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Abstract: The development of infections caused by pathogenic bacteria is largely related to the
specific properties of the bacterial cell surface and extracellular hydrolytic activity. Furthermore, a
significant role of hijacking of host proteolytic cascades by pathogens during invasion should not
be disregarded during consideration of the mechanisms of bacterial virulence. This is the key factor
for the pathogen evasion of the host immune response, tissue damage, and pathogen invasiveness
at secondary infection sites after initial penetration through tissue barriers. In this review, the
mechanisms of bacterial impact on host plasminogen—the precursor of the important plasma serine
proteinase, plasmin—are characterized, principally focusing on cell surface exposition of various
proteins, responsible for binding of this host (pro)enzyme and its activators or inhibitors, as well as the
fibrinolytic system activation tactics exploited by different bacterial species, not only pathogenic, but
also selected harmless residents of the human microbiome. Additionally, the involvement of bacterial
factors that modulate the process of plasminogen activation and fibrinolysis during periodontitis is
also described, providing a remarkable example of a dual use of this host system in the development
of chronic diseases.
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1. An Introductory Overview of the Discussed Issues

The occurrence and further expansion of bacterial infections are closely related to the
specific characteristics and activity of bacterial cell surfaces and extracellular hydrolysis
capacity. For this reason, the important role of controlling the host proteolytic cascades by
pathogens during invasion should not be overlooked when considering bacterial virulence
mechanisms. This is the factor of crucial importance for the pathogen evasion of the host im-
mune response, tissue damage, and pathogen invasiveness. One of such mechanisms is the
bacterial impact on host plasminogen, the precursor of plasmin, an important plasma serine
proteinase [1,2]. The numerous interconnections between the components of individual
plasma proteolytic cascades, as well as regulatory mechanisms and interactions occurring
at various levels, make the individual components of host systems, including plasminogen,
a very convenient target to capture by microorganisms inhabiting host organisms to work
to their advantage. For this purpose, the exposition of various proteins at the cell surface,
responsible for binding to this host protein, might be exploited by pathogens, as by well
as influencing plasmin activators or inhibitors. The involvement of bacterial factors that
modulate the process of plasminogen activation and fibrinolysis provide a remarkable
example of a dual use of this host system in the development of chronic diseases.
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2. Plasminogen Functionality and Involvement in Physiological Processes

Plasminogen, a 92-kDa glycoprotein synthesized primarily in the liver and present in
plasma at a concentration of 216 µg/mL (2.4 µM), is the precursor of serine
proteinase—plasmin—and the key component of the fibrinolytic system, which is cru-
cial in the process of the removal of fibrin clots formed after activation of the coagulation
cascade [1,2]. This system consists additionally of plasminogen activators—tissue-type
plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), which may
be inhibited by members of the serpin family—plasminogen-activator inhibitors PAI-1
and PAI-2 [1]. Plasminogen and tPA bind to fibrin through exposed lysine residues, and
this process facilitates zymogen activation to plasmin by both activators, even though
uPA does not bind to fibrin, finally resulting in clot lysis to soluble fibrin degradation
products (FDP). Furthermore, in the positive feedback mechanism, plasmin transforms
the zymogen of plasminogen activator uPA into its active form [3,4]. Precise regulation
of the system is crucial for maintaining hemostasis; therefore, it also includes inhibition
of plasmin by its major inhibitors—serpin alpha2-antiplasmin (α2AP) and, additionally,
non-serpin alpha2-macroglobulin (α2M)—through the formation of proteinase-inhibitor
complexes. Plasmin can also be inhibited by the C1-inhibitor, which interacts with pro-
teinase via the serpin mechanism; however, the C1-inhibitor is also a protein susceptible to
degradation by plasmin when it is in a denatured polymeric state [5–8]. As long as plasmin
and tPA are bound to fibrin during clot lysis, they are protected from binding by their main
inhibitors—α2AP and PAI-1, respectively [1]. In addition, binding of fibrinolytic system
proteases to the surface of human cells by a variety of different receptors also stimulates
activation of the system and protects enzymes from inhibition [1,9]. Another aspect of
system regulation is based on the removal of lysine residues exposed on fibrin by the action
of thrombin-activatable fibrinolysis inhibitor (TAFI), similar to carboxypeptidase B, which
prevents the binding of plasminogen to fibrin and its activation to plasmin [10].

