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Abstract: Adipogenesis is regarded as an intricate network in which multiple transcription factors
and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic
mechanisms and their involvement in the regulation of adipocyte development. Multiple studies
investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported
so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels
through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and
developments in the field of non-coding RNA may provide a new insight to identify therapeutic
targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis,
and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.
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1. Introduction

Adipose tissue is the material basis of living systems, serves as an energy reservoir to
regulate caloric balance, and is mainly found beneath the skin (subcutaneous fat), abdomi-
nal omentum (omental fat) and surrounding the viscera (visceral fat) [1]. Adipose tissue
contains a great amount of mature adipocytes, as well as preadipocytes, mesenchymal cells,
and cells within the SVF (stromal vascular fraction) [2]. Generally, adipose tissue can be
categorized into white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose
tissue. Contrary to white adipocytes with storing energy, brown and beige fat cells are ca-
pable of thermogenesis, and thus to expend energy [3]. These adipocytes are characterized
by an increase in mitochondria and possess numerous small lipid droplets. Meanwhile,
uncoupling protein 1 (UCP1) has been regarded as the key factor that drives thermogene-
sis [4]. For the purpose of this review, we mainly focus on white adipose. Besides acting as
a vital energy reservoir, adipose tissue is considered an endocrine organ. Signaling proteins
secreted by white adipose tissue are known as adipokines, including adiponectin, leptin,
tumor necrosis factor (TNF), interleukin 6 (IL-6), adipocyte fatty acid-binding protein (AP2)
and so on, which are involved in coordinating the body’s metabolism [5].

It is important to control the enlargement of existing adipocytes (hypertrophy) and
the formation of new adipocytes (hyperplasia) for the metabolic health of the body [4]. For
example, obesity, as a chronic disease, results from excessive fat deposition and abnormally
secreted adipokines. However, for livestock, ectopic fat deposition such as intramuscular
fat is the key to improving the meat quality. The past few years have expanded our under-
standing of fat formation and what regulating factors are involved. Recently, many research
studies have shifted their attention to the epigenetic mechanisms in regulating adipogene-
sis, especially noncoding RNAs (ncRNAs). ncRNAs mainly include long noncoding RNAs
(lncRNAs), microRNA (miRNA), circular RNA (circRNA), small nuclear RNA (snRNA),
and others [6]. Most of the past research has uncovered the roles of lncRNA, miRNA, and
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circRNA in the regulation of adipogenesis. Therefore, this article outlines the process of
adipogenesis, and discusses how ncRNAs influence the development of adipocytes.

2. Process of Adipogenesis

At present, there is a relatively clear description of adipogenesis. Adipocytes arise
from multipotent mesenchymal stromal cells (MSCs), which have the ability to develop into
multiple cell types including adipocytes, chondrocytes, myocytes, and osteocytes [7]. For
adipogenesis, MSCs acquire adipogenic fates from specific signaling molecules to develop
into preadipocytes, and then experience mitotic clonal expansion (MCE) and terminal
differentiation to form mature adipocytes under the regulation of key transcription fac-
tors [8] (Figure 1). A series of extracellular signaling pathways are essential for adipocyte
commitment of MSCs, mainly including hedgehogs (Hh), wingless-type MMTV integration
site (Wnt) signaling, and bone morphogenic protein (BMP) signaling [9]. Here, BMP2,
BMP4, and BMP7 could commit MSCs to the adipogenic lineage through activating down-
stream signaling Smad and p38/MAPK [10,11]. On the contrary, Wnt and Hh signaling has
been extensively confirmed as a negative regulator of adipogenesis [3]. For determination
of mesenchymal lineage, Wnt signaling promoted chondrocyte, myocyte, and osteocyte
lineage commitment, while adipogenesis is the only process that is inhibited by Wnt [12].
Wnt signaling has been shown to inhibit the terminal differentiation of preadipocytes into
mature adipocytes [13]. For example, WNT10B can inhibit the adipogenic transcription
factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer bind-
ing protein α (C/EBPα) to maintain preadipocytes in an undifferentiated state [14]. Hh
signaling can activate a series of intracellular signals leading to regulated expression of
target genes through the transcription factor Gli family, including Gli1, Gli2, and Gli3 [3].
During the adipogenic differentiation of MSCs, Hh signaling is weakened due to decreases
in Gli expression [9]. The activation of Hh signaling could impair adipogenesis and block
the lipid accumulation through interfering the expression of C/EBPα and PPARγ [15]. It
is worth noting that these signaling molecules are synergistic to determine the lineage
commitment of MSCs.
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Figure 1. The process of adipogenesis.

