosis in lung macrophages, which may
contribute to airway inflammation in asthma.

6.2. Bacterial Dysbiosis and Colonization

The lung microbiome consists of numerous bacterial species that are important for
lung health and immunity [229]. Airway bacteria composition is altered in asthma with
implications for airway inflammation and asthma severity [17,230,231]. A recent study
using 16S rDNA V4 region sequencing found differences in α and β diversity between
asthma subjects with low and high eosinophils, suggesting a link between microbial
composition and type 2 inflammation [230]. A similar study that analyzed sputum samples
in a severe asthma cohort found that increased Actinomycetaceae abundance correlated with
greater eosinophil counts in asthma patients [232]. Differences in bacterial composition in
the airway are also observed among severe asthma endotypes with neutrophil or mixed
granulocyte infiltration [233]. These data suggest that the airway microbiome may influence
asthma pathogenesis and impact asthma management.

In addition to changes to airway microbiota composition, severe asthma is associated
with increase colonization of pathogenic bacteria species [234]. Increased Staphylococcus
aureus, non-typeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis colonization
are often found in asthmatic airways and associated with worsened outcomes [206,235–237].
Here, macrophages may play a key role in the emergence of these species and affect their im-
pact on asthma pathogenesis. Intranasal NTHi inoculation prior to ovalbumin sensitization
and challenge in mice reduces type 2 responses but increases Th17-associated responses
with increased neutrophil infiltration and IL-17A levels [16,238]. These inflammatory re-
sponses are also resistant to corticosteroids [238], which is consistent with the observed
increases in NTHi colonization in individuals with severe asthma [239,240]. Further, re-
cent studies show that NTHi induces a transcription profile in human monocyte-derived
macrophages that reflects pro-inflammatory response promoting neutrophil recruitment
and activation [235,241]. Liang et al. showed that bronchoalveolar lavage macrophages
isolated from people with severe asthma exhibit decreased Haemophilus influenzae and
Staphylococcus aureus phagocytosis compared to healthy controls [242]. These data sug-
gest that defective phagocytic activity in alveolar macrophages lead to increased bacterial
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colonization that could subsequently lead to persistent airway inflammation, which is
insensitive to corticosteroids.

While the role of bacterial colonization in asthma exacerbation is not fully estab-
lished [243] (as opposed to COPD), treatment with azithromycin, an antibiotic macrolide, re-
duces exacerbation frequency and improves quality of life among people with asthma [244].
In a study by Gibson et al., people with poorly controlled asthma that were also on a
medium-to-high corticosteroid dose were treated with either placebo or azithromycin
three times a week for 48 weeks [244]. Compared to the placebo group, patients receiv-
ing azithromycin exhibited a significant reduction in exacerbations, cough, and sputum
production [244]. Although there were beneficial outcomes with azithromycin treatment,
there were noted adverse side effects with patients in the azithromycin group [244]. Taylor
et al. revealed that people with poorly controlled asthma on a 48-week azithromycin
treatment regimen experienced no significant reduction in sputum bacterial load [245].
Although antibiotic treatment reduced Haemophilus influenzae, microbes such as Staphy-
lococcus pneumoniae, S. aureus, Pseudomonas aeruginosa, and Moraxella catarrhalis were not
impacted [245].

Azithromycin has been shown to enhance macrophage phagocytic activity and affect
macrophage polarization by decreasing gene expression associated with classical activation
while increasing expression of alternative activation genes [246–248]. Alternative polariza-
tion induced by azithromycin was demonstrated to involve suppression of NFκB and Stat1
signaling [249]. This suggests that azithromycin can modulate pro-inflammatory responses
that are involved in classical macrophage activation and neutrophilic inflammation in
severe asthma.

Despite bactericidal and anti-inflammatory effects, long term use of antibiotics has
been linked to the generation of antibiotic resistant bacterial strains in severe
asthma [245,250,251], potentially limiting their utility. The possible generation of an-
tibiotic resistant microbes has elicited a call to reduce overuse of antibiotics and pursue
therapeutic avenues that involve enhancing host defense to invading microbes. Given
the importance of macrophages recognizing these unwanted invaders and their powerful
bactericidal activity, they may be an attractive target for reducing bacterial load in people
with asthma. For example, novel nonantibiotic macrolides, which are an alternative to
antibiotic macrolides, were recently shown to enhance phagocytic activity and induce
anti-inflammatory responses in primary alveolar macrophages [252].