Active plasmin exhibits a broad proteolytic activity with a preferential cleavage site
after lysine or arginine residues, being active on a wide range of diverse proteins in the
organism and thereby involved in different processes, from the canonical function in fibrin
clot lysis, to ovulation, embryonic development, tissue remodeling, vascular remodeling,
inflammation, and tumor metastasis. The substrates of this protease include von Willebrand
factor, and extracellular matrix (ECM) proteins—laminin, fibronectin, and thrombospondin;
plasmin may also activate matrix metalloproteinases, facilitating further degradation of
ECM proteins. Furthermore, plasmin modulates the activity of coagulation factors V
and IX and regulates complement activity via binding of factors C3 and C5, followed by
the generation of chemotactic C3a and C5a activation fragments. Nevertheless, further
degradation and inactivation of C3 and C5 have also been reported in other studies [1,11,12].

Plasmin action is known to be associated with the activation of immune cells after
binding to certain cellular receptors, and this phenomenon is related to the production of
inflammatory mediators and the propagation of inflammation, as plasmin also plays the
role of an effective chemoattractant for immune cells [13]. One example is the involvement
of plasmin in the stimulation of macrophages via the annexin A2 heterotetrametric complex
receptor, with subsequent stimulation of the Janus kinase JAK1/TYK2 signaling cascade
and the production of pro-inflammatory cytokines—tumor necrosis factor-alpha (TNF-α)
and interleukin 6 (IL-6) [14]. Furthermore, several other receptor molecules responsible
for plasmin binding have been identified so far for various cell types [13]. Considering
also the initiation of the process of fibrin clot formation, during the proteolytic processing
of fibrinogen by another important serum proteinase, thrombin, the pro-inflammatory
fibrinopeptides A and B (Aα1–16 and Bβ1–14) are produced, and the latter is described
as a significant chemoattractant for neutrophils, monocytes, and macrophages [15,16].
In addition, during the degradation of fibrin clots by plasmin, pro-inflammatory pep-
tides and FDP are generated, i.e., D-dimers, D fragments, and E fragments, of which
mainly the former are indicated as factors triggering the release of different cytokines
from monocytes/macrophages, including interleukin 1α (IL-1α), interleukin 1β (IL-1β),
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and IL-6, and stimulating production of uPA, tissue factor (TF), and PAI-2 [17,18]. During
fibrin hydrolysis by plasmin, other fibrin fragments are also produced, such as Bβ15-42
peptide and α-chain fragments, and, in contrast, the former exhibits immunosuppressive
potential [16,19].

The fibrinolysis system is substantially inseparable from the process of activation of
the coagulation cascade and the kinin generation system, and is tightly connected with
the complement system, thus participating in defense mechanisms [20]. Such diverse
activities associated with plasminogen and its active form—plasmin—make the role of this
protein particularly important, not only in the processes related to hemostasis and tissue
rearrangement, but also in the regulation of the inflammatory state, when it contributes
to the development of acute inflammation, and may also be involved in the occurrence of
chronic inflammatory conditions.

3. The Engagement of Plasminogen and Plasmin in Infections—Benefits and
Drawbacks of Fibrinolytic System Activation by Pathogens

Bacterial microorganisms exploit several types of different interactions with the human
host, ranging from existing as part of the physiological microflora required for the proper
functioning of the human organism to being important etiological factors of various types of
infections. The occurrence of disease caused by pathogenic bacteria results from a number
of factors and phenomena, including not only the characteristics and activities of a particular
pathogen, but also the efficiency of the host defense systems, as the development of infection
usually depends on an imbalance between host immunity and microbial virulence, related
to the pathogen’s ability to deregulate the processes that maintain homeostasis in the
host organism and avoid defensive proteins and immune cells. Accordingly, the ability of
microorganisms to bind to their cell surface a variety of host molecules, including plasma
proteins—albumin, transferrin, and components of the complement system and coagulation
cascade—has been frequently described, just as the binding of ECM proteins—laminin,
fibronectin, collagen, entactin, or vitronectin. Moreover, the secretion of hydrolytic enzymes
by pathogens during the invasion allows for the degradation of soluble host proteins in
the bloodstream or proteins located within host tissues, and also for the hydrolysis of
substrates bound and accumulated on the cell surface of the microorganisms. It is well
documented that pathogenic bacteria may activate or inactivate different plasma proteolytic
cascades involved in the maintenance of homeostasis and hemostasis in the host organism
directly through the action of their proteinases or after capturing host components by
surface-exposed bacterial receptors, affecting the operation of the entire system and leading
to its facilitated activation, or to imprisoning host molecules, thus preventing their further
actions [21–24].