Following commitment, several signaling molecules have a crucial effect on adipogenic
differentiation. Insulin-like growth factor 1 signaling (IGF-1), glucocorticoid signaling (GC),
and cyclic AMP signaling (c-AMP) have a positive role in adipogenesis [16–18], while the
Notch signaling pathway shows an inhibitory role [19]. Therefore, IGF1, glucocorticoid,
and cAMP as differentiation inducers could trigger preadipocytes entering into a series
of differentiation programs, including mitotic clonal expansion (MCE) and differentiation
cascade [7]. Numerous adipocyte-specific transcription factors were involved in transcrip-
tional differentiation cascade, including cAMP response element-binding protein (CREB),
CCAAT enhancer-binding protein α, β and δ (C/EBPα, C/EBPβ, and C/EBPδ), and perox-
isome proliferator-activated receptor gamma (PPARγ) [20]. The phosphorylation of CREB
is thought to be the initiation to these events, and active CREB can promote the expression
of endogenous C/EBPβ and C/EBPδ [21,22]. Inactive C/EBPβ is phosphorylated by MAP
kinase and GSK3β to possess DNA binding activity, and then the active C/EBPβ induces the
transcription of PPARγ and C/EBPα [23]. Once expressed, PPARγ and C/EBPα coordinately
trigger the transcription of adipocyte genes to produce the adipocyte phenotype [9,24].
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Mature adipocytes are blessed with the appearance of adipocyte and metabolic charac-
teristics, such as the accumulation of triglycerides in the cytoplasm [7]. Furthermore, a
large number of regulatory proteins, including cytokines, enzymes, and peptide hormones,
can be excreted by adipocytes [25]. The majority of adipocytokines act locally through
paracrine, while others, just like leptin and adiponectin, have long-range impacts [26,27].

3. LncRNAs and Adipogenesis
3.1. LncRNA-Mediated Adipogenesis

LncRNAs are defined as a category RNA transcript greater than 200 nucleotides, and
were initially regarded as non-coding genes [28]. However, recent studies have indicated
that there are lncRNAs with the capacity to encode small polypeptides in some cases [29,30].
Likewise, lncRNAs are also characterized with 5′ cap and 3′ polyadenylation, and can
produce different transcripts through variable shearing [31]. Unlike mRNA, lncRNAs
possess poor conservatism among species and have obvious tissue or cell specificity [32].
LncRNAs are located in the cytoplasm and nucleus, but are more abundant in the nu-
cleus [33]. Importantly, lncRNAs play vital roles in various biological processes through
affecting chromosome modification, transcriptional activation, miRNA binding, mRNA
translation, and protein stability [34].

Recently, numerous lncRNAs related to adipose development have been identified
using high-throughput sequencing technology, and the majority are characterized by
adipose-tissue-specific expression. Sun and his colleagues found that 175 lncRNAs are
specifically regulated by key transcription factors including PPARγ and CEBPα during
adipogenesis. Importantly, deletion of identified functional lncRNAs resulted in a reduction
in enrichment for adipose-associated genes, and decreased fat accumulation [35]. Moreover,
more adipogenesis- and development-related lncRNAs were screened in humans, mice,
bovines, pigs, and so on [36–39]. SRA (steroid receptor RNA activator) was firstly identified
as a lncRNA which had a regulatory role in adipogenesis. Studies have shown that SRA
promotes 3T3-L1 adipocyte differentiation through binding PPARγ and increasing the
expression of PPARγ [40]. Other lncRNAs have also been found to the modulate transcrip-
tional activity of PPARγ, such as IMFNCR, ADNCR, and Plnc2 [41–43]. Similarly, there
are some lncRNAs specifically regulating C/EBPα [44]. For example, C/EBPα activated the
expression of lncRNA TINCR through binding its promoter, and TINCR adsorbed miR-31
to promote the transcriptional activity of C/EBPα, which formed a TINCR-miR-31-C/EBPα
feedback loop to enhance adipogenic differentiation in adipose-tissue-derived mesenchy-
mal stem cells (ADSCs) [45]. In addition to being involved in adipocyte differentiation,
several lncRNAs have also been implicated in preadipocyte proliferation. For instance,
lncAcart promotes 3T3-L1 cell proliferation [46]; lncPRDM16 inhibits preadipocyte prolif-
eration in chickens [47]; lncFAM200B suppresses preadipocyte proliferation in cattle [48].
Antisense lncRNAs (AS lncRNAs), a specific subclass of lncRNAs, are transcribed from
DNA on the opposite strand of mRNA. Studies have shown that PU.1 AS lncRNA prevents
PU.1 mRNA translation through binding PU.1 mRNA to form an mRNA/AS lncRNA
compound, which can promote adipogenesis [49,50]. Furthermore, some lncRNAs have
negative regulatory effects on adipose development. During the commitment of BMSCs
(bone marrow mesenchymal stem cells) into adipocytes, lncRNA H19 inhibited adipogenic
differentiation [51]. Likewise, adipoQ (adiponectin) AS lncRNA was found to inhibit
adipogenesis [52]. Recently, an increasing number of studies have revealed adipogenesis-
and development-related lncRNAs (Supplementary Table S1). It follows that lncRNAs can
function as effective regulatory factors to determine adipogenesis and development.
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3.2. The Regulatory Modes of LncRNAs in Adipogenesis