7. Macrophages Contribute to Severe Asthma Endotypes

Asthma is a heterogenous lung disease that possesses several endotypes that are
though to influence sensitivity to corticosteroids, an anti-inflammatory drug commonly
used in asthma [253]. Broadly, severe asthma can be classified based on sputum inflam-
matory cell compositions as eosinophilic, neutrophilic, mixed granulocytic (eosinophils
and neutrophils), or pauci-granulocytic (absence of granulocytes) [254]. Macrophages have
been found to contribute to the pathogenesis of these severe endotypes. In neutrophilic
asthma, Fricker et al. demonstrate that macrophages isolated from people with neutrophilic
asthma exhibit enriched pathways for neutrophilic migration, inflammatory responses,
bacterial responses, and lymphocyte activation when compared to macrophages isolated
from non-neutrophilic asthma. These data suggest that macrophages from neutrophilic
asthma are transcriptionally altered to be more pro-inflammatory [255]. Macrophages are
also found to be important in pauci-granulocytic asthma. Olgac et al. reported that people
with pauci-granulocytic asthma possess higher macrophage numbers in the sputum when
compared to people with eosinophilic, neutrophilic, or mixed granulocytic asthma [256].
This pauci-granulocytic endotype was also more poorly controlled compared to other
groups in improving FEV1 with treatment [256].

In summary, macrophages are associated with the different endotypes of asthma as
well as with their contributions to the efficacy of corticosteroids. These studies form the
foundation for future investigations into identifying macrophage targeted therapies to



Int. J. Mol. Sci. 2023, 24, 10451 15 of 26

reduce inflammation and increase corticosteroid efficacy. One strategy is reprogramming of
macrophages to the alternatively activated state to promote inflammatory
resolution [257,258]. However, this avenue needs to be approached with caution. As
outlined in this review, alternatively activated macrophages, particularly uncontrolled
alternative activation, can itself lead to enhanced eosinophil recruitment and release of
pro-remodeling mediators that can further exacerbate asthma. This may be accomplished
by antioxidant therapies. During asthma and associated oxidative stress, macrophages
are classically activated and antioxidant therapies reducing reactive oxidant species could
skew macrophages to the pro-resolution stage earlier in allergic airway inflammation.

8. Knowledge Gaps and Conclusions

Macrophages play a critical role, not only in asthma pathogenesis, but also in return to
homeostasis post-allergic inflammation. Further, lung macrophages contribute to asthma
phenotype, severity, and may affect corticosteroid sensitivity [82]. Identifying specific roles
of each macrophage subset in asthma could allow for cell-specific therapeutic targets that
may reduce airway immune cell infiltration, bacterial infection, and airway remodeling
leading to improved outcomes. For instance, alveolar macrophages have been identified as
key recruiters of inflammatory immune cells but are also vital for pathogen clearance. This
subset is also extremely critical for the resolution of the inflammatory response post-allergen
exposure [5]. Harnessing the antibacterial capabilities of alveolar macrophages during
infection and pro-resolution mechanisms may prove beneficial in reducing inflammation
associated with asthma. Secondly, interstitial macrophages have been found to reduce
neutrophilic infiltration that is common in more severe cases of asthma [43]. Utilizing this
capability may further reduce the increased asthma severity associated with neutrophilic
infiltration and corticosteroid sensitivity. Third, recruited monocytes are identified as
proinflammatory in asthma and reduction in these populations through interference with
the CCL2-CCR2 chemotactic axis may alleviate allergic airway inflammation. Recent
advances in single-cell RNA-sequencing (scRNA-seq) reveal distinguishable differences in
transcriptional profiles and possible functions that further differentiate macrophage subsets
will allow for more in-depth investigation into their differential roles in asthma [37,259].
Utilizing this technology will allow for identification of novel pathways associated with
each subset and could help identify possible novel therapies to mitigate allergic airway
inflammation.

There are knowledge gaps however when it comes to the role of macrophages in
asthma. Although experiments investigating cross-talk between macrophages and immune
cells and structural cells have been performed, much remains unknown. For example, TRM
are a newly characterized cell type that persist in the tissue [116]. Given the proximity of
macrophages to these cytokine super-secretors, it is possible that macrophages play a huge
role in TRM activation upon re-exposure to allergen. Other than cytokine production, not
much is known about direct interactions between macrophages and airway smooth muscle
cells despite their close proximity. As seen with direct contact interactions with airway
epithelium [260], there could possibly be physical interactions that result in increased ASM
contraction and/or stiffness, leading to increased airway hyperresponsiveness.

Phagocytosis and efferocytosis are key mechanisms that have been found to be im-
paired in asthma macrophages [53]. This creates an environment for pathogens to thrive,
as well as uncleared apoptotic cells releasing damage signals to further enhance inflam-
mation [185]. Identifying key mechanisms to enhance macrophage phagocytosis and
efferocytosis function will increase host defense and also reduce inflammation caused by
uncleared apoptotic cells.

In summary, macrophages are an important cell type that contribute to both harmful
and beneficial processes in asthma. Harnessing their power will be important to reduce
exacerbation and improve overall quality of life in people with asthma.
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