As plasminogen is found in human plasma at a high concentration, and its active form,
plasmin, demonstrates a broad proteolytic activity, the fibrinolytic system consisting addi-
tionally of plasminogen activators and inhibitors is a very useful target for disseminating
pathogens, which can use many aspects of plasminogen functionality to their advantage. It
should be mentioned that binding of plasminogen to the cell surface greatly enhances its
hydrolysis by activators [25]; thus, the production and surface exposition of plasminogen-
binding proteins may be one of the mechanisms beneficial to bacteria. The construction of
a network of co-occurrence links between terms, carried out with VOSviewer and based on
bibliographic data from the Web of Science Core Collection database from 1992 to 2023 with
a search query for topics ‘plasminogen’ and ‘infection’ and ‘bacteria’, showed the noticeable
presence of relations between these terms in the published scientific literature, referring
to the activation of plasminogen to plasmin and regulation of the process of coagulation
and fibrinolysis during host–pathogen interactions and manifestation of inflammatory
conditions (Figure 1).
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One of the primary mechanisms of the human host to combat bacterial invaders is to
immobilize pathogen cells in a fibrin clot to prevent them from spreading in the bloodstream
and constrain further development of infection, which is related both to the mechanical
confinement of the cells and to the facilitation of the host immune response [23,26–29].
A key aspect of this host defense response is the association of the activity of host phago-
cytes with the presence of a fibrin network encapsulating pathogens [30]. This mechanism
protects against the rapid expansion of extensive systemic infection, but does not prevent
the development of a chronic disease, as microorganisms have acquired the ability to ma-
nipulate the clot formation and dissolution through various mechanisms (Figure 2) [31,32].
One example of how bacteria exploit the process of fibrin clot formation is the ability
to assemble factors of the human coagulation cascade by Escherichia coli fibrous surface
proteins—curli—facilitating activation of the coagulation pathway at the bacterial cell sur-
face and generation of fibrinopeptides in the process regulated by E. coli-induced activation
of the contact system comprised in the intrinsic pathway of the coagulation pathway. As
a consequence, stimulation of immune cell migration and the induction of the proinflam-
matory cytokine MCP-1 at the inflammatory site is observed. This process on a local scale
may support removal of pathogens by defense cells, and also facilitate progression of the
disease related to the freer spread of bacteria released from the clot trap [33]. In addition,
several fibrinogen- and fibrin-binding proteins have been identified for Staphylococcus
aureus, including fibronectin-binding proteins A and B (FnBPA and FnBPB), clumping
factors A and B (ClfA and ClfB), bone sialoprotein-binding protein (Bbp), S. aureus surface
protein SdrE, and von Willebrand factor-binding protein (vWbp) [34,35]. For this bacterial
species, it has also been demonstrated that the phenomenon of fibrinogen binding to the
surface of pathogen cells can be important in the development of the host antibacterial
response, but may also contribute to the formation of a mechanical barrier, protecting
microbes against the activity of immune cells and favoring the formation of infectious
lesions [34,36]. Streptococcus pyogenes M protein is also a well-known bacterial protein in-
volved in fibrinogen binding [37–39]. Additional takeover of plasminogen/plasmin activity
by wound-infecting streptococci allows the dissolution of the fibrin clot and, consequently,
the dissemination of bacterial cells [40]. It has also been demonstrated that binding of
fibrinogen- or fibrin-degradation products to the M protein of S. pyogenes protects bacterial
cells from opsonization and phagocytosis [41].
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factors. The figure was partly generated using Servier Medical Art, provided by Servier, licensed
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uPA—urokinase, tPA—tissue plasminogen activator, BP—bacterial proteinase, PA—plasminogen
activator, PR—plasminogen receptor, and FDP—fibrin degradation products.

The co-evolution of the human host and pathogenic bacteria resulted in a kind of
“armaments race” and had the effect that the regulation of the interactions between fibrino-
gen/fibrin and plasminogen/plasmin actions is repetitively directed either to the benefit of
the host and the activation of its defense mechanisms, or to the advantage of the bacterial
pathogen [42]. Taking control of plasmin activity by bacteria gives them the opportunity to
release from the fibrin trap, despite the fact that a fibrin clot may as well be a protective
shield during the attack of immune cells, but, when the activity of the immune system
is already extinguished, the surviving microbial cells can escape from the clot and give
rise to a chronic infection. However, other studies have shown that active plasmin can
prevent biofilm formation in the case of some bacterial species, including Bordetella pertussis
and Neisseria meningitidis [43]. The host proteinase degrades important bacterial surface-
exposed proteins—neisserial heparin-binding antigen (NHBA), neisserial IgA protease
(IgAp), and B. pertussis filamentous hemagglutinin precursor (FhaB)—becoming part of
the host defense mechanism against infection and colonization by harmful pathogens [43].
However, Arenas et al. [43] also reported that the biofilm produced by S. aureus was not
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susceptible to the anti-biofilm effect of proteinase, possibly because this bacterial pathogen
has developed strategies to avoid the biofilm-inhibiting effect of plasmin. As previously
noted by Kwiecinski et al. [44], in this species, the ability to form a biofilm in the presence
of host proteins is strongly dependent on the level of expression of staphylokinase, which
is a bacterial activator of plasminogen (described below). The less plasminogen activator
S. aureus strain produces, the thicker biofilm it creates on the fibrin scaffold [44]. Thus,
the process of bacterial fibrin-based biofilm formation and dispersion is dependent on
the ability to adhere to fibrin, activate the fibrinolysis system, and maintain the balance
between bacterial virulence factors and host defense mechanisms.