To make better sense of how lncRNA participates in adipogenesis and development,
it is necessary to discuss the regulatory pathways of identified lncRNAs. The functional
mechanisms of lncRNAs are mostly dependent on cellular localization. Nuclear lncRNAs
are mainly involved in modulating gene expressions [53,54], while cytoplasmic lncRNAs
mainly regulate mRNA stability, translation, and protein phosphorylation [55]. We next
turn to summarize identified regulatory pathways of lncRNAs in adipogenesis and de-
velopment (Figure 2). A major mode of lncRNAs regulating transcription is acting as
molecular decoys, including binding RNA-binding proteins (RBPs), RNA molecules, or
miRNAs [56]. LncRNA CAAlnc1 bound with Hu antigen R (HuR) to inhibit adipogen-
esis in C3H10 cells, which was due to the combination of HuR with CAAlnc1 to block
the transcription of C/EBPα and PPARγ [57]. Recently, research found that lncRNA XIST
promoted brown preadipocyte differentiation and prevented high-fat-diet-induced obe-
sity through binding with C/EBPα [58]. Likewise, lncRNAs bind with RNA molecules to
modulate adipogenesis, such as AS lncRNA PU.1 promotes adipogenesis through binding
PU.1 mRNA and adipoQ and inhibits adipogenesis through preventing adiponectin mRNA
translation [49,52]. The widely studied and best understood regulatory mechanism of
lncRNAs is acting as miRNA decoys. LncRNA-Adi promote adipogenesis in adipose-
tissue-derived stromal cells (ADSCs) through blocking the interaction with miR-449a and
CDK6 to enhance CDK6 translation [59]. Moreover, there are more lncRNAs as miRNA
decoys involved in regulating adipogenesis, such as when lncRNA Gm15290 promotes
fat deposition by sponging miR-27b in mice [60]; lncADNCR inhibits adipogenic differ-
entiation by sponging miR-204 in bovines [42]; and lncIMF2 accelerates adipogenesis by
sponging miR-217 in pigs [61]. Generally, proteins are considered the main elements in a
variety of scaffolding complexes. However, recent studies indicated that lncRNAs may
also serve as players in the scaffold [56]. In BMSCs, Bmncr accelerated assembly of the
RUNX2/PPARG and TAZ transcriptional complex by acting as a scaffold for TAZ and
ABL, thereby inhibiting adipogenesis and promoting osteogenesis [62]. LncRNAs can also
regulate adipogenesis via histone modifications. The missing MIR31HG inhibits adipocyte
differentiation through reducing the enrichment of histone H3 lysine 4 trimethylation
(H3K4me3) and acetylation (AcH3) in the promoter of FABP4 [63]. In addition, lncRNAs
can regulate gene expression in cis (on neighboring genes) or trans (distantly located genes)
ways through guiding the ribonucleoprotein complex to specific targets [56]. LncADINR,
lying in ∼450 bp upstream of the C/EBPα gene, specifically binds with PA1 and recruits the
MLL3/4 histone methyltransferase complex to activate the transcription of C/EBPα in cis,
which promotes adipogenesis [64]. For trans mechanisms, the interaction of slincRAD and
DNMT1 can guide epigenetic factors to regulate promoter methylation of cyclin-dependent
kinase inhibitor p21, which mediates early adipogenesis [65]. As regards lncRNA regu-
lation of splicing, a study found that Ctcflos mediated alternative splicing of Prdm16 (a
key browning factor) during thermogenic adipogenesis [66]. In addition, a few studies
have shown that lncRNAs have the capacity to produce functional small peptides, such as
LINC00961-encoded SPAR polypeptide, which was identified to regulate muscle regenera-
tion [29]. However, the study of lncRNA-encoding functional peptides during adipogenesis
has not been reported, and further research needs to be explored.
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4. MiRNAs and Adipogenesis
4.1. MiRNA-Mediated Adipogenesis