Apart from its main role in the degradation of fibrin clots, plasmin is also involved in
the degradation of the ECM components, laminin and fibronectin, as well as activation of
pro-collagenases, and this capability may also be exploited by pathogens to disseminate
through host tissues after destruction of mechanical barriers [45]. In addition, plasmin pro-
teolytic activity directed against host proteins can also be used to evade the immune system,
including the degradation of important defense proteins such as opsonins or extracellular
histones [46,47], or for hydrolysis of human cathelicidin—antimicrobial peptide LL-37 [48].
Hence, covering the surface of the bacteria with plasminogen and consequent activation
of the system may facilitate the escape of bacteria from the initial site of infection and
spreading in the host organism due to the ability to degrade ECM and basement membrane
proteins, disintegrate tricellular tight junctions, and adhere and interact with endothelial
and epithelial cells, as demonstrated so far for many different bacterial species and diverse
infectious niches [42,49–55]. Interestingly, among the Lyme-disease-causing spirochetes,
cp32 prophages might be involved in the horizontal transfer of genes encoding surface
lipoproteins from the Erp family, whose representatives are involved in the binding of
plasminogen and other host proteins [56–58]. This phenomenon sheds new light on the
potential for dissemination of plasminogen-binding mechanisms in multi-species bacterial
biofilm communities.

Interestingly, however, it is not only pathogenic bacteria that are involved in in-
teractions with human plasminogen; microorganisms that are part of the physiological
microflora and those with the characteristics of probiotic organisms are also able to affect
the fibrinolysis system, as well as food functional bacteria such as particular Lactobacillus
strains that can activate plasminogen to plasmin [59]. L. plantarum, commensal bacteria
colonizing the human intestinal tract, can also bind plasminogen on the cell surface, leading
to its activation and then the release of active plasmin into the surrounding; therefore, these
bacteria do not exhibit prolonged surface proteolytic activity related to the host protein.
Thus, they may support host defense mechanisms by competing for plasminogen binding
with neighboring pathogens, whose cells become rather loaded with active plasmin used
for further degradation and dissemination [60]. Additionally, for L. crispatus, extracellular
release of some plasminogen-binding proteins, including enolase and glyceraldehyde-3-
phosphate dehydrogenase, has been demonstrated, followed by enhanced activation of
zymogen to plasmin in the presence of tPA and uPA; therefore, it may also constitute
a particular form of a competition with pathogens in a co-colonized environment [61].
Furthermore, another probiotic strain, L. reuteri, demonstrated an effect on the downregula-
tion of uPA gene expression [62], which indicates the existence of various mechanisms of
interaction of harmless bacteria with the human fibrinolytic system.

4. Virulence Factors and Microbial Mechanisms Involved in the Hijacking of
Fibrinolytic System by Pathogenic Bacteria

The degree of virulence of a particular pathogen is determined by properties such
as the adhesion capability, efficiency of the production of toxins and hydrolytic enzymes,
cell multiplication rate, flexible adaptation to environmental conditions, and evasion of
host defense mechanisms, which are cooperatively related to the pathogen’s ability to
colonize and destroy host tissues successfully [63–65]. With regard to the regulation of
the fibrinolysis system and the effect on plasminogen, the important roles of secretory
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bacterial proteases, surface-exposed adhesive proteins, and plasminogen activators have
been mainly specified.

Proteinases secreted by bacteria during infection are used not only to obtain nu-
trients from the environment, but also play a significant role in tissue colonization, mi-
crobial spreading in the host organism, and deregulation of host defense and immune
processes [64]. These proteinases degrade immunoglobulins and complement proteins,
facilitating the development of infection. They can also activate the host zymogens: plas-
minogen, procollagenase (matrix prometalloproteinase), and coagulation system proen-
zymes. Many bacterial proteolytic enzymes are not only insensitive to plasma proteinase
inhibitors, such as serpins, but are also capable of their inactivation [63,66,67]. In general,
any pathogen that extracellularly produces proteinases capable of hydrolyzing the Arg-X
peptide bond can activate the complement, blood coagulation, and kinin generation cas-
cades [64,68]. Bacteria produce proteinases belonging to all major classes, i.e., aspartyl,
serine, cysteine, and metalloproteinases [64]. Some proteinases are not secreted into the
environment, but are bound to the cell membrane through additional domains and are
responsible for proteolytic activity on the surface of the bacterial cell [69]. One example
is the outer membrane protease Pla from the omptin family of serine proteases, which is
produced by the plague bacterium Yersinia pestis, capable of activating plasminogen to
plasmin and inactivating the major plasmin inhibitor—α2AP, as well as plasminogen acti-
vator inhibitor PAI-1 [70–73]. Other representatives of the omptin family of transmembrane
endopeptidases in gram-negative bacteria have also been identified as capable of PAI-1
inactivation, including PgtE protease from Salmonella enterica, Epo from Erwinia pyrifoliae,
and Kop from Klebsiella pneumoniae [74]. Several omptins may also activate zymogen of
uPA to active urokinase, including the abovementioned Pla and PgtE, as well as OmpT and
OmpP from E. coli, SopA from Shigella flexneri, and Leo from Legionella pneumophila [75].

Additionally, bacteria often exploit activators that, through non-proteolytic trans-
formations, trigger the activation of host plasminogen to plasmin. Streptococci produce
streptokinase—a secretory, 47-kDa single-chain protein—which can form a complex with
plasminogen, which is capable of activating other plasminogen molecules to plasmin, thus
facilitating clot dissolution [42,76]. Activation of plasminogen by streptokinase on the
bacterial surface results in degradation of extracellular histones and loss of their antimi-
crobial and hemolytic activity [47]. Similarly, S. aureus also produces 15-kDa plasminogen
activator—staphylokinase—leading to the formation of active plasmin, often displayed on
the surface of the bacterial cells and thereby protected against inhibition by α2AP, enabling
bacterial cells to disseminate and to evade opsonization by exploiting the proteolytic proper-
ties of surface-bound plasmin for degradation of two main host opsonins—immunoglobulin
G (IgG) and C3b fragment [46,77,78].

Surface proteins also contribute to the virulence of bacteria. The common feature of
plasminogen receptors is that they are multifunctional molecules, often acting as adhesins
to other proteins or host cells. They also have cell motility functions, influence the host
immune response or, as in the case of moonlighting proteins, have important catalytic
functions in the cytoplasm of the cell. Often, a single pathogen species expresses multiple
receptors on its surface, which interact with plasminogen by cooperative action to increase
plasmin activation, thereby influencing the success of the microbial spread in the host.
Examples of plasminogen-binding proteins in pathogenic bacteria are presented in Table 1.

Table 1. Examples of bacterial proteins acting as receptors for plasminogen.

Surface Plasminogen-Binding
Protein/Structure Other Functions Species of Bacteria References

Fibronectin A and B binding proteins
Adhesion to host tissues

mainly through their
interactions with fibronectin

S. aureus
S. pneumoniae [79,80]
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Table 1. Cont.

Surface Plasminogen-Binding
Protein/Structure Other Functions Species of Bacteria References

Enolase
Involved in glycolysis and
adhesion to host proteins

and cells

S. pyogenes
S. pneumoniae

S. aureus
Lactobacillus crispatus
Lactobacillus johnsonii

Bifidobacterium longum
Bifidobacterium bifidum
Bifidobacterium breve
Bifidobacterium lactis
Mycoplasma hyorhinis

Borrelia burgdorferi

[81–84]

Glyceraldehyde-3-
phosphate dehydrogenase

Involved in glycolysis and
adhesion to host proteins

and cells

Group A streptococci
Bacillus anthracis

Lactobacillus plantarum
Clostridium perfringens

E. coli

[85–90]

Aspartase Involved in nitrogen, alanine,
and aspartate metabolism Haemophilus influenzae [91]

Phosphoglucomutase Involved in gluconeogenesis Klebsiella pneumoniae [92]

Phosphoenolpyruvate carboxykinase Involved in gluconeogenesis Klebsiella pneumoniae [92]

Triosephosphate isomerase Involved in glycolysis S. aureus
S. pneumoniae [93,94]

M-protein and M-like protein

Binding IgG and IgA,
involved in the adhesion to

epidermal keratinocytes,
epithelial cell invasion, and

microcolony formation

Group A streptococci [40,95–97]

Fimbriae
Facilitating attachment to host

tissues and promoting
bacterial motility

E. coli
S. enteritidis [25,98,99]

Flagella
Facilitating attachment to host

tissues and promoting
bacterial motility

E. coli [98,100]

OspA and OspC Involved in host colonization Borrelia burgdorferi [101]

Neutrophil-activating protein
Involved in ROS production

by neutrophil stimulation, and
adhesion to endothelial cells

Helicobacter pylori [102]

ClpC Chaperone activity S. pneumoniae [103]

UvrC Involved in DNA repair S. pneumoniae [103]

DnaK Chaperone activity Bifidobacterium animalis subsp. lactis [104]

Lipoprotein
Involved in the integrity of the

outer structure of the
cell membrane

E. coli [105]

5. Enolase as the Best Studied Bacterial Plasminogen-Binding Protein—Structural
Basis of the Interactions

Despite numerous reports on the interaction of bacterial surface proteins with plas-
minogen, only a few studies describe the structural basis of this interaction. The best-
characterized example so far is enolase—a cytoplasmic enzyme classically involved in
the glycolytic pathway. With the example of S. aureus, it was shown that the interaction
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between bacterial enolase and plasminogen plays a role in the microbial adherence to host
cells, activates plasminogen with the participation of plasminogen activators, and also
prevents α2-antiplasmin-mediated inhibition of plasmin [106].