MiRNAs are defined as a class of short ncRNAs with ~23 nucleotides, which function
in the post-transcriptional regulation of genes [67]. MiRNAs are evolutionarily conserved
and have tissue specificity [68]. The transcription of miRNA was initially mediated by
RNA polymerase II (Pol II) to produce primary miRNAs (pri-miRNAs). Subsequently,
pri-miRNAs were cleaved to precursor miRNAs (pre-miRNAs) with a microprocessor
including RNase III enzyme Drosha, DiGeorge critical region 8 (DGCR8), and other aux-
iliary factors. Pre-miRNAs were transported into the cytoplasm and processed by the
endoribonucleases Dicer to miRNA duplex intermediate. Finally, one miRNA strand
was selected by the Argonaute (AGO) protein as mature miRNA, and then assembled
RNA-induced silencing complex (RISC) to mediate gene silencing [69]. In general terms,
miRNA binds directly to the 3′ untranslated region (3′ UTR) of mRNAs involved in mRNA
decay and translation repression. The positions 2~8 of the miRNA, called the seed region,
possess strong complementarity with the 3′ UTR of mRNAs [68]. Notably, almost 60%
of mammalian transcripts can be targeted by miRNA, and individual miRNA can target
multiple mRNAs [67].

MiRNAs have become extensive regulators in various biological processes and are
involved in almost every cellular process [67]. Likewise, miRNAs also play vital roles in
adipocyte development and function. One study has showed that disruption of miRNA
processing by fat-specific knockout Dicer in mice can lead to a decrease in subcutaneous
and intra-abdominal white fat and impaired metabolic function, which suggested the
global importance of miRNAs in adipogenesis [70]. In addition, most studies identified
differentially expressed miRNAs at various stages of adipose development through miRNA
sequencing. Using microarray analysis, 386 differentially expressed miRNAs were exam-
ined during 3T3-L1 differentiation (0, 1, 4, and 7 d after adipogenic induction) and several
of these, such as let-7, miR-143, miR-193, miR-103, and miR-210, were increased after 2 d
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differentiation and maintained high expression levels in mature adipocytes [71]. Another
study examined differentially expressed miRNAs during the three different stages of adipo-
genesis, including human mesenchymal stem cells (hMSCs), human visceral preadipocytes
(vHPA), and mature adipocytes, and the results showed that miR-146b exhibited a higher
level in mature adipocytes, whereas it exhibited lower expression in vHPA and hMSCs [72].
MiRNAs have also been identified to be involved in the regulation of the process of adipo-
genesis, including adipocyte commitment of MSCs, MCE, and terminal differentiation [73].
For example, miR-204/211 promoted adipogenesis of mesenchymal progenitor cells and
BMSCs through inhibiting the expression of Runx2, a key transcription factor for osteogen-
esis [74]. Using the high throughput microarray, 47 miRNAs were identified to regulate
adipogenesis by influencing WNT signaling, of which miR-210 can inhibit WNT signaling
by targeting Tcf7l2, and thus promote adipogenesis [75]. On the other hand, let-7 had a
significant effect on the transition from clonal expansion to terminal differentiation, in
which let-7 inhibited clonal expansion through targeting HMGA2 [71]. Several miRNAs
have also been shown to regulate terminal differentiation of adipocytes. For example,
miR-143, miR-378, and miR-199 promoted adipocyte differentiation [76–78]; in contrast,
miR-27a/b, miR-448, and miR-138 inhibited adipocyte differentiation [79–82]. Furthermore,
miRNA mediated adipogenesis by regulating preadipocyte proliferation. MiR-152 has been
proven to inhibit preadipocyte proliferation and promote lipid accumulation in 3T3-L1 [83].
There are several miRNAs that have been shown to be involved in the regulation of mature
adipocyte metabolic functions [73]. For example, overexpression of miR-519d disrupts fatty
acid metabolism and promotes adipocyte hypertrophy, and the overexpression of miR-124a
leads to a decrease in lipid metabolism and the accumulation of cellular triacylglycerol
(TG) [84,85]. Recently, an increasing number of studies have revealed adipogenesis- and
development-related miRNAs (Supplementary Table S2). These findings have elucidated
the crucial roles of miRNAs in adipogenesis and metabolic function.

4.2. The Regulatory Modes of MiRNAs in Adipogenesis

It is well-known that the regulatory mechanisms of miRNAs on gene expression are
principally in combination with the target mRNAs, and thus to mediate mRNA decay and
translation repression. We next turn to summarizing the identified regulatory pathways
of miRNAs in adipogenesis and development (Figure 3). During adipogenesis, miRNAs
can regulate adipogenesis by acting on key transcription factors or signaling pathways
associated with adipogenesis. PPARγ is a major transcription factor for adipogenesis
whose 3′ UTR sequences are highly conserved, so several miRNAs have been identified
to regulate the expression of PPARγ. For example, miR-27a, miR-27b, and miR-130 neg-
atively regulated adipocyte differentiation through binding PPARγ 3′ UTR [81,82,86]. In
addition, miR-31 were found to bind C/EBPα, and thus to inhibit adipocyte differentia-
tion [87]. Some miRNAs positively regulated adipogenesis by targeting anti-adipogenic
factors, such as miR-146b targets KLF7 and miR-103 targets MEFD2 [72,88]. MiR-143 can
modulate MAP2K5-ERK5 signaling through targeting the 3′ UTR of MAP2K5 to involve in
adipogenesis [89]. Although most miRNAs binding sites are thought to be located in the
3′ UTR of mRNAs, some studies have shown that miRNAs can also bind to the 5′ UTR or
even coding regions of mRNAs, thereby regulating gene expression [90,91]. For instance,
miR-130 inhibited adipogenesis by targeting both the coding regions and the 3′ UTR of
PPARγ, and miR-23a/b-3p accelerated hepatic lipid accumulation by binding the 5′ UTR of
Srebp-1c and Fas [86,91]. It should be noted that the combination between miR-23a/b-3p
and the 5′ UTR of targeted genes increased mRNA stability [91]. Besides binding with
mRNA, miRNA can interact with lncRNA. One example of this is that miR-140, localized
in the nucleus, bound with NEAT1 to enhance its expression, which resulted in increased
adipogenesis [92]. Additionally, miRNA-378/378* was found to increase C/EBPα and
C/EBPβ activity on the GLUT4 promoter, thus stimulating lipogenesis [77]. MiRNAs can
also be secreted in the way of exosomes to establish a communication network between
cells, which can regulate the function of cells and tissues [93]. In this context, adipose tissue
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has been identified as a major source of exosomal miRNAs, and adipose-derived exosomal
miRNAs can produce far-reaching systemic effects through regulating gene expression in
other tissues [94]. Likewise, other tissue-derived exosome miRNAs are blessed with an abil-
ity to influence adipocyte function. Recent studies, for example, showed that hepar-derived
exosomal miR-130a-3p increased the glucose uptake in adipocytes, and ischemic heart-
derived exosomal miR-23-27-24 cluster impaired endocrine function in adipocytes [95,96].
Several nuclear functions of miRNAs have been also described, including regulation of the
stability of nuclear transcripts, mediating alternative splicing events, interaction with gene
promoter regions to modulate gene transcription, binding with gene enhancer sequences to
activate transcription, and so on [97,98]. However, nuclear functions of miRNAs have not
been fully revealed in adipocytes, and more studies are needed to fully explore the new
regulatory modes of miRNAs in adipogenesis.
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plasmic miRNAs mainly mediate mRNA decay and translation repression through binding with
target genes. MiRNAs can also be excreted from adipocytes as exosomes. The nuclear miRNAs
can mediate gene silencing via RISC, as well as activate gene transcription through binding with
promoter. However, these nuclear functions of miRNAs have not been reported in adipogenesis. In
addition, the nuclear miRNAs can regulate lncRNA expression.