Enolase is a highly conserved protein that shows more than 40% sequence identity
in all species. It exists as a dimer or octamer, with each subunit consisting of a smaller
N-terminal domain and a larger C-terminal domain [107]. Previous studies using free
L-lysine and the analogous zwitterionic ligand ε-aminocaproic acid (EACA) suggested that
the main sites involved in plasminogen binding are lysine residues exposed on the surface
of bacterial enolase [81,84,108–113]. The key role of the last two C-terminal lysine residues
in S. pyogenes, S. pneumoniae, S. aureus, Mycobacterium tuberculosis, and Aeromonas hydrophila
was confirmed in studies based on site-directed mutagenesis, where removal of critical
lysine residues or replacement with leucine, alanine, or asparagine resulted in a significant
reduction in plasminogen binding [106,108,109,114,115].

Further analysis of bacterial enolase structures based on sequence comparisons pro-
vided evidence for the significant role of the internal 9-amino acid motif in the inter-
action with plasminogen [82,106,115–119]. In the case of several species of pathogenic
bacteria—S. aureus, S. pyogenes, M. tuberculosis, A. hydrophila, and Mycoplasma hyopneumoniae,
but also for commensal L. plantarum—the role of the internal motif was experimentally
confirmed, while showing that the C-terminal lysine residues had an additive effect on
binding of plasminogen [60,109,115,116,119]. In detail, the use of synthetic peptides corre-
sponding to the internal motif of the enolase of S. aureus and A. hydrophila competitively
inhibited its interaction with plasminogen, with the additional mutation of the C-terminal
lysine that improved this effect [106,115]. In contrast, the substitution of a lysine residue at
positions 193 and 194 in M. tuberculosis enolase led to a significant decrease in plasminogen
binding, while the additional substitution of a lysine residue at position 429 contributed
to a further reduction in binding [119]. The use of N- or C-terminal truncated enolase
mutants of M. hyopneumoniae for direct binding assays and competition assays showed
a significant reduction in plasminogen binding, especially for the C-terminal fragment,
indicating the essential role of the C-terminal lysine residues in this interaction; while,
for the N-terminus, a more important role in the activation step of plasminogen was
suggested [120]. The remaining binding activity for the N- and C-terminal mutants was
attributed to an internal enolase motif, which was previously shown to be partially located
on the surface of the crystal structure of M. hyopneumoniae enolase [121]; however, this
has not been confirmed experimentally [120]. Site-directed mutagenesis of S. pyogenes eno-
lase showed that both the substitution of lysine residues in the internal motif at positions
252 and 255, and those present at the C-terminus at positions 434 and 435, resulted in
a significant decrease in plasminogen binding [108,109]. The analysis performed for the
model of octameric enolase demonstrated that the C-terminal lysine residues are located
near the internal lysine residues, suggesting a common concerted function in plasminogen
binding [109]. Thus, it is somewhat surprising that, recently, the involvement of C-terminal
lysines and lysines present in the internal motif of S. pyogenes enolase in the binding of the
solution-phase plasminogen has not been confirmed with site-directed mutagenesis [122].
Interestingly, as in previous in vitro studies [108,109], binding was observed when enolase
adhered to different surfaces; however, this interaction was independent of C-terminal
lysines [122]. Single-particle cryo-electron microscopy has shown that, for the closed oc-
tamer of S. pyogenes enolase, which is required for functional plasminogen binding, the
C-terminal lysine residues are present in the minor interface between two monomers and
are not available as plasminogen binding sites. According to the authors, the reasons for
the observed differences are subtle changes in the enolase octameric conformation, which
vary depending on the type of surface and result in a change in neoepitope exposure to
plasminogen binding [122]. In the case of commensal L. plantarum enolase, which has
only one lysine residue at the C-terminus of the protein, a single substitution of lysine at
positions 259 and 442 has been reported to reduce plasminogen binding effectively, while a
double substitution completely abolishes the interaction [60].
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Furthermore, some examples of enolases have been reported in which plasminogen
binding occurs via an internal domain independent of C-terminal lysine residues [113,116].
Namely, experiments based on site-directed mutagenesis of enolase of the probiotic bacteria
B. lactis BI07 showed that the replacement of positively charged lysine at positions 251 and
254 by leucin and negatively charged glutamic acid at position 252 by glycine resulted in a
significant weakening of plasminogen binding, while additional removal of the C-terminal
lysines did not affect this interaction [82]. Contrary, for enolase from the infectious species
S. pneumoniae, the analogous substitution of two lysins and glutamic acid residues in
the internal motif was shown to result in a reduction in plasminogen binding to 44%,
while the mutant with the deletion of C-terminal lysine residues did not show additional
significant changes in plasminogen binding activity [116,123]. This observation is explained
by a detailed crystallographic analysis, which showed that, in the pneumococcal enolase
octamer, the C-terminal lysines are located in the inaccessible groove between the dimers,
while the internal binding motif (248–256) is exposed on the surface of the octamer [117].