5. CircRNAs and Adipogenesis
5.1. CircRNA-Mediated Adipogenesis

CircRNA, as an emerging type of ncRNA, is the covalently closed transcript formed
by the back-splicing of mRNA. According to circularization mechanisms, circRNAs are
normally classified into ciRNA composed of introns, EcircRNA composed of exons, and
EIciRNA composed of introns and exons [99]. At present, three popular models were
proposed to account circRNA biogenesis, including the lariat-driven model, the RBP-driven
model, and the intron-pairing driven model [100,101]. Intron-pairing-driven cyclization
is the most common, in which flanking introns containing reversely complementary se-
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quences, such as the Alu sequence, can promote circRNA formation [101]. Recent studies
have revealed circRNA characterization. CircRNAs are evolutionarily conserved, and their
expressions are tissue- or developmental-stage-specific [102]. CircRNAs are ubiquitous in
various eukaryotes, and circRNAs are more abundant than corresponding linear mRNAs
in situations [101]. Additionally, the covalently closed-loop structure of circRNA makes it
resistant to degradation by RNases, and thus is more stable than linear transcripts [103].
Recently, numerous circRNAs have been identified, and their functional roles in various
biological processes have been uncovered.

CircRNAs are also vital regulators in adipocyte development and function. Abundant
adipose circRNAs were identified via the deep sequencing of visceral and subcutaneous
fat, many of which were dynamically changed during adipogenesis [104]. Importantly,
identified circArhgap5-2 exhibited the essential role of promoting the global transcriptional
program of adipocyte genes, and this function of circArhgap5-2 is consistent in human
adipocytes [104]. Likewise, more circRNAs associated with adipogenesis were identified
in livestock, such as bovines, pigs, chickens, and so on, which can affect fat deposition,
and thus improve meat quality [105–107]. For example, circPPARA identified in pigs
can promote differentiation of porcine intramuscular preadipocytes, thereby increasing
intramuscular adipogenesis [105]. The circRNA microarrays analysis for adipose tissue
from lean and obese individuals revealed that circSAMD4A was particularly upregulated
in obese individuals, and it can promote adipogenesis through the miR-138-5p/EZH2
axis [108]. Recent studies demonstrated that circRNAs are also involved in adipocyte
commitment of MSCs [109]. Circular RNA CDR1as can absorb miR-7-5p to enhance Wnt5b
expression, thereby promoting adipogenic differentiation and inhibiting osteogenesis in
BMSCs [110]. Moreover, circRNA can indirectly regulate the expression of key transcription
factors associated with adipogenesis. For instance, newly identified bovine circRNF111 en-
hanced the PPARγ transcription by relieving the inhibitory effect of miR-27a-3p on PPARγ,
resulting in increased adipogenesis [111]. On the other hand, circRNAs have also been
implicated in preadipocyte proliferation. Novel circPPARA has been proven to promote
differentiation and inhibit the proliferation of porcine intramuscular preadipocytes [105].
Another work identified that circBDP1 accelerated the proliferation and differentiation of
bovine preadipocytes [112]. An increasing number of studies have revealed adipogenesis-
and development-related circRNAs (Supplementary Table S3). However, studies on circR-
NAs’ regulation of adipogenesis are still in their infancy; numerous circRNAs involved in
adipogenesis remain to be discovered.

5.2. The Regulatory Modes of CircRNAs in Adipogenesis

Recent studies have proposed the regulatory mechanisms of circRNAs in gene expres-
sion, mainly including action as miRNA sponges, regulation of variable splicing, interaction
with RBPs, and translation into proteins [113]. We next turn to summarizing the identified
regulatory pathways of circRNAs in adipogenesis and development (Figure 4). The func-
tional mechanisms of circRNAs are also mostly dependent on cellular localization. Like
lncRNA, cytoplasmic circRNAs are widely regarded as miRNAs decoys. During adipogen-
esis (preadipocyte, differentiating preadipocyte, and mature adipocyte), 41 differentially
expressed circRNAs were identified with RNA-seq, and numerous circRNAs possessed
miRNAs binding sites, such as miR-30c, miR17, and miR-130, which suggested that these
circRNAs may be involved in the regulation of adipogenesis through potentially sponging
miRNAs [114]. Increasing numbers of research studies have elucidated this mechanism.
In humans, circSAMD4A promotes preadipocyte differentiation by decoying miR-138-5p
to increase EZH2 expression [108]; in cattle, circFUT10 inhibits adipocyte differentiation
by sponging let-7 to increase PPARGC1B expression [115]; in pigs, circSETBP1 accelerates
adipocyte differentiation by acting as an miR-149-5p sponge [116]. Recent studies have
reported that circRNA regulated adipogenesis via an interaction with protein. It was found
that deletion of circH19 enhanced adipogenic differentiation in human adipose-derived
stem cells (ADSCs). Mechanically, deletion of circH19 inhibited the interaction with PTBP1,
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and accelerated the effect of PTBP1 on SREBP1 cleavage and translocation, resulting in
increased expression of lipogenesis-related genes and accumulated lipids in hADSCs [117].
CircRNAs can also be secreted by adipocytes, and in the way of exosomes to regulate the
function of cells and tissues. For example, exosome circ-DB secreted from adipocytes can
accelerate tumor growth by sponging miR-34a and activating deubiquitination-related
USP7 [118]. Furthermore, nuclear circRNAs are mainly involved in modulating gene tran-
scription and alternative splicing [119]. For example, EIciRNAs can promote the expression
of parental genes by interacting with RNA polymerase II, U1 small nuclear RNA, and
gene promoters [120]. However, the intracellular mechanisms of circRNAs regulating gene
transcription in adipogenesis have not been reported, and more studies are needed to fully
explore this.
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plasmic circRNAs exert their functions mainly through acting as miRNA sponges, protein sponges.
The nuclear circRNAs regulate gene transcription by interacting with Pol II and U1 snRNP, as well
as binding with RBP. In addition, some circRNAs can be translated into peptides. However, reg-
ulatory mechanisms in the nucleus and translation function of circRNAs have not been reported
in adipogenesis.

6. Conclusions

Adipogenesis is regarded as an intricate process in which multiple regulatory factors
and signal pathways are involved. At present, emerging studies demonstrated that ncRNAs
as regulators of gene expression play crucial roles in adipogenesis and development.
Therefore, we summarized the previous work to indicate a wide range of roles of ncRNAs,
mainly including lncRNA, miRNA, and circRNA in adipogenesis.

With advances in high-throughput sequencing and molecular techniques, an increas-
ing number of adipose ncRNAs are revealed and their functions are actually well estab-
lished. However, the regulatory mechanisms of ncRNAs modulating adipogenesis in
existing reports are still unitary. Previous research mainly focused on the functions of
ncRNA as a sponge, especially as an miRNAs decoy. For instance, the mechanism by
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which nuclear circRNA and miRNA regulates gene transcription in adipogenesis has not
been reported. On top of that, further studies are needed to fully reveal the regulatory
mechanism of these. In addition, the combined effects of ncRNAs should also be considered.
LncRNAs can sponge miRNAs to regulate the expression of target genes. In the same way,
circRNA can also directly adsorb miRNAs to relieve the inhibitory effect on genes. The
interaction network of lncRNA, miRNA, and circRNA is a potentially crucial regulatory
mechanism in cells, and may produce considerable effects on adipogenesis. On the other
hand, lncRNA, miRNA, and circRNA can be secreted in the way of exosomes to estab-
lished a communication network between cells, which can regulate the function of cells
and tissues. Currently, exosomal ncRNAs have been described as a potential biomarker
of disease [121]. These findings provided a promising strategy for ncRNAs’ action as a
diagnostic tool in lipid-related diseases like obesity.

Recently, a popular term of adipose-tissue plasticity has been proposed with the
deepening of understanding of adipose tissue, which means that adipose tissue could
change its metabolism, structure, and phenotype to meet the needs of the organism in
physiologic stimuli [122]. Studies suggests that the limitation in adipose-tissue plasticity
leads to the abnormal functions and metabolism of adipose tissue, and drives the pro-
gression of lipid-related diseases like obesity. In this context, ncRNAs are emerging as
new regulators in adipose-tissue plasticity. At present, the roles of ncRNAs in modulating
adipose-tissue plasticity are mainly embodied in phenotype, including regulation of the
browning of white fat. For example, lncBATE10 acts as a positive regulator of full brown fat
differentiation and white fat browning program [123]; miR-30b/c promoted thermogenesis
and the browning process of WAT [124]. Therefore, the potency of ncRNAs as regulators
for the abundance and activity of adipose tissue remain, which will yield a promising
strategy to combat obesity. However, studies on ncRNA-mediated phenotype plasticity are
still in their infancy, and in particular, the research on metabolism plasticity and structure
plasticity remain limited.

Overall, the adipose regulatory network centered on ncRNAs is sketched out in a
rough frame. Numerous ncRNAs associated with adipogenesis and their functions and
regulatory mechanisms still need to be further specified in more depth.
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