In addition, two observations have been reported to date that describe the interaction
of enolases lacking C-terminal lysines in their sequences [115,118]. As expected, molecular
docking for H. influenzae enolase showed that the internal bacterial protein motif (251–262)
is involved in the interaction with plasminogen [118]. However, in the case of A. hydrophila
enolase, reduced plasminogen binding activity was observed when lysine residues near
the C-terminus at positions 420 and 427 were replaced by leucine and asparagine, respec-
tively [115].

The mature circulating form of plasminogen is known as Glu-plasminogen due to
the presence of a glutamic acid residue at the N-terminus. In its structure, it contains a
plasminogen–apple–nematode (PAN) domain located at the amino terminus [124], fol-
lowed by five kringle domains (K1–K5), and then a catalytic domain with serine protease
activity (S1) in the C-terminal region. Each of the kringle domains is highly stabilized by
internal linkages, including three disulfide bridges, which makes them to be considered
structurally and functionally independent. Kringle domains contain lysine-binding sites
(LBS) that present shallow dipole-containing surfaces where a hydrophobic region of highly
conserved aromatic residues separates opposite charges [125–127]. The kringle domains
have been shown to interact via LBS with lysine residues present in many host receptors,
such as fibrin or α2 antiplasmin, but also with free L-lysine and EACA; wherein the strength
of lysine binding varies between domains. The strongest affinity was observed for the K1
domain, followed by K4, K5, and K2, and the weakest for K3 [125,128,129]. Despite the
differences in binding strength observed, only a few studies of bacterial surface proteins
concern a specific type of kringle domain; in the case of enolase, these are analyzed based
on computational methods (Figure 3). The protein–protein docking for M. tuberculosis
enolase indicated the K2 and K5 domains as fragments directly involved in the interaction
with the internal enolase motif [119]. The interaction between proteins is stabilized by
the formation of five hydrogen bonds: the first between enoGly272 and Ser194 within
the K2 domain, then between enoLys193 and Arg504 within the K5 domain, with Arg504
simultaneously involved in bonds with enoSer190, which in turn forms two additional
bonds with Arg471 and Lys468 presented within the K5 domain [119]. In contrast, the
interaction of the internal H. influenzae enolase motif with plasminogen is conformationally
stabilized by the formation of four hydrogen bonds: the first between enoTyr253 and Glu1
within the K2 domain, the second between enoTyr253 and Gly310 within the K3 domain,
and the next two generated for the pairs enoLys255–Arg471 and enoGlu251–Lys468 within
the K5 domain [118]. Moreover, the bioinformatics analysis performed for S. aureus showed
that the interaction between the internal motif of enolase and the plasminogen is stabilized
by four hydrogen bonds: two formed within the K4 domain between Asp362–enoTyr251
and Glu439–enoAsn253 and two formed within the S1 domain between Phe692–enoVal255
and Ala694–enoSer248 [106]. However, S. aureus enolase has been experimentally shown to
interact with the five kringle domains with the same affinity as with full-length plasmino-
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gen; hence, it appears that binding within the K4 domain, rather than S1, is crucial for this
interaction [106].
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6. Modulation of the Fibrinolytic System by Bacteria in Periodontal
Disease—Double-edged Sword in Chronic Infection

Periodontal disease is one of the most widespread chronic inflammatory-related dis-
eases, manifested by the destruction of the soft tissues surrounding the teeth, followed by
bone destruction, and consequently, loosening of teeth and their loss. Both in the acute
phase of inflammation, manifested by bleeding, gingival crevicular fluid leakage, and
swelling, as well as in the chronic phase of gingival disease, the plasminogen activation
and fibrinolysis systems play a fundamental role. They mainly contribute to the process
of wound healing, cell migration, tissue remodeling, and bone resorption and formation,
as well as to the progression and resolution of inflammation [130–132]. In the etiology of
periodontal disease, the key mechanisms of pathogenesis are related to the presence and
activity of certain bacterial microorganisms in the lesion, which strongly contribute to the
development and further control of inflammation and tissue destruction [133,134]. One
of the important factors of microbial involvement is proteolytic activity in the infectious
niche [68]. Both proteases secreted by bacterial periodontopathogens and deregulation of
the host proteolytic activity by pathogens can contribute to the development of the dis-
ease [68,135–138]. Porphyromonas gingivalis and Treponema denticola proteinases—gingipains
and dentilisin, respectively—may directly activate plasminogen to plasmin. Addition-
ally, proteinases produced by several periodontal pathogens—P. gingivalis, T. denticola,
Prevotella intermedia, and Prevotella nigrescens—have been identified as capable of degrad-
ing plasmin inhibitor α2AP [68,139]. The complex formed by P. gingivalis major cysteine
proteinases—gingipains RgpA and Kgp—may activate zymogen of uPA [140]. Moreover,
P. gingivalis Kgp is capable of degrading the plasminogen activator inhibitor PAI-1 in the
periodontal tissues, resulting in intensified fibrinolysis, increased bleeding ensuring access
to heme for bacteria, attenuated migration of the endothelial cells, and delayed wound
healing, facilitating spreading of bacteria to other tissues [141].

Furthermore, it has been demonstrated that the P. gingivalis enzyme peptidylarginine
deiminase (PPAD) is responsible, with the cooperation of gingipains, for the modification
of at least six arginine residues in plasminogen to citrullines. However, citrullination did
not affect either the process of activation of plasminogen to plasmin by gingipains, or the
binding of human protein to the unmodified surface of Candida albicans yeast-like fungus,
which may co-resident with P. gingivalis at the inflammatory site [142]. Although the
binding of plasminogen to the cell surface may further facilitate its activation with plasmin,
on the surface of T. denticola cells several proteinaceous receptors for plasminogen have
been identified already, including proteins OppA, Msp, and FhbB. Similarly, plasminogen-
binding activity was also assigned to the cell surface of Fusobacterium nucleatum subsp.
nucleatum [139,143–145].

The other periodontopathogen—Tannerella forsythia—produces miropin, a protease
inhibitor from the serpin superfamily with the ability to inhibit host plasmin effectively and



Int. J. Mol. Sci. 2023, 24, 10436 12 of 19

specifically, which may protect these pathogens against degradation of bacterial proteins
by plasmin and interfere with the role of plasmin in interactions with the activity of the
immune system [146]. Furthermore, miropin can alter degradation of the fibrin deposits in
periodontal tissues, being a product of increased thrombin activation and contributing to
the pathogenesis of periodontal disease [146,147]. Excessive fibrin deposition and impaired
fibrinolysis can lead to fibrin accumulation, persistent activation of neutrophils with the
production of reactive oxygen species (ROS), neutrophil extracellular traps (NETs), and
development of local immunopathology and periodontitis [148,149] (Figure 4).
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Exaggerated plasmin activity associated with activation of the kinin production system
and degradation of the ECM contributes to the development of inflammation, exudation,
and destruction of periodontal connective tissue [13,150]. However, plasmin is also in-
volved in the process of resolution of inflammation; therefore, the role of this enzyme in
chronic infections such as periodontitis is multifaceted, as it contributes not only to acute
and prolonged tissue damage, but also to the wound healing and bone repair [2,150–153]. It
should also be remembered that subgingival plaque is composed of many different species
of bacteria, so considering the influence of individual microorganisms on the plasminogen
activation and fibrinolysis system may not fully reflect the complexity of interactions at the
site of ongoing disease.

7. Conclusions

Close connection of the fibrinolysis system with the process of activation of the coagu-
lation cascade, the kinin generation system, and the complement system draws attention
to its essential role, not only in the physiological processes of wound healing and tissue
remodeling, but also in the host defense mechanisms. Therefore, plasminogen and its active
form, plasmin, are important factors involved in the regulation of the inflammatory state,
both in acute inflammation and in chronic inflammatory conditions. The binding of human
plasminogen to the cell surface of pathogens and its subsequent activation is a universal
phenomenon and an important source of proteolytic activity, playing an essential role in the
virulence process. Therefore, bacterial pathogens have developed a number of mechanisms
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that are involved in interactions with human protein, and one well-known example is the
presence of a plasminogen-binding protein on the surface of bacterial cells, which is enolase.
The involvement of various bacterial activities in the control of the fibrinolytic system
may have two effects: it may lead to an exacerbation of the host inflammatory response,
but it may also, in the longer term, cause the development of a latent, chronic infection.
Therefore, a detailed understanding of the sophisticated interactions of bacteria with the
host fibrinolytic system will contribute significantly to understanding the infection biology
and may provide a starting point for alternative strategies to treat chronic inflammation.